blk-throttle.c 43.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

86 87 88 89 90 91 92 93
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

94
struct throtl_grp {
95 96 97
	/* must be the first member */
	struct blkg_policy_data pd;

98
	/* active throtl group service_queue member */
99 100
	struct rb_node rb_node;

101 102 103
	/* throtl_data this group belongs to */
	struct throtl_data *td;

104 105 106
	/* this group's service queue */
	struct throtl_service_queue service_queue;

107 108 109 110 111 112 113 114 115 116 117
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

118 119 120 121 122 123 124 125 126 127 128 129
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

	/* bytes per second rate limits */
	uint64_t bps[2];

130 131 132
	/* IOPS limits */
	unsigned int iops[2];

133 134
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
135 136
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
137 138 139 140

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
141

142 143 144 145 146
	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;

	/* List of tgs waiting for per cpu stats memory to be allocated */
	struct list_head stats_alloc_node;
147 148 149 150 151
};

struct throtl_data
{
	/* service tree for active throtl groups */
152
	struct throtl_service_queue service_queue;
153 154 155 156 157 158 159

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
160
	 * number of total undestroyed groups
161 162 163 164
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
165
	struct work_struct dispatch_work;
166 167
};

168 169 170 171 172 173 174
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);

static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);

175 176
static void throtl_pending_timer_fn(unsigned long arg);

177 178 179 180 181
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
182
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
183
{
184
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
185 186
}

T
Tejun Heo 已提交
187
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
188
{
189
	return pd_to_blkg(&tg->pd);
190 191
}

T
Tejun Heo 已提交
192 193 194 195 196
static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
{
	return blkg_to_tg(td->queue->root_blkg);
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 *
 * TODO: this should be made a function and name formatting should happen
 * after testing whether blktrace is enabled.
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
248
									\
249 250 251 252 253
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
254
} while (0)
255

256 257
/*
 * Worker for allocating per cpu stat for tgs. This is scheduled on the
258
 * system_wq once there are some groups on the alloc_list waiting for
259 260 261 262 263 264 265 266 267 268 269 270 271
 * allocation.
 */
static void tg_stats_alloc_fn(struct work_struct *work)
{
	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
	struct delayed_work *dwork = to_delayed_work(work);
	bool empty = false;

alloc_stats:
	if (!stats_cpu) {
		stats_cpu = alloc_percpu(struct tg_stats_cpu);
		if (!stats_cpu) {
			/* allocation failed, try again after some time */
272
			schedule_delayed_work(dwork, msecs_to_jiffies(10));
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
			return;
		}
	}

	spin_lock_irq(&tg_stats_alloc_lock);

	if (!list_empty(&tg_stats_alloc_list)) {
		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
							 struct throtl_grp,
							 stats_alloc_node);
		swap(tg->stats_cpu, stats_cpu);
		list_del_init(&tg->stats_alloc_node);
	}

	empty = list_empty(&tg_stats_alloc_list);
	spin_unlock_irq(&tg_stats_alloc_lock);
	if (!empty)
		goto alloc_stats;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

376
/* init a service_queue, assumes the caller zeroed it */
377 378
static void throtl_service_queue_init(struct throtl_service_queue *sq,
				      struct throtl_service_queue *parent_sq)
379
{
380 381
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
382
	sq->pending_tree = RB_ROOT;
383
	sq->parent_sq = parent_sq;
384 385 386 387 388 389 390
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

static void throtl_service_queue_exit(struct throtl_service_queue *sq)
{
	del_timer_sync(&sq->pending_timer);
391 392
}

T
Tejun Heo 已提交
393
static void throtl_pd_init(struct blkcg_gq *blkg)
394
{
395
	struct throtl_grp *tg = blkg_to_tg(blkg);
396
	struct throtl_data *td = blkg->q->td;
397
	unsigned long flags;
398
	int rw;
399

400
	throtl_service_queue_init(&tg->service_queue, &td->service_queue);
401 402 403 404 405
	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

