blk-throttle.c 46.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

86 87 88 89 90 91 92 93
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

94
struct throtl_grp {
95 96 97
	/* must be the first member */
	struct blkg_policy_data pd;

98
	/* active throtl group service_queue member */
99 100
	struct rb_node rb_node;

101 102 103
	/* throtl_data this group belongs to */
	struct throtl_data *td;

104 105 106
	/* this group's service queue */
	struct throtl_service_queue service_queue;

107 108 109 110 111 112 113 114 115 116 117
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

118 119 120 121 122 123 124 125 126
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

127 128 129
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

130 131 132
	/* bytes per second rate limits */
	uint64_t bps[2];

133 134 135
	/* IOPS limits */
	unsigned int iops[2];

136 137
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
138 139
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
140 141 142 143

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
144

145 146 147 148 149
	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;

	/* List of tgs waiting for per cpu stats memory to be allocated */
	struct list_head stats_alloc_node;
150 151 152 153 154
};

struct throtl_data
{
	/* service tree for active throtl groups */
155
	struct throtl_service_queue service_queue;
156 157 158 159 160 161 162

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
163
	 * number of total undestroyed groups
164 165 166 167
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
168
	struct work_struct dispatch_work;
169 170
};

171 172 173 174 175 176 177
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);

static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);

178 179
static void throtl_pending_timer_fn(unsigned long arg);

180 181 182 183 184
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
185
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
186
{
187
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
188 189
}

T
Tejun Heo 已提交
190
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
191
{
192
	return pd_to_blkg(&tg->pd);
193 194
}

T
Tejun Heo 已提交
195 196 197 198 199
static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
{
	return blkg_to_tg(td->queue->root_blkg);
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 *
 * TODO: this should be made a function and name formatting should happen
 * after testing whether blktrace is enabled.
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
251
									\
252 253 254 255 256
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
257
} while (0)
258

259 260 261 262 263 264
static void tg_stats_init(struct tg_stats_cpu *tg_stats)
{
	blkg_rwstat_init(&tg_stats->service_bytes);
	blkg_rwstat_init(&tg_stats->serviced);
}

265 266
/*
 * Worker for allocating per cpu stat for tgs. This is scheduled on the
267
 * system_wq once there are some groups on the alloc_list waiting for
268 269 270 271 272 273 274 275 276 277
 * allocation.
 */
static void tg_stats_alloc_fn(struct work_struct *work)
{
	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
	struct delayed_work *dwork = to_delayed_work(work);
	bool empty = false;

alloc_stats:
	if (!stats_cpu) {
278 279
		int cpu;

280 281 282
		stats_cpu = alloc_percpu(struct tg_stats_cpu);
		if (!stats_cpu) {
			/* allocation failed, try again after some time */
283
			schedule_delayed_work(dwork, msecs_to_jiffies(10));
284 285
			return;
		}
286 287
		for_each_possible_cpu(cpu)
			tg_stats_init(per_cpu_ptr(stats_cpu, cpu));
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	}

	spin_lock_irq(&tg_stats_alloc_lock);

	if (!list_empty(&tg_stats_alloc_list)) {
		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
							 struct throtl_grp,
							 stats_alloc_node);
		swap(tg->stats_cpu, stats_cpu);
		list_del_init(&tg->stats_alloc_node);
	}

	empty = list_empty(&tg_stats_alloc_list);
	spin_unlock_irq(&tg_stats_alloc_lock);
	if (!empty)
		goto alloc_stats;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

389
/* init a service_queue, assumes the caller zeroed it */
390 391
static void throtl_service_queue_init(struct throtl_service_queue *sq,
				      struct throtl_service_queue *parent_sq)
392
{
393 394
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
395
	sq->pending_tree = RB_ROOT;
396
	sq->parent_sq = parent_sq;
397 398 399 400 401 402 403
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

static void throtl_service_queue_exit(struct throtl_service_queue *sq)
{
	del_timer_sync(&sq->pending_timer);
404 405
}

406 407 408 409 410
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
	return kzalloc_node(sizeof(struct throtl_grp), gfp, node);
}

T
Tejun Heo 已提交
411
static void throtl_pd_init(struct blkcg_gq *blkg)
412
{
413
	struct throtl_grp *tg = blkg_to_tg(blkg);
414
	struct throtl_data *td = blkg->q->td;
415
	struct throtl_service_queue *parent_sq;
416
	unsigned long flags;
417
	int rw;
418

