blk-throttle.c 45.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

86 87 88 89 90 91 92 93
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

94
struct throtl_grp {
95 96 97
	/* must be the first member */
	struct blkg_policy_data pd;

98
	/* active throtl group service_queue member */
99 100
	struct rb_node rb_node;

101 102 103
	/* throtl_data this group belongs to */
	struct throtl_data *td;

104 105 106
	/* this group's service queue */
	struct throtl_service_queue service_queue;

107 108 109 110 111 112 113 114 115 116 117
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

118 119 120 121 122 123 124 125 126
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

127 128 129
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

130 131 132
	/* bytes per second rate limits */
	uint64_t bps[2];

133 134 135
	/* IOPS limits */
	unsigned int iops[2];

136 137
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
138 139
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
140 141 142 143

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
144

145 146 147 148 149
	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;

	/* List of tgs waiting for per cpu stats memory to be allocated */
	struct list_head stats_alloc_node;
150 151 152 153 154
};

struct throtl_data
{
	/* service tree for active throtl groups */
155
	struct throtl_service_queue service_queue;
156 157 158 159 160 161 162

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
163
	 * number of total undestroyed groups
164 165 166 167
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
168
	struct work_struct dispatch_work;
169 170
};

171 172 173 174 175 176 177
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);

static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);

178 179
static void throtl_pending_timer_fn(unsigned long arg);

180 181 182 183 184
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
185
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
186
{
187
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
188 189
}

T
Tejun Heo 已提交
190
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
191
{
192
	return pd_to_blkg(&tg->pd);
193 194
}

T
Tejun Heo 已提交
195 196 197 198 199
static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
{
	return blkg_to_tg(td->queue->root_blkg);
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 *
 * TODO: this should be made a function and name formatting should happen
 * after testing whether blktrace is enabled.
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
251
									\
252 253 254 255 256
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
257
} while (0)
258

259 260
/*
 * Worker for allocating per cpu stat for tgs. This is scheduled on the
261
 * system_wq once there are some groups on the alloc_list waiting for
262 263 264 265 266 267 268 269 270 271 272 273 274
 * allocation.
 */
static void tg_stats_alloc_fn(struct work_struct *work)
{
	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
	struct delayed_work *dwork = to_delayed_work(work);
	bool empty = false;

alloc_stats:
	if (!stats_cpu) {
		stats_cpu = alloc_percpu(struct tg_stats_cpu);
		if (!stats_cpu) {
			/* allocation failed, try again after some time */
275
			schedule_delayed_work(dwork, msecs_to_jiffies(10));
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
			return;
		}
	}

	spin_lock_irq(&tg_stats_alloc_lock);

	if (!list_empty(&tg_stats_alloc_list)) {
		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
							 struct throtl_grp,
							 stats_alloc_node);
		swap(tg->stats_cpu, stats_cpu);
		list_del_init(&tg->stats_alloc_node);
	}

	empty = list_empty(&tg_stats_alloc_list);
	spin_unlock_irq(&tg_stats_alloc_lock);
	if (!empty)
		goto alloc_stats;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

379
/* init a service_queue, assumes the caller zeroed it */
380 381
static void throtl_service_queue_init(struct throtl_service_queue *sq,
				      struct throtl_service_queue *parent_sq)
382
{
383 384
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
385
	sq->pending_tree = RB_ROOT;
386
	sq->parent_sq = parent_sq;
387 388 389 390 391 392 393
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

static void throtl_service_queue_exit(struct throtl_service_queue *sq)
{
	del_timer_sync(&sq->pending_timer);
394 395
}

T
Tejun Heo 已提交
396
static void throtl_pd_init(struct blkcg_gq *blkg)
397
{
398
	struct throtl_grp *tg = blkg_to_tg(blkg);
399
	struct throtl_data *td = blkg->q->td;
400
	struct throtl_service_queue *parent_sq;
401
	unsigned long flags;
402
	int rw;
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	/*
	 * If sane_hierarchy is enabled, we switch to properly hierarchical
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
	 * If sane_hierarchy is not enabled, the broken flat hierarchy
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
	parent_sq = &td->service_queue;

	if (cgroup_sane_behavior(blkg->blkcg->css.cgroup) && blkg->parent)
		parent_sq = &blkg_to_tg(blkg->parent)->service_queue;

	throtl_service_queue_init(&tg->service_queue, parent_sq);