406
	RB_CLEAR_NODE(&tg->rb_node);
407
	tg->td = td;
408

409 410 411 412
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
413 414 415 416 417 418

	/*
	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
	 * but percpu allocator can't be called from IO path.  Queue tg on
	 * tg_stats_alloc_list and allocate from work item.
	 */
419
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
420
	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
421
	schedule_delayed_work(&tg_stats_alloc_work, 0);
422
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
423 424
}

T
Tejun Heo 已提交
425
static void throtl_pd_exit(struct blkcg_gq *blkg)
426 427
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
428
	unsigned long flags;
429

430
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
431
	list_del_init(&tg->stats_alloc_node);
432
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
433 434

	free_percpu(tg->stats_cpu);
435 436

	throtl_service_queue_exit(&tg->service_queue);
437 438
}

T
Tejun Heo 已提交
439
static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
440 441 442 443 444 445 446 447 448 449 450 451 452
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
	int cpu;

	if (tg->stats_cpu == NULL)
		return;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
453 454
}

T
Tejun Heo 已提交
455 456
static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
					   struct blkcg *blkcg)
457
{
458
	/*
T
Tejun Heo 已提交
459 460
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
461
	 */
T
Tejun Heo 已提交
462
	if (blkcg == &blkcg_root)
T
Tejun Heo 已提交
463
		return td_root_tg(td);
464

465
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
466 467
}

468
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
T
Tejun Heo 已提交
469
						  struct blkcg *blkcg)
470
{
471
	struct request_queue *q = td->queue;
472
	struct throtl_grp *tg = NULL;
473

474
	/*
T
Tejun Heo 已提交
475 476
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
477
	 */
T
Tejun Heo 已提交
478
	if (blkcg == &blkcg_root) {
T
Tejun Heo 已提交
479
		tg = td_root_tg(td);
480
	} else {
T
Tejun Heo 已提交
481
		struct blkcg_gq *blkg;
482

483
		blkg = blkg_lookup_create(blkcg, q);
484

485 486
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
487
			tg = blkg_to_tg(blkg);
B
Bart Van Assche 已提交
488
		else if (!blk_queue_dying(q))
T
Tejun Heo 已提交
489
			tg = td_root_tg(td);
490 491
	}

492 493 494
	return tg;
}

495 496
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
497 498
{
	/* Service tree is empty */
499
	if (!parent_sq->nr_pending)
500 501
		return NULL;

502 503
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
504

505 506
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
507 508 509 510 511 512 513 514 515 516

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

517 518
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
519
{
520 521 522 523
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
524 525
}

526
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
527 528 529
{
	struct throtl_grp *tg;

530
	tg = throtl_rb_first(parent_sq);
531 532 533
	if (!tg)
		return;

534
	parent_sq->first_pending_disptime = tg->disptime;
535 536
}

537
static void tg_service_queue_add(struct throtl_grp *tg)
538
{
539
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
540
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
559
		parent_sq->first_pending = &tg->rb_node;
560 561

	rb_link_node(&tg->rb_node, parent, node);
562
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
563 564
}

565
static void __throtl_enqueue_tg(struct throtl_grp *tg)
566
{
567
	tg_service_queue_add(tg);
568
	tg->flags |= THROTL_TG_PENDING;
569
	tg->service_queue.parent_sq->nr_pending++;
570 571
}

572
static void throtl_enqueue_tg(struct throtl_grp *tg)
573
{
574
	if (!(tg->flags & THROTL_TG_PENDING))
575
		__throtl_enqueue_tg(tg);
576 577
}

578
static void __throtl_dequeue_tg(struct throtl_grp *tg)
579
{
580
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
581
	tg->flags &= ~THROTL_TG_PENDING;
582 583
}

584
static void throtl_dequeue_tg(struct throtl_grp *tg)
585
{
586
	if (tg->flags & THROTL_TG_PENDING)
587
		__throtl_dequeue_tg(tg);
588 589
}

