blk-throttle.c 42.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85 86
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

struct throtl_grp {
87 88 89
	/* must be the first member */
	struct blkg_policy_data pd;

90
	/* active throtl group service_queue member */
91 92
	struct rb_node rb_node;

93 94 95
	/* throtl_data this group belongs to */
	struct throtl_data *td;

96 97 98
	/* this group's service queue */
	struct throtl_service_queue service_queue;

99 100 101 102 103 104 105 106 107 108 109
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

110 111 112 113 114 115 116 117 118
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

119 120 121
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

122 123 124
	/* bytes per second rate limits */
	uint64_t bps[2];

125 126 127
	/* IOPS limits */
	unsigned int iops[2];

128 129
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
130 131
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
132 133 134 135 136 137 138 139 140

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
141
	struct throtl_service_queue service_queue;
142 143 144 145 146 147 148

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
149
	 * number of total undestroyed groups
150 151 152 153
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
154
	struct work_struct dispatch_work;
155 156
};

157 158
static void throtl_pending_timer_fn(unsigned long arg);

159 160 161 162 163
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
164
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
165
{
166
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
167 168
}

T
Tejun Heo 已提交
169
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
170
{
171
	return pd_to_blkg(&tg->pd);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 *
 * TODO: this should be made a function and name formatting should happen
 * after testing whether blktrace is enabled.
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
225
									\
226 227 228 229 230
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
231
} while (0)
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

316
/* init a service_queue, assumes the caller zeroed it */
317
static void throtl_service_queue_init(struct throtl_service_queue *sq)
318
{
319 320
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
321
	sq->pending_tree = RB_ROOT;
322 323 324 325
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

326 327
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
328
	struct throtl_grp *tg;
T
Tejun Heo 已提交
329
	int rw;
330 331 332

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
333
		return NULL;
334

335 336 337 338 339 340 341 342 343 344 345 346 347
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;

348
	return &tg->pd;
349 350
}

351
static void throtl_pd_init(struct blkg_policy_data *pd)
352
{
353 354
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
355
	struct throtl_data *td = blkg->q->td;
356
	struct throtl_service_queue *sq = &tg->service_queue;
357

358
	/*
359
	 * If on the default hierarchy, we switch to properly hierarchical
360 361 362 363 364
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
365
	 * If not on the default hierarchy, the broken flat hierarchy
366 367 368 369 370
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
371
	sq->parent_sq = &td->service_queue;
372
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
373
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
374
	tg->td = td;
375 376
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
}

392
static void throtl_pd_online(struct blkg_policy_data *pd)
393 394 395 396 397
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
398
	tg_update_has_rules(pd_to_tg(pd));
399 400
}

401 402
static void throtl_pd_free(struct blkg_policy_data *pd)
{
403 404
	struct throtl_grp *tg = pd_to_tg(pd);

405
	del_timer_sync(&tg->service_queue.pending_timer);
406
	kfree(tg);
407 408
}

409 410
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
411 412
{
	/* Service tree is empty */
413
	if (!parent_sq->nr_pending)
414 415
		return NULL;

416 417
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
418

419 420
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
421 422 423 424 425 426 427 428 429 430

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

431 432
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
433
{
434 435 436 437
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
438 439
}

440
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
441 442 443
{
	struct throtl_grp *tg;

444
	tg = throtl_rb_first(parent_sq);
445 446 447
	if (!tg)
		return;

448
	parent_sq->first_pending_disptime = tg->disptime;
449 450
}

451
static void tg_service_queue_add(struct throtl_grp *tg)
452
{
453
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
454
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
473
		parent_sq->first_pending = &tg->rb_node;
474 475

	rb_link_node(&tg->rb_node, parent, node);
476
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
477 478
}

479
static void __throtl_enqueue_tg(struct throtl_grp *tg)
480
{
481
	tg_service_queue_add(tg);
482
	tg->flags |= THROTL_TG_PENDING;
483
	tg->service_queue.parent_sq->nr_pending++;
484 485
}