419
	/*
420
	 * If on the default hierarchy, we switch to properly hierarchical
421 422 423 424 425
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
426
	 * If not on the default hierarchy, the broken flat hierarchy
427 428 429 430 431 432 433
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
	parent_sq = &td->service_queue;

434
	if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
435 436 437 438
		parent_sq = &blkg_to_tg(blkg->parent)->service_queue;

	throtl_service_queue_init(&tg->service_queue, parent_sq);

439 440 441 442 443
	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

444
	RB_CLEAR_NODE(&tg->rb_node);
445
	tg->td = td;
446

447 448 449 450
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
451 452 453 454 455 456

	/*
	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
	 * but percpu allocator can't be called from IO path.  Queue tg on
	 * tg_stats_alloc_list and allocate from work item.
	 */
457
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
458
	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
459
	schedule_delayed_work(&tg_stats_alloc_work, 0);
460
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
461 462
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
}

static void throtl_pd_online(struct blkcg_gq *blkg)
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
	tg_update_has_rules(blkg_to_tg(blkg));
}

T
Tejun Heo 已提交
487
static void throtl_pd_exit(struct blkcg_gq *blkg)
488 489
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
490
	unsigned long flags;
491

492
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
493
	list_del_init(&tg->stats_alloc_node);
494
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
495 496

	free_percpu(tg->stats_cpu);
497 498

	throtl_service_queue_exit(&tg->service_queue);
499 500
}

501 502 503 504 505
static void throtl_pd_free(struct blkg_policy_data *pd)
{
	kfree(pd);
}

T
Tejun Heo 已提交
506
static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
507 508 509 510 511 512 513 514 515 516 517 518 519
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
	int cpu;

	if (tg->stats_cpu == NULL)
		return;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
520 521
}

T
Tejun Heo 已提交
522 523
static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
					   struct blkcg *blkcg)
524
{
525
	/*
T
Tejun Heo 已提交
526 527
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
528
	 */
T
Tejun Heo 已提交
529
	if (blkcg == &blkcg_root)
T
Tejun Heo 已提交
530
		return td_root_tg(td);
531

532
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
533 534
}

535
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
T
Tejun Heo 已提交
536
						  struct blkcg *blkcg)
537
{
538
	struct request_queue *q = td->queue;
539
	struct throtl_grp *tg = NULL;
540

541
	/*
T
Tejun Heo 已提交
542 543
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
544
	 */
T
Tejun Heo 已提交
545
	if (blkcg == &blkcg_root) {
T
Tejun Heo 已提交
546
		tg = td_root_tg(td);
547
	} else {
T
Tejun Heo 已提交
548
		struct blkcg_gq *blkg;
549

550
		blkg = blkg_lookup_create(blkcg, q);
551

552 553
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
554
			tg = blkg_to_tg(blkg);
B
Bart Van Assche 已提交
555
		else if (!blk_queue_dying(q))
T
Tejun Heo 已提交
556
			tg = td_root_tg(td);
557 558
	}

559 560 561
	return tg;
}

562 563
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
564 565
{
	/* Service tree is empty */
566
	if (!parent_sq->nr_pending)
567 568
		return NULL;

569 570
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
571

572 573
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
574 575 576 577 578 579 580 581 582 583

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

584 585
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
586
{
587 588 589 590
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
591 592
}

593
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
594 595 596
{
	struct throtl_grp *tg;

597
	tg = throtl_rb_first(parent_sq);
598 599 600
	if (!tg)
		return;

601
	parent_sq->first_pending_disptime = tg->disptime;
602 603
}

604
static void tg_service_queue_add(struct throtl_grp *tg)
605
{
606
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
607
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
626
		parent_sq->first_pending = &tg->rb_node;
627 628

	rb_link_node(&tg->rb_node, parent, node);
629
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
630 631
}

632
static void __throtl_enqueue_tg(struct throtl_grp *tg)
633
{
634
	tg_service_queue_add(tg);
635
	tg->flags |= THROTL_TG_PENDING;
636
	tg->service_queue.parent_sq->nr_pending++;
637 638
}