590
/* Call with queue lock held */
591 592
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
593
{
594 595 596
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
597 598
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
619
{
620
	/* any pending children left? */
621
	if (!sq->nr_pending)
622
		return true;
623

624
	update_min_dispatch_time(sq);
625

626
	/* is the next dispatch time in the future? */
627
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
628
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
629
		return true;
630 631
	}

632 633
	/* tell the caller to continue dispatching */
	return false;
634 635
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

658
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
659 660
{
	tg->bytes_disp[rw] = 0;
661
	tg->io_disp[rw] = 0;
662 663
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
664 665 666 667
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
668 669
}

670 671
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
672 673 674 675
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

676 677
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
678 679
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
680 681 682 683
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
684 685 686
}

/* Determine if previously allocated or extended slice is complete or not */
687
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
688 689 690 691 692 693 694 695
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
696
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
697
{
698 699
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
700 701 702 703 704 705 706 707

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
708
	if (throtl_slice_used(tg, rw))
709 710
		return;

711 712 713 714 715 716 717 718
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

719
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
720

721 722 723 724 725 726
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
727 728 729
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
730

731
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
732

733
	if (!bytes_trim && !io_trim)
734 735 736 737 738 739 740
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

741 742 743 744 745
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

746 747
	tg->slice_start[rw] += nr_slices * throtl_slice;

748 749 750 751
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
752 753
}

754 755
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
756 757
{
	bool rw = bio_data_dir(bio);
758
	unsigned int io_allowed;
759
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
760
	u64 tmp;
761

762
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
763

764 765 766 767 768 769
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

770 771 772 773 774 775 776 777 778 779 780 781 782 783
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
784 785

	if (tg->io_disp[rw] + 1 <= io_allowed) {
786 787 788 789 790
		if (wait)
			*wait = 0;
		return 1;
	}

791 792 793 794 795 796 797 798 799 800 801 802 803
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

804 805
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
806 807
{
	bool rw = bio_data_dir(bio);
808
	u64 bytes_allowed, extra_bytes, tmp;
809
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
810 811 812 813 814 815 816 817 818

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

819 820
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
821
	bytes_allowed = tmp;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
843 844 845
	return 0;
}

846 847 848 849 850 851
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

852 853 854 855
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
856 857
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
858 859 860 861 862 863 864 865 866 867
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
868
	BUG_ON(tg->service_queue.nr_queued[rw] &&
869
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
870

871 872 873 874 875 876 877 878 879 880 881 882
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
883 884
	if (throtl_slice_used(tg, rw))
		throtl_start_new_slice(tg, rw);
885 886
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
887
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
888 889
	}

890 891
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
892 893 894 895 896 897 898 899 900 901 902
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
903
		throtl_extend_slice(tg, rw, jiffies + max_wait);
904 905 906 907

	return 0;
}

T
Tejun Heo 已提交
908
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
909 910
					 int rw)
{
911 912
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
913 914 915
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
916
	if (tg->stats_cpu == NULL)
917 918 919 920 921 922 923 924 925
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

926
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
927 928 929 930 931 932 933

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

934 935 936 937 938 939
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
940
	tg->io_disp[rw]++;
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	/*
	 * REQ_THROTTLED is used to prevent the same bio to be throttled
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 *
	 * Dispatch stats aren't recursive and each @bio should only be
	 * accounted by the @tg it was originally associated with.  Let's
	 * update the stats when setting REQ_THROTTLED for the first time
	 * which is guaranteed to be for the @bio's original tg.
	 */
	if (!(bio->bi_rw & REQ_THROTTLED)) {
		bio->bi_rw |= REQ_THROTTLED;
		throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
					     bio->bi_rw);
	}
958 959
}

960 961 962 963 964 965 966 967 968 969 970
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
971
{
972
	struct throtl_service_queue *sq = &tg->service_queue;
973 974
	bool rw = bio_data_dir(bio);

975 976 977
	if (!qn)
		qn = &tg->qnode_on_self[rw];

978 979 980 981 982 983 984 985 986
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