424 425 426 427 428
	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

429
	RB_CLEAR_NODE(&tg->rb_node);
430
	tg->td = td;
431

432 433 434 435
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
436 437 438 439 440 441

	/*
	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
	 * but percpu allocator can't be called from IO path.  Queue tg on
	 * tg_stats_alloc_list and allocate from work item.
	 */
442
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
443
	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
444
	schedule_delayed_work(&tg_stats_alloc_work, 0);
445
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
446 447
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
}

static void throtl_pd_online(struct blkcg_gq *blkg)
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
	tg_update_has_rules(blkg_to_tg(blkg));
}

T
Tejun Heo 已提交
472
static void throtl_pd_exit(struct blkcg_gq *blkg)
473 474
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
475
	unsigned long flags;
476

477
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
478
	list_del_init(&tg->stats_alloc_node);
479
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
480 481

	free_percpu(tg->stats_cpu);
482 483

	throtl_service_queue_exit(&tg->service_queue);
484 485
}

T
Tejun Heo 已提交
486
static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
487 488 489 490 491 492 493 494 495 496 497 498 499
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
	int cpu;

	if (tg->stats_cpu == NULL)
		return;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
500 501
}

T
Tejun Heo 已提交
502 503
static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
					   struct blkcg *blkcg)
504
{
505
	/*
T
Tejun Heo 已提交
506 507
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
508
	 */
T
Tejun Heo 已提交
509
	if (blkcg == &blkcg_root)
T
Tejun Heo 已提交
510
		return td_root_tg(td);
511

512
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
513 514
}

515
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
T
Tejun Heo 已提交
516
						  struct blkcg *blkcg)
517
{
518
	struct request_queue *q = td->queue;
519
	struct throtl_grp *tg = NULL;
520

521
	/*
T
Tejun Heo 已提交
522 523
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
524
	 */
T
Tejun Heo 已提交
525
	if (blkcg == &blkcg_root) {
T
Tejun Heo 已提交
526
		tg = td_root_tg(td);
527
	} else {
T
Tejun Heo 已提交
528
		struct blkcg_gq *blkg;
529

530
		blkg = blkg_lookup_create(blkcg, q);
531

532 533
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
534
			tg = blkg_to_tg(blkg);
B
Bart Van Assche 已提交
535
		else if (!blk_queue_dying(q))
T
Tejun Heo 已提交
536
			tg = td_root_tg(td);
537 538
	}

539 540 541
	return tg;
}

542 543
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
544 545
{
	/* Service tree is empty */
546
	if (!parent_sq->nr_pending)
547 548
		return NULL;

549 550
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
551

552 553
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
554 555 556 557 558 559 560 561 562 563

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

564 565
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
566
{
567 568 569 570
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
571 572
}

573
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
574 575 576
{
	struct throtl_grp *tg;

577
	tg = throtl_rb_first(parent_sq);
578 579 580
	if (!tg)
		return;

581
	parent_sq->first_pending_disptime = tg->disptime;
582 583
}

584
static void tg_service_queue_add(struct throtl_grp *tg)
585
{
586
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
587
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
606
		parent_sq->first_pending = &tg->rb_node;
607 608

	rb_link_node(&tg->rb_node, parent, node);
609
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
610 611
}

612
static void __throtl_enqueue_tg(struct throtl_grp *tg)
613
{
614
	tg_service_queue_add(tg);
615
	tg->flags |= THROTL_TG_PENDING;
616
	tg->service_queue.parent_sq->nr_pending++;
617 618
}

619
static void throtl_enqueue_tg(struct throtl_grp *tg)
620
{
621
	if (!(tg->flags & THROTL_TG_PENDING))
622
		__throtl_enqueue_tg(tg);
623 624
}

625
static void __throtl_dequeue_tg(struct throtl_grp *tg)
626
{
627
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
628
	tg->flags &= ~THROTL_TG_PENDING;
629 630
}

631
static void throtl_dequeue_tg(struct throtl_grp *tg)
632
{
633
	if (tg->flags & THROTL_TG_PENDING)
634
		__throtl_dequeue_tg(tg);
635 636
}