639
static void throtl_enqueue_tg(struct throtl_grp *tg)
640
{
641
	if (!(tg->flags & THROTL_TG_PENDING))
642
		__throtl_enqueue_tg(tg);
643 644
}

645
static void __throtl_dequeue_tg(struct throtl_grp *tg)
646
{
647
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
648
	tg->flags &= ~THROTL_TG_PENDING;
649 650
}

651
static void throtl_dequeue_tg(struct throtl_grp *tg)
652
{
653
	if (tg->flags & THROTL_TG_PENDING)
654
		__throtl_dequeue_tg(tg);
655 656
}

657
/* Call with queue lock held */
658 659
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
660
{
661 662 663
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
664 665
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
686
{
687
	/* any pending children left? */
688
	if (!sq->nr_pending)
689
		return true;
690

691
	update_min_dispatch_time(sq);
692

693
	/* is the next dispatch time in the future? */
694
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
695
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
696
		return true;
697 698
	}

699 700
	/* tell the caller to continue dispatching */
	return false;
701 702
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

725
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
726 727
{
	tg->bytes_disp[rw] = 0;
728
	tg->io_disp[rw] = 0;
729 730
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
731 732 733 734
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
735 736
}

737 738
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
739 740 741 742
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

743 744
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
745 746
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
747 748 749 750
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
751 752 753
}

/* Determine if previously allocated or extended slice is complete or not */
754
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
755 756
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
757
		return false;
758 759 760 761 762

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
763
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
764
{
765 766
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
767 768 769 770 771 772 773 774

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
775
	if (throtl_slice_used(tg, rw))
776 777
		return;

778 779 780 781 782 783 784 785
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

786
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
787

788 789 790 791 792 793
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
794 795 796
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
797

798
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
799

800
	if (!bytes_trim && !io_trim)
801 802 803 804 805 806 807
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

808 809 810 811 812
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

813 814
	tg->slice_start[rw] += nr_slices * throtl_slice;

815 816 817 818
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
819 820
}

821 822
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
823 824
{
	bool rw = bio_data_dir(bio);
825
	unsigned int io_allowed;
826
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
827
	u64 tmp;
828

829
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
830

831 832 833 834 835 836
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

837 838 839 840 841 842 843 844 845 846 847 848 849 850
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
851 852

	if (tg->io_disp[rw] + 1 <= io_allowed) {
853 854
		if (wait)
			*wait = 0;
855
		return true;
856 857
	}

858 859 860 861 862 863 864 865 866 867 868 869 870
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

871 872
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
873 874
{
	bool rw = bio_data_dir(bio);
875
	u64 bytes_allowed, extra_bytes, tmp;
876
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
877 878 879 880 881 882 883 884 885

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

886 887
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
888
	bytes_allowed = tmp;
889

890
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
891 892
		if (wait)
			*wait = 0;
893
		return true;
894 895 896
	}

	/* Calc approx time to dispatch */
897
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
898 899 900 901 902 903 904 905 906 907 908 909
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
910 911 912 913 914 915 916
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
917 918
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
919 920 921 922 923 924 925 926 927 928
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
929
	BUG_ON(tg->service_queue.nr_queued[rw] &&
930
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
931

932 933 934 935
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
936
		return true;
937 938 939 940 941 942 943
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
944 945
	if (throtl_slice_used(tg, rw))
		throtl_start_new_slice(tg, rw);
946 947
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
948
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
949 950
	}

951 952
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
953 954 955 956 957 958 959 960 961 962 963
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
964
		throtl_extend_slice(tg, rw, jiffies + max_wait);
965 966 967 968

	return 0;
}

T
Tejun Heo 已提交
969
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
970 971
					 int rw)
{
972 973
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
974 975 976
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
977
	if (tg->stats_cpu == NULL)
978 979 980 981 982 983 984 985 986
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

987
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
988 989 990 991 992 993 994