987 988
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

989
	sq->nr_queued[rw]++;
990
	throtl_enqueue_tg(tg);
991 992
}

993
static void tg_update_disptime(struct throtl_grp *tg)
994
{
995
	struct throtl_service_queue *sq = &tg->service_queue;
996 997 998
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

999
	if ((bio = throtl_peek_queued(&sq->queued[READ])))
1000
		tg_may_dispatch(tg, bio, &read_wait);
1001

1002
	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1003
		tg_may_dispatch(tg, bio, &write_wait);
1004 1005 1006 1007 1008

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1009
	throtl_dequeue_tg(tg);
1010
	tg->disptime = disptime;
1011
	throtl_enqueue_tg(tg);
1012 1013 1014

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1027
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1028
{
1029
	struct throtl_service_queue *sq = &tg->service_queue;
1030 1031
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1032
	struct throtl_grp *tg_to_put = NULL;
1033 1034
	struct bio *bio;

1035 1036 1037 1038 1039 1040 1041
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1042
	sq->nr_queued[rw]--;
1043 1044

	throtl_charge_bio(tg, bio);
1045 1046 1047 1048 1049 1050 1051 1052 1053

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1054
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1055
		start_parent_slice_with_credit(tg, parent_tg, rw);
1056
	} else {
1057 1058
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1059 1060 1061
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1062

1063
	throtl_trim_slice(tg, rw);
1064

1065 1066
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1067 1068
}

1069
static int throtl_dispatch_tg(struct throtl_grp *tg)
1070
{
1071
	struct throtl_service_queue *sq = &tg->service_queue;
1072 1073
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1074
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1075 1076 1077 1078
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1079
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1080
	       tg_may_dispatch(tg, bio, NULL)) {
1081

1082
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1083 1084 1085 1086 1087 1088
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1089
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1090
	       tg_may_dispatch(tg, bio, NULL)) {
1091

1092
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1093 1094 1095 1096 1097 1098 1099 1100 1101
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1102
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1103 1104 1105 1106
{
	unsigned int nr_disp = 0;

	while (1) {
1107 1108
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1109 1110 1111 1112 1113 1114 1115

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1116
		throtl_dequeue_tg(tg);
1117

1118
		nr_disp += throtl_dispatch_tg(tg);
1119

1120
		if (sq->nr_queued[0] || sq->nr_queued[1])
1121
			tg_update_disptime(tg);
1122 1123 1124 1125 1126 1127 1128 1129

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1130 1131 1132 1133 1134 1135 1136
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1137 1138 1139 1140 1141 1142 1143
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1144
 */
1145 1146 1147
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1148
	struct throtl_grp *tg = sq_to_tg(sq);
1149
	struct throtl_data *td = sq_to_td(sq);
1150
	struct request_queue *q = td->queue;
1151 1152
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1153
	int ret;
1154 1155

	spin_lock_irq(q->queue_lock);
1156 1157 1158
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1159

1160 1161
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1162 1163
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1164 1165 1166 1167 1168 1169

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1170

1171 1172
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1173

1174 1175 1176 1177
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1178
	}
1179

1180 1181
	if (!dispatched)
		goto out_unlock;
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1199
	spin_unlock_irq(q->queue_lock);
1200
}
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
void blk_throtl_dispatch_work_fn(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1224 1225 1226
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1227 1228 1229
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1230
		blk_start_plug(&plug);
1231 1232
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1233
		blk_finish_plug(&plug);
1234 1235 1236
	}
}

1237 1238
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
1239
{
1240
	struct throtl_grp *tg = pd_to_tg(pd);
1241 1242 1243 1244
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
1245
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1246 1247 1248 1249 1250 1251

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

1252
	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1253 1254
}

1255 1256
static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
			       struct seq_file *sf)
1257
{
T
Tejun Heo 已提交
1258
	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1259

T
Tejun Heo 已提交
1260
	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
1261
			  cft->private, true);
1262 1263 1264
	return 0;
}

1265 1266
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1267
{
1268 1269
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1270