637
/* Call with queue lock held */
638 639
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
640
{
641 642 643
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
644 645
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
666
{
667
	/* any pending children left? */
668
	if (!sq->nr_pending)
669
		return true;
670

671
	update_min_dispatch_time(sq);
672

673
	/* is the next dispatch time in the future? */
674
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
675
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
676
		return true;
677 678
	}

679 680
	/* tell the caller to continue dispatching */
	return false;
681 682
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

705
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
706 707
{
	tg->bytes_disp[rw] = 0;
708
	tg->io_disp[rw] = 0;
709 710
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
711 712 713 714
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
715 716
}

717 718
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
719 720 721 722
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

723 724
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
725 726
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
727 728 729 730
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
731 732 733
}

/* Determine if previously allocated or extended slice is complete or not */
734
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
735 736 737 738 739 740 741 742
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
743
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
744
{
745 746
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
747 748 749 750 751 752 753 754

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
755
	if (throtl_slice_used(tg, rw))
756 757
		return;

758 759 760 761 762 763 764 765
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

766
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
767

768 769 770 771 772 773
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
774 775 776
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
777

778
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
779

780
	if (!bytes_trim && !io_trim)
781 782 783 784 785 786 787
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

788 789 790 791 792
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

793 794
	tg->slice_start[rw] += nr_slices * throtl_slice;

795 796 797 798
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
799 800
}

801 802
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
803 804
{
	bool rw = bio_data_dir(bio);
805
	unsigned int io_allowed;
806
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
807
	u64 tmp;
808

809
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
810

811 812 813 814 815 816
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

817 818 819 820 821 822 823 824 825 826 827 828 829 830
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
831 832

	if (tg->io_disp[rw] + 1 <= io_allowed) {
833 834 835 836 837
		if (wait)
			*wait = 0;
		return 1;
	}

838 839 840 841 842 843 844 845 846 847 848 849 850
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

851 852
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
853 854
{
	bool rw = bio_data_dir(bio);
855
	u64 bytes_allowed, extra_bytes, tmp;
856
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
857 858 859 860 861 862 863 864 865

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

866 867
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
868
	bytes_allowed = tmp;
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
890 891 892 893 894 895 896
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
897 898
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
899 900 901 902 903 904 905 906 907 908
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
909
	BUG_ON(tg->service_queue.nr_queued[rw] &&
910
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
911

912 913 914 915 916 917 918 919 920 921 922 923
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
924 925
	if (throtl_slice_used(tg, rw))
		throtl_start_new_slice(tg, rw);
926 927
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
928
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
929 930
	}

931 932
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
933 934 935 936 937 938 939 940 941 942 943
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
944
		throtl_extend_slice(tg, rw, jiffies + max_wait);
945 946 947 948

	return 0;
}

T
Tejun Heo 已提交
949
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
950 951
					 int rw)
{
952 953
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
954 955 956
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
957
	if (tg->stats_cpu == NULL)
958 959 960 961 962 963 964 965 966
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

967
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
968 969 970 971 972 973 974

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

975 976 977 978 979 980
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
981
	tg->io_disp[rw]++;
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	/*
	 * REQ_THROTTLED is used to prevent the same bio to be throttled
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 *
	 * Dispatch stats aren't recursive and each @bio should only be
	 * accounted by the @tg it was originally associated with.  Let's
	 * update the stats when setting REQ_THROTTLED for the first time
	 * which is guaranteed to be for the @bio's original tg.
	 */
	if (!(bio->bi_rw & REQ_THROTTLED)) {
		bio->bi_rw |= REQ_THROTTLED;
		throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
					     bio->bi_rw);
	}
999 1000
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1012
{
1013
	struct throtl_service_queue *sq = &tg->service_queue;
1014 1015
	bool rw = bio_data_dir(bio);

1016 1017 1018
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1019 1020 1021 1022 1023 1024 1025 1026 1027
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1028 1029
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1030
	sq->nr_queued[rw]++;
1031
	throtl_enqueue_tg(tg);
1032 1033
}