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

995 996 997 998 999
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
1000
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1001
	tg->io_disp[rw]++;
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	/*
	 * REQ_THROTTLED is used to prevent the same bio to be throttled
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 *
	 * Dispatch stats aren't recursive and each @bio should only be
	 * accounted by the @tg it was originally associated with.  Let's
	 * update the stats when setting REQ_THROTTLED for the first time
	 * which is guaranteed to be for the @bio's original tg.
	 */
	if (!(bio->bi_rw & REQ_THROTTLED)) {
		bio->bi_rw |= REQ_THROTTLED;
1016 1017
		throtl_update_dispatch_stats(tg_to_blkg(tg),
					     bio->bi_iter.bi_size, bio->bi_rw);
1018
	}
1019 1020
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1032
{
1033
	struct throtl_service_queue *sq = &tg->service_queue;
1034 1035
	bool rw = bio_data_dir(bio);

1036 1037 1038
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1039 1040 1041 1042 1043 1044 1045 1046 1047
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1048 1049
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1050
	sq->nr_queued[rw]++;
1051
	throtl_enqueue_tg(tg);
1052 1053
}

1054
static void tg_update_disptime(struct throtl_grp *tg)
1055
{
1056
	struct throtl_service_queue *sq = &tg->service_queue;
1057 1058 1059
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1060
	if ((bio = throtl_peek_queued(&sq->queued[READ])))
1061
		tg_may_dispatch(tg, bio, &read_wait);
1062

1063
	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1064
		tg_may_dispatch(tg, bio, &write_wait);
1065 1066 1067 1068 1069

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1070
	throtl_dequeue_tg(tg);
1071
	tg->disptime = disptime;
1072
	throtl_enqueue_tg(tg);
1073 1074 1075

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1088
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1089
{
1090
	struct throtl_service_queue *sq = &tg->service_queue;
1091 1092
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1093
	struct throtl_grp *tg_to_put = NULL;
1094 1095
	struct bio *bio;

1096 1097 1098 1099 1100 1101 1102
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1103
	sq->nr_queued[rw]--;
1104 1105

	throtl_charge_bio(tg, bio);
1106 1107 1108 1109 1110 1111 1112 1113 1114

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1115
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1116
		start_parent_slice_with_credit(tg, parent_tg, rw);
1117
	} else {
1118 1119
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1120 1121 1122
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1123

1124
	throtl_trim_slice(tg, rw);
1125

1126 1127
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1128 1129
}

1130
static int throtl_dispatch_tg(struct throtl_grp *tg)
1131
{
1132
	struct throtl_service_queue *sq = &tg->service_queue;
1133 1134
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1135
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1136 1137 1138 1139
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1140
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1141
	       tg_may_dispatch(tg, bio, NULL)) {
1142

1143
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1144 1145 1146 1147 1148 1149
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1150
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1151
	       tg_may_dispatch(tg, bio, NULL)) {
1152

1153
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1154 1155 1156 1157 1158 1159 1160 1161 1162
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1163
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1164 1165 1166 1167
{
	unsigned int nr_disp = 0;

	while (1) {
1168 1169
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1170 1171 1172 1173 1174 1175 1176

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1177
		throtl_dequeue_tg(tg);
1178

1179
		nr_disp += throtl_dispatch_tg(tg);
1180

1181
		if (sq->nr_queued[0] || sq->nr_queued[1])
1182
			tg_update_disptime(tg);
1183 1184 1185 1186 1187 1188 1189 1190

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1191 1192 1193 1194 1195 1196 1197
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1198 1199 1200 1201 1202 1203 1204
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1205
 */
1206 1207 1208
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1209
	struct throtl_grp *tg = sq_to_tg(sq);
1210
	struct throtl_data *td = sq_to_td(sq);
1211
	struct request_queue *q = td->queue;
1212 1213
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1214
	int ret;
1215 1216

	spin_lock_irq(q->queue_lock);
1217 1218 1219
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1220

1221 1222
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1223 1224
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1225 1226 1227 1228 1229 1230

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1231

1232 1233
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1234

1235 1236 1237 1238
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1239
	}
1240

1241 1242
	if (!dispatched)
		goto out_unlock;
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1260
	spin_unlock_irq(q->queue_lock);
1261
}
1262

1263 1264 1265 1266 1267 1268 1269 1270
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1271
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1285 1286 1287
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1288 1289 1290
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1291
		blk_start_plug(&plug);
1292 1293
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1294
		blk_finish_plug(&plug);
1295 1296 1297
	}
}

1298 1299
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
1300
{
1301
	struct throtl_grp *tg = pd_to_tg(pd);
1302 1303 1304
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

1305 1306 1307
	if (tg->stats_cpu == NULL)
		return 0;