1271
	if (v == -1)
1272
		return 0;
1273
	return __blkg_prfill_u64(sf, pd, v);
1274 1275
}

1276 1277
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1278
{
1279 1280
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1281

1282 1283
	if (v == -1)
		return 0;
1284
	return __blkg_prfill_u64(sf, pd, v);
1285 1286
}

1287 1288
static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			     struct seq_file *sf)
1289
{
T
Tejun Heo 已提交
1290 1291
	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, cft->private, false);
1292
	return 0;
1293 1294
}

1295 1296
static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			      struct seq_file *sf)
1297
{
T
Tejun Heo 已提交
1298 1299
	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, cft->private, false);
1300
	return 0;
1301 1302
}

1303 1304
static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
		       bool is_u64)
1305
{
T
Tejun Heo 已提交
1306
	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1307
	struct blkg_conf_ctx ctx;
1308
	struct throtl_grp *tg;
1309
	struct throtl_service_queue *sq;
1310 1311
	int ret;

T
Tejun Heo 已提交
1312
	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1313 1314 1315
	if (ret)
		return ret;

1316
	tg = blkg_to_tg(ctx.blkg);
1317
	sq = &tg->service_queue;
1318

1319 1320
	if (!ctx.v)
		ctx.v = -1;
1321

1322 1323 1324 1325
	if (is_u64)
		*(u64 *)((void *)tg + cft->private) = ctx.v;
	else
		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
1326

1327 1328 1329 1330
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1331 1332 1333 1334 1335 1336 1337 1338 1339

	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1340 1341
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1342

1343
	if (tg->flags & THROTL_TG_PENDING) {
1344
		tg_update_disptime(tg);
1345
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1346
	}
1347 1348

	blkg_conf_finish(&ctx);
1349
	return 0;
1350 1351
}

1352 1353
static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			   const char *buf)
1354
{
1355
	return tg_set_conf(cgrp, cft, buf, true);
1356 1357
}

1358 1359
static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			    const char *buf)
1360
{
1361
	return tg_set_conf(cgrp, cft, buf, false);
1362 1363 1364 1365 1366
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
1367 1368 1369
		.private = offsetof(struct throtl_grp, bps[READ]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1370 1371 1372 1373
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_bps_device",
1374 1375 1376
		.private = offsetof(struct throtl_grp, bps[WRITE]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1377 1378 1379 1380
		.max_write_len = 256,
	},
	{
		.name = "throttle.read_iops_device",
1381 1382 1383
		.private = offsetof(struct throtl_grp, iops[READ]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1384 1385 1386 1387
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_iops_device",
1388 1389 1390
		.private = offsetof(struct throtl_grp, iops[WRITE]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1391 1392 1393 1394
		.max_write_len = 256,
	},
	{
		.name = "throttle.io_service_bytes",
1395
		.private = offsetof(struct tg_stats_cpu, service_bytes),
1396
		.read_seq_string = tg_print_cpu_rwstat,
1397 1398 1399
	},
	{
		.name = "throttle.io_serviced",
1400
		.private = offsetof(struct tg_stats_cpu, serviced),
1401
		.read_seq_string = tg_print_cpu_rwstat,
1402 1403 1404 1405
	},
	{ }	/* terminate */
};

1406
static void throtl_shutdown_wq(struct request_queue *q)
1407 1408 1409
{
	struct throtl_data *td = q->td;

1410
	cancel_work_sync(&td->dispatch_work);
1411 1412
}

T
Tejun Heo 已提交
1413
static struct blkcg_policy blkcg_policy_throtl = {
1414 1415 1416 1417 1418 1419
	.pd_size		= sizeof(struct throtl_grp),
	.cftypes		= throtl_files,

	.pd_init_fn		= throtl_pd_init,
	.pd_exit_fn		= throtl_pd_exit,
	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1420 1421
};