1034
static void tg_update_disptime(struct throtl_grp *tg)
1035
{
1036
	struct throtl_service_queue *sq = &tg->service_queue;
1037 1038 1039
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1040
	if ((bio = throtl_peek_queued(&sq->queued[READ])))
1041
		tg_may_dispatch(tg, bio, &read_wait);
1042

1043
	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1044
		tg_may_dispatch(tg, bio, &write_wait);
1045 1046 1047 1048 1049

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1050
	throtl_dequeue_tg(tg);
1051
	tg->disptime = disptime;
1052
	throtl_enqueue_tg(tg);
1053 1054 1055

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1068
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1069
{
1070
	struct throtl_service_queue *sq = &tg->service_queue;
1071 1072
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1073
	struct throtl_grp *tg_to_put = NULL;
1074 1075
	struct bio *bio;

1076 1077 1078 1079 1080 1081 1082
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1083
	sq->nr_queued[rw]--;
1084 1085

	throtl_charge_bio(tg, bio);
1086 1087 1088 1089 1090 1091 1092 1093 1094

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1095
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1096
		start_parent_slice_with_credit(tg, parent_tg, rw);
1097
	} else {
1098 1099
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1100 1101 1102
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1103

1104
	throtl_trim_slice(tg, rw);
1105

1106 1107
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1108 1109
}

1110
static int throtl_dispatch_tg(struct throtl_grp *tg)
1111
{
1112
	struct throtl_service_queue *sq = &tg->service_queue;
1113 1114
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1115
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1116 1117 1118 1119
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1120
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1121
	       tg_may_dispatch(tg, bio, NULL)) {
1122

1123
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1124 1125 1126 1127 1128 1129
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1130
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1131
	       tg_may_dispatch(tg, bio, NULL)) {
1132

1133
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134 1135 1136 1137 1138 1139 1140 1141 1142
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1143
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1144 1145 1146 1147
{
	unsigned int nr_disp = 0;

	while (1) {
1148 1149
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1150 1151 1152 1153 1154 1155 1156

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1157
		throtl_dequeue_tg(tg);
1158

1159
		nr_disp += throtl_dispatch_tg(tg);
1160

1161
		if (sq->nr_queued[0] || sq->nr_queued[1])
1162
			tg_update_disptime(tg);
1163 1164 1165 1166 1167 1168 1169 1170

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1171 1172 1173 1174 1175 1176 1177
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1178 1179 1180 1181 1182 1183 1184
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1185
 */
1186 1187 1188
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1189
	struct throtl_grp *tg = sq_to_tg(sq);
1190
	struct throtl_data *td = sq_to_td(sq);
1191
	struct request_queue *q = td->queue;
1192 1193
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1194
	int ret;
1195 1196

	spin_lock_irq(q->queue_lock);
1197 1198 1199
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1200

1201 1202
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1203 1204
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1205 1206 1207 1208 1209 1210

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1211

1212 1213
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1214

1215 1216 1217 1218
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1219
	}
1220

1221 1222
	if (!dispatched)
		goto out_unlock;
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1240
	spin_unlock_irq(q->queue_lock);
1241
}
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
void blk_throtl_dispatch_work_fn(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1265 1266 1267
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1268 1269 1270
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1271
		blk_start_plug(&plug);
1272 1273
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1274
		blk_finish_plug(&plug);
1275 1276 1277
	}
}

1278 1279
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
1280
{
1281
	struct throtl_grp *tg = pd_to_tg(pd);
1282 1283 1284 1285
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
1286
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1287 1288 1289 1290 1291 1292

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

1293
	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1294 1295
}

1296 1297
static int tg_print_cpu_rwstat(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct seq_file *sf)
1298
{
1299
	struct blkcg *blkcg = css_to_blkcg(css);
1300

T
Tejun Heo 已提交
1301
	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
1302
			  cft->private, true);
1303 1304 1305
	return 0;
}

1306 1307
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1308
{
1309 1310
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1311

1312
	if (v == -1)
1313
		return 0;
1314
	return __blkg_prfill_u64(sf, pd, v);
1315 1316
}

1317 1318
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1319
{
1320 1321
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1322

1323 1324
	if (v == -1)
		return 0;
1325
	return __blkg_prfill_u64(sf, pd, v);
1326 1327
}