486
static void throtl_enqueue_tg(struct throtl_grp *tg)
487
{
488
	if (!(tg->flags & THROTL_TG_PENDING))
489
		__throtl_enqueue_tg(tg);
490 491
}

492
static void __throtl_dequeue_tg(struct throtl_grp *tg)
493
{
494
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
495
	tg->flags &= ~THROTL_TG_PENDING;
496 497
}

498
static void throtl_dequeue_tg(struct throtl_grp *tg)
499
{
500
	if (tg->flags & THROTL_TG_PENDING)
501
		__throtl_dequeue_tg(tg);
502 503
}

504
/* Call with queue lock held */
505 506
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
507
{
508 509 510
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
511 512
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
533
{
534
	/* any pending children left? */
535
	if (!sq->nr_pending)
536
		return true;
537

538
	update_min_dispatch_time(sq);
539

540
	/* is the next dispatch time in the future? */
541
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
542
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
543
		return true;
544 545
	}

546 547
	/* tell the caller to continue dispatching */
	return false;
548 549
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

572
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
573 574
{
	tg->bytes_disp[rw] = 0;
575
	tg->io_disp[rw] = 0;
576 577
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
578 579 580 581
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
582 583
}

584 585
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
586 587 588 589
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

590 591
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
592 593
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
594 595 596 597
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
598 599 600
}

/* Determine if previously allocated or extended slice is complete or not */
601
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
602 603
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
604
		return false;
605 606 607 608 609

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
610
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
611
{
612 613
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
614 615 616 617 618 619 620 621

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
622
	if (throtl_slice_used(tg, rw))
623 624
		return;

625 626 627 628 629 630 631 632
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

633
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
634

635 636 637 638 639 640
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
641 642 643
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
644

645
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
646

647
	if (!bytes_trim && !io_trim)
648 649 650 651 652 653 654
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

655 656 657 658 659
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

660 661
	tg->slice_start[rw] += nr_slices * throtl_slice;

662 663 664 665
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
666 667
}

668 669
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
670 671
{
	bool rw = bio_data_dir(bio);
672
	unsigned int io_allowed;
673
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
674
	u64 tmp;
675

676
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
677

678 679 680 681 682 683
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

684 685 686 687 688 689 690 691 692 693 694 695 696 697
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
698 699

	if (tg->io_disp[rw] + 1 <= io_allowed) {
700 701
		if (wait)
			*wait = 0;
702
		return true;
703 704
	}

705 706 707 708 709 710 711 712 713 714 715 716 717
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

718 719
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
720 721
{
	bool rw = bio_data_dir(bio);
722
	u64 bytes_allowed, extra_bytes, tmp;
723
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
724 725 726 727 728 729 730 731 732

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

733 734
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
735
	bytes_allowed = tmp;
736

737
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
738 739
		if (wait)
			*wait = 0;
740
		return true;
741 742 743
	}

	/* Calc approx time to dispatch */
744
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
745 746 747 748 749 750 751 752 753 754 755 756
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
757 758 759 760 761 762 763
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
764 765
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
766 767 768 769 770 771 772 773 774 775
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
776
	BUG_ON(tg->service_queue.nr_queued[rw] &&
777
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
778

779 780 781 782
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
783
		return true;
784 785 786 787 788 789 790
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
791 792
	if (throtl_slice_used(tg, rw))
		throtl_start_new_slice(tg, rw);
793 794
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
795
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
796 797
	}

798 799
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
800 801 802 803 804 805 806 807 808 809 810
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
811
		throtl_extend_slice(tg, rw, jiffies + max_wait);
812 813 814 815 816 817 818 819 820

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
821
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
822
	tg->io_disp[rw]++;
823