1308
	for_each_possible_cpu(cpu) {
1309
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1310 1311 1312 1313 1314 1315

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

1316
	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1317 1318
}

1319
static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1320
{
1321 1322
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
			  &blkcg_policy_throtl, seq_cft(sf)->private, true);
1323 1324 1325
	return 0;
}

1326 1327
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1328
{
1329 1330
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1331

1332
	if (v == -1)
1333
		return 0;
1334
	return __blkg_prfill_u64(sf, pd, v);
1335 1336
}

1337 1338
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1339
{
1340 1341
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1342

1343 1344
	if (v == -1)
		return 0;
1345
	return __blkg_prfill_u64(sf, pd, v);
1346 1347
}

1348
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1349
{
1350 1351
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1352
	return 0;
1353 1354
}

1355
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1356
{
1357 1358
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1359
	return 0;
1360 1361
}

1362 1363
static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1364
{
1365
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1366
	struct blkg_conf_ctx ctx;
1367
	struct throtl_grp *tg;
1368
	struct throtl_service_queue *sq;
1369
	struct blkcg_gq *blkg;
1370
	struct cgroup_subsys_state *pos_css;
1371 1372
	int ret;

T
Tejun Heo 已提交
1373
	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1374 1375 1376
	if (ret)
		return ret;

1377
	tg = blkg_to_tg(ctx.blkg);
1378
	sq = &tg->service_queue;
1379

1380 1381
	if (!ctx.v)
		ctx.v = -1;
1382

1383
	if (is_u64)
1384
		*(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
1385
	else
1386
		*(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
1387

1388 1389 1390 1391
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1392

1393 1394 1395 1396 1397 1398 1399
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1400
	blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1401 1402
		tg_update_has_rules(blkg_to_tg(blkg));

1403 1404 1405 1406 1407 1408 1409 1410
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1411 1412
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1413

1414
	if (tg->flags & THROTL_TG_PENDING) {
1415
		tg_update_disptime(tg);
1416
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1417
	}
1418 1419

	blkg_conf_finish(&ctx);
1420
	return nbytes;
1421 1422
}

1423 1424
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1425
{
1426
	return tg_set_conf(of, buf, nbytes, off, true);
1427 1428
}

1429 1430
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1431
{
1432
	return tg_set_conf(of, buf, nbytes, off, false);
1433 1434 1435 1436 1437
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
1438
		.private = offsetof(struct throtl_grp, bps[READ]),
1439
		.seq_show = tg_print_conf_u64,
1440
		.write = tg_set_conf_u64,
1441 1442 1443
	},
	{
		.name = "throttle.write_bps_device",
1444
		.private = offsetof(struct throtl_grp, bps[WRITE]),
1445
		.seq_show = tg_print_conf_u64,
1446
		.write = tg_set_conf_u64,
1447 1448 1449
	},
	{
		.name = "throttle.read_iops_device",
1450
		.private = offsetof(struct throtl_grp, iops[READ]),
1451
		.seq_show = tg_print_conf_uint,
1452
		.write = tg_set_conf_uint,
1453 1454 1455
	},
	{
		.name = "throttle.write_iops_device",
1456
		.private = offsetof(struct throtl_grp, iops[WRITE]),
1457
		.seq_show = tg_print_conf_uint,
1458
		.write = tg_set_conf_uint,
1459 1460 1461
	},
	{
		.name = "throttle.io_service_bytes",
1462
		.private = offsetof(struct tg_stats_cpu, service_bytes),
1463
		.seq_show = tg_print_cpu_rwstat,
1464 1465 1466
	},
	{
		.name = "throttle.io_serviced",
1467
		.private = offsetof(struct tg_stats_cpu, serviced),
1468
		.seq_show = tg_print_cpu_rwstat,
1469 1470 1471 1472
	},
	{ }	/* terminate */
};

1473
static void throtl_shutdown_wq(struct request_queue *q)
1474 1475 1476
{
	struct throtl_data *td = q->td;

1477
	cancel_work_sync(&td->dispatch_work);
1478 1479
}

T
Tejun Heo 已提交
1480
static struct blkcg_policy blkcg_policy_throtl = {
1481 1482
	.cftypes		= throtl_files,