1328 1329
static int tg_print_conf_u64(struct cgroup_subsys_state *css,
			     struct cftype *cft, struct seq_file *sf)
1330
{
1331
	blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_u64,
T
Tejun Heo 已提交
1332
			  &blkcg_policy_throtl, cft->private, false);
1333
	return 0;
1334 1335
}

1336 1337
static int tg_print_conf_uint(struct cgroup_subsys_state *css,
			      struct cftype *cft, struct seq_file *sf)
1338
{
1339
	blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_uint,
T
Tejun Heo 已提交
1340
			  &blkcg_policy_throtl, cft->private, false);
1341
	return 0;
1342 1343
}

1344 1345
static int tg_set_conf(struct cgroup_subsys_state *css, struct cftype *cft,
		       const char *buf, bool is_u64)
1346
{
1347
	struct blkcg *blkcg = css_to_blkcg(css);
1348
	struct blkg_conf_ctx ctx;
1349
	struct throtl_grp *tg;
1350
	struct throtl_service_queue *sq;
1351 1352
	struct blkcg_gq *blkg;
	struct cgroup *pos_cgrp;
1353 1354
	int ret;

T
Tejun Heo 已提交
1355
	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1356 1357 1358
	if (ret)
		return ret;

1359
	tg = blkg_to_tg(ctx.blkg);
1360
	sq = &tg->service_queue;
1361

1362 1363
	if (!ctx.v)
		ctx.v = -1;
1364

1365 1366 1367 1368
	if (is_u64)
		*(u64 *)((void *)tg + cft->private) = ctx.v;
	else
		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
1369

1370 1371 1372 1373
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
	tg_update_has_rules(tg);
	blkg_for_each_descendant_pre(blkg, pos_cgrp, ctx.blkg)
		tg_update_has_rules(blkg_to_tg(blkg));

1386 1387 1388 1389 1390 1391 1392 1393
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1394 1395
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1396

1397
	if (tg->flags & THROTL_TG_PENDING) {
1398
		tg_update_disptime(tg);
1399
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1400
	}
1401 1402

	blkg_conf_finish(&ctx);
1403
	return 0;
1404 1405
}

1406
static int tg_set_conf_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1407
			   const char *buf)
1408
{
1409
	return tg_set_conf(css, cft, buf, true);
1410 1411
}

1412
static int tg_set_conf_uint(struct cgroup_subsys_state *css, struct cftype *cft,
1413
			    const char *buf)
1414
{
1415
	return tg_set_conf(css, cft, buf, false);
1416 1417 1418 1419 1420
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
1421 1422 1423
		.private = offsetof(struct throtl_grp, bps[READ]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1424 1425 1426 1427
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_bps_device",
1428 1429 1430
		.private = offsetof(struct throtl_grp, bps[WRITE]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1431 1432 1433 1434
		.max_write_len = 256,
	},
	{
		.name = "throttle.read_iops_device",
1435 1436 1437
		.private = offsetof(struct throtl_grp, iops[READ]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1438 1439 1440 1441
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_iops_device",
1442 1443 1444
		.private = offsetof(struct throtl_grp, iops[WRITE]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1445 1446 1447 1448
		.max_write_len = 256,
	},
	{
		.name = "throttle.io_service_bytes",
1449
		.private = offsetof(struct tg_stats_cpu, service_bytes),
1450
		.read_seq_string = tg_print_cpu_rwstat,
1451 1452 1453
	},
	{
		.name = "throttle.io_serviced",
1454
		.private = offsetof(struct tg_stats_cpu, serviced),
1455
		.read_seq_string = tg_print_cpu_rwstat,
1456 1457 1458 1459
	},
	{ }	/* terminate */
};

1460
static void throtl_shutdown_wq(struct request_queue *q)
1461 1462 1463
{
	struct throtl_data *td = q->td;

1464
	cancel_work_sync(&td->dispatch_work);
1465 1466
}

T
Tejun Heo 已提交
1467
static struct blkcg_policy blkcg_policy_throtl = {
1468 1469 1470 1471
	.pd_size		= sizeof(struct throtl_grp),
	.cftypes		= throtl_files,

	.pd_init_fn		= throtl_pd_init,
1472
	.pd_online_fn		= throtl_pd_online,
1473 1474
	.pd_exit_fn		= throtl_pd_exit,
	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1475 1476
};