1422
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1423 1424
{
	struct throtl_data *td = q->td;
1425
	struct throtl_qnode *qn = NULL;
1426
	struct throtl_grp *tg;
1427
	struct throtl_service_queue *sq;
1428
	bool rw = bio_data_dir(bio);
T
Tejun Heo 已提交
1429
	struct blkcg *blkcg;
1430
	bool throttled = false;
1431

1432 1433
	/* see throtl_charge_bio() */
	if (bio->bi_rw & REQ_THROTTLED)
1434
		goto out;
1435

1436 1437 1438 1439 1440 1441
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
T
Tejun Heo 已提交
1442
	blkcg = bio_blkcg(bio);
1443
	tg = throtl_lookup_tg(td, blkcg);
1444 1445
	if (tg) {
		if (tg_no_rule_group(tg, rw)) {
1446 1447
			throtl_update_dispatch_stats(tg_to_blkg(tg),
						     bio->bi_size, bio->bi_rw);
1448
			goto out_unlock_rcu;
1449 1450 1451 1452 1453 1454 1455
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1456
	spin_lock_irq(q->queue_lock);
1457
	tg = throtl_lookup_create_tg(td, blkcg);
1458 1459
	if (unlikely(!tg))
		goto out_unlock;
1460

1461 1462
	sq = &tg->service_queue;

1463 1464 1465 1466
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1467

1468 1469 1470 1471 1472
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1473
		throtl_charge_bio(tg, bio);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1486
		throtl_trim_slice(tg, rw);
1487 1488 1489 1490 1491 1492

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1493
		qn = &tg->qnode_on_parent[rw];
1494 1495 1496 1497
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1498 1499
	}

1500
	/* out-of-limit, queue to @tg */
1501 1502 1503 1504 1505
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
		   tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1506

1507
	bio_associate_current(bio);
1508
	tg->td->nr_queued[rw]++;
1509
	throtl_add_bio_tg(bio, qn, tg);
1510
	throttled = true;
1511

1512 1513 1514 1515 1516 1517
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1518
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1519
		tg_update_disptime(tg);
1520
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1521 1522
	}

1523
out_unlock:
1524
	spin_unlock_irq(q->queue_lock);
1525 1526
out_unlock_rcu:
	rcu_read_unlock();
1527
out:
1528 1529 1530 1531 1532 1533 1534
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
		bio->bi_rw &= ~REQ_THROTTLED;
1535
	return throttled;
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1553
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1554
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1555
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1556 1557 1558 1559
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1570 1571
	struct blkcg_gq *blkg;
	struct cgroup *pos_cgrp;
1572
	struct bio *bio;
1573
	int rw;
1574

1575
	queue_lockdep_assert_held(q);
1576
	rcu_read_lock();
1577

1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
	blkg_for_each_descendant_post(blkg, pos_cgrp, td->queue->root_blkg)
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1586

1587
	tg_drain_bios(&td_root_tg(td)->service_queue);
1588

1589 1590 1591 1592
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1593 1594
	spin_unlock_irq(q->queue_lock);

1595
	/* all bios now should be in td->service_queue, issue them */
1596
	for (rw = READ; rw <= WRITE; rw++)
1597 1598
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1599
			generic_make_request(bio);
1600 1601 1602 1603

	spin_lock_irq(q->queue_lock);
}

1604 1605 1606
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1607
	int ret;
1608 1609 1610 1611 1612

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1613
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1614
	throtl_service_queue_init(&td->service_queue, NULL);
1615

1616
	q->td = td;
1617
	td->queue = q;
V
Vivek Goyal 已提交
1618

1619
	/* activate policy */
T
Tejun Heo 已提交
1620
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1621
	if (ret)
1622
		kfree(td);
1623
	return ret;
1624 1625 1626 1627
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1628
	BUG_ON(!q->td);
1629
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1630
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1631
	kfree(q->td);
1632 1633 1634 1635
}

static int __init throtl_init(void)
{
1636 1637 1638 1639
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1640
	return blkcg_policy_register(&blkcg_policy_throtl);
1641 1642 1643
}

module_init(throtl_init);