1483
	.pd_alloc_fn		= throtl_pd_alloc,
1484
	.pd_init_fn		= throtl_pd_init,
1485
	.pd_online_fn		= throtl_pd_online,
1486
	.pd_exit_fn		= throtl_pd_exit,
1487
	.pd_free_fn		= throtl_pd_free,
1488
	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1489 1490
};

1491
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1492 1493
{
	struct throtl_data *td = q->td;
1494
	struct throtl_qnode *qn = NULL;
1495
	struct throtl_grp *tg;
1496
	struct throtl_service_queue *sq;
1497
	bool rw = bio_data_dir(bio);
T
Tejun Heo 已提交
1498
	struct blkcg *blkcg;
1499
	bool throttled = false;
1500

1501 1502
	/* see throtl_charge_bio() */
	if (bio->bi_rw & REQ_THROTTLED)
1503
		goto out;
1504

1505 1506 1507 1508 1509 1510
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
T
Tejun Heo 已提交
1511
	blkcg = bio_blkcg(bio);
1512
	tg = throtl_lookup_tg(td, blkcg);
1513
	if (tg) {
1514
		if (!tg->has_rules[rw]) {
1515
			throtl_update_dispatch_stats(tg_to_blkg(tg),
1516
					bio->bi_iter.bi_size, bio->bi_rw);
1517
			goto out_unlock_rcu;
1518 1519 1520 1521 1522 1523 1524
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1525
	spin_lock_irq(q->queue_lock);
1526
	tg = throtl_lookup_create_tg(td, blkcg);
1527 1528
	if (unlikely(!tg))
		goto out_unlock;
1529

1530 1531
	sq = &tg->service_queue;

1532 1533 1534 1535
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1536

1537 1538 1539 1540 1541
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1542
		throtl_charge_bio(tg, bio);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1555
		throtl_trim_slice(tg, rw);
1556 1557 1558 1559 1560 1561

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1562
		qn = &tg->qnode_on_parent[rw];
1563 1564 1565 1566
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1567 1568
	}

1569
	/* out-of-limit, queue to @tg */
1570 1571
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1572
		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1573 1574
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1575

1576
	bio_associate_current(bio);
1577
	tg->td->nr_queued[rw]++;
1578
	throtl_add_bio_tg(bio, qn, tg);
1579
	throttled = true;
1580

1581 1582 1583 1584 1585 1586
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1587
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1588
		tg_update_disptime(tg);
1589
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1590 1591
	}

1592
out_unlock:
1593
	spin_unlock_irq(q->queue_lock);
1594 1595
out_unlock_rcu:
	rcu_read_unlock();
1596
out:
1597 1598 1599 1600 1601 1602 1603
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
		bio->bi_rw &= ~REQ_THROTTLED;
1604
	return throttled;
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1622
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1623
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1624
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1625 1626 1627 1628
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1639
	struct blkcg_gq *blkg;
1640
	struct cgroup_subsys_state *pos_css;
1641
	struct bio *bio;
1642
	int rw;
1643

1644
	queue_lockdep_assert_held(q);
1645
	rcu_read_lock();
1646

1647 1648 1649 1650 1651 1652
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1653
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1654
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1655

1656 1657 1658 1659
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1660 1661
	spin_unlock_irq(q->queue_lock);

1662
	/* all bios now should be in td->service_queue, issue them */
1663
	for (rw = READ; rw <= WRITE; rw++)
1664 1665
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1666
			generic_make_request(bio);
1667 1668 1669 1670

	spin_lock_irq(q->queue_lock);
}

1671 1672 1673
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1674
	int ret;
1675 1676 1677 1678 1679

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1680
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1681
	throtl_service_queue_init(&td->service_queue, NULL);
1682

1683
	q->td = td;
1684
	td->queue = q;
V
Vivek Goyal 已提交
1685

1686
	/* activate policy */
T
Tejun Heo 已提交
1687
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1688
	if (ret)
1689
		kfree(td);
1690
	return ret;
1691 1692 1693 1694
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1695
	BUG_ON(!q->td);
1696
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1697
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1698
	kfree(q->td);
1699 1700 1701 1702
}

static int __init throtl_init(void)
{
1703 1704 1705 1706
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1707
	return blkcg_policy_register(&blkcg_policy_throtl);
1708 1709 1710
}

module_init(throtl_init);