1477
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1478 1479
{
	struct throtl_data *td = q->td;
1480
	struct throtl_qnode *qn = NULL;
1481
	struct throtl_grp *tg;
1482
	struct throtl_service_queue *sq;
1483
	bool rw = bio_data_dir(bio);
T
Tejun Heo 已提交
1484
	struct blkcg *blkcg;
1485
	bool throttled = false;
1486

1487 1488
	/* see throtl_charge_bio() */
	if (bio->bi_rw & REQ_THROTTLED)
1489
		goto out;
1490

1491 1492 1493 1494 1495 1496
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
T
Tejun Heo 已提交
1497
	blkcg = bio_blkcg(bio);
1498
	tg = throtl_lookup_tg(td, blkcg);
1499
	if (tg) {
1500
		if (!tg->has_rules[rw]) {
1501 1502
			throtl_update_dispatch_stats(tg_to_blkg(tg),
						     bio->bi_size, bio->bi_rw);
1503
			goto out_unlock_rcu;
1504 1505 1506 1507 1508 1509 1510
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1511
	spin_lock_irq(q->queue_lock);
1512
	tg = throtl_lookup_create_tg(td, blkcg);
1513 1514
	if (unlikely(!tg))
		goto out_unlock;
1515

1516 1517
	sq = &tg->service_queue;

1518 1519 1520 1521
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1522

1523 1524 1525 1526 1527
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1528
		throtl_charge_bio(tg, bio);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1541
		throtl_trim_slice(tg, rw);
1542 1543 1544 1545 1546 1547

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1548
		qn = &tg->qnode_on_parent[rw];
1549 1550 1551 1552
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1553 1554
	}

1555
	/* out-of-limit, queue to @tg */
1556 1557 1558 1559 1560
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
		   tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1561

1562
	bio_associate_current(bio);
1563
	tg->td->nr_queued[rw]++;
1564
	throtl_add_bio_tg(bio, qn, tg);
1565
	throttled = true;
1566

1567 1568 1569 1570 1571 1572
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1573
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1574
		tg_update_disptime(tg);
1575
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1576 1577
	}

1578
out_unlock:
1579
	spin_unlock_irq(q->queue_lock);
1580 1581
out_unlock_rcu:
	rcu_read_unlock();
1582
out:
1583 1584 1585 1586 1587 1588 1589
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
		bio->bi_rw &= ~REQ_THROTTLED;
1590
	return throttled;
1591 1592
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1608
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1609
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1610
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1611 1612 1613 1614
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1625 1626
	struct blkcg_gq *blkg;
	struct cgroup *pos_cgrp;
1627
	struct bio *bio;
1628
	int rw;
1629

1630
	queue_lockdep_assert_held(q);
1631
	rcu_read_lock();
1632

1633 1634 1635 1636 1637 1638 1639 1640
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
	blkg_for_each_descendant_post(blkg, pos_cgrp, td->queue->root_blkg)
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1641

1642
	tg_drain_bios(&td_root_tg(td)->service_queue);
1643

1644 1645 1646 1647
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1648 1649
	spin_unlock_irq(q->queue_lock);

1650
	/* all bios now should be in td->service_queue, issue them */
1651
	for (rw = READ; rw <= WRITE; rw++)
1652 1653
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1654
			generic_make_request(bio);
1655 1656 1657 1658

	spin_lock_irq(q->queue_lock);
}

1659 1660 1661
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1662
	int ret;
1663 1664 1665 1666 1667

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1668
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1669
	throtl_service_queue_init(&td->service_queue, NULL);
1670

1671
	q->td = td;
1672
	td->queue = q;
V
Vivek Goyal 已提交
1673

1674
	/* activate policy */
T
Tejun Heo 已提交
1675
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1676
	if (ret)
1677
		kfree(td);
1678
	return ret;
1679 1680 1681 1682
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1683
	BUG_ON(!q->td);
1684
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1685
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1686
	kfree(q->td);
1687 1688 1689 1690
}

static int __init throtl_init(void)
{
1691 1692 1693 1694
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1695
	return blkcg_policy_register(&blkcg_policy_throtl);
1696 1697 1698
}

module_init(throtl_init);