824 825 826 827 828 829
	/*
	 * REQ_THROTTLED is used to prevent the same bio to be throttled
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
830
	if (!(bio->bi_rw & REQ_THROTTLED))
831
		bio->bi_rw |= REQ_THROTTLED;
832 833
}

834 835 836 837 838 839 840 841 842 843 844
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
845
{
846
	struct throtl_service_queue *sq = &tg->service_queue;
847 848
	bool rw = bio_data_dir(bio);

849 850 851
	if (!qn)
		qn = &tg->qnode_on_self[rw];

852 853 854 855 856 857 858 859 860
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

861 862
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

863
	sq->nr_queued[rw]++;
864
	throtl_enqueue_tg(tg);
865 866
}

867
static void tg_update_disptime(struct throtl_grp *tg)
868
{
869
	struct throtl_service_queue *sq = &tg->service_queue;
870 871 872
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

873
	if ((bio = throtl_peek_queued(&sq->queued[READ])))
874
		tg_may_dispatch(tg, bio, &read_wait);
875

876
	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
877
		tg_may_dispatch(tg, bio, &write_wait);
878 879 880 881 882

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
883
	throtl_dequeue_tg(tg);
884
	tg->disptime = disptime;
885
	throtl_enqueue_tg(tg);
886 887 888

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
889 890
}

891 892 893 894 895 896 897 898 899 900
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

901
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
902
{
903
	struct throtl_service_queue *sq = &tg->service_queue;
904 905
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
906
	struct throtl_grp *tg_to_put = NULL;
907 908
	struct bio *bio;

909 910 911 912 913 914 915
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
916
	sq->nr_queued[rw]--;
917 918

	throtl_charge_bio(tg, bio);
919 920 921 922 923 924 925 926 927

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
928
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
929
		start_parent_slice_with_credit(tg, parent_tg, rw);
930
	} else {
931 932
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
933 934 935
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
936

937
	throtl_trim_slice(tg, rw);
938

939 940
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
941 942
}

943
static int throtl_dispatch_tg(struct throtl_grp *tg)
944
{
945
	struct throtl_service_queue *sq = &tg->service_queue;
946 947
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
948
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
949 950 951 952
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

953
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
954
	       tg_may_dispatch(tg, bio, NULL)) {
955

956
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
957 958 959 960 961 962
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

963
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
964
	       tg_may_dispatch(tg, bio, NULL)) {
965

966
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
967 968 969 970 971 972 973 974 975
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

976
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
977 978 979 980
{
	unsigned int nr_disp = 0;

	while (1) {
981 982
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
983 984 985 986 987 988 989

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

990
		throtl_dequeue_tg(tg);
991

992
		nr_disp += throtl_dispatch_tg(tg);
993

994
		if (sq->nr_queued[0] || sq->nr_queued[1])
995
			tg_update_disptime(tg);
996 997 998 999 1000 1001 1002 1003

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1004 1005 1006 1007 1008 1009 1010
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1011 1012 1013 1014 1015 1016 1017
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1018
 */
1019 1020 1021
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1022
	struct throtl_grp *tg = sq_to_tg(sq);
1023
	struct throtl_data *td = sq_to_td(sq);
1024
	struct request_queue *q = td->queue;
1025 1026
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1027
	int ret;
1028 1029

	spin_lock_irq(q->queue_lock);
1030 1031 1032
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1033

1034 1035
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1036 1037
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1038 1039 1040 1041 1042 1043

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1044

1045 1046
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1047

1048 1049 1050 1051
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1052
	}
1053

1054 1055
	if (!dispatched)
		goto out_unlock;
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1073
	spin_unlock_irq(q->queue_lock);
1074
}
1075

1076 1077 1078 1079 1080 1081 1082 1083
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1084
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1098 1099 1100
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1101 1102 1103
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1104
		blk_start_plug(&plug);
1105 1106
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1107
		blk_finish_plug(&plug);
1108 1109 1110
	}
}

1111 1112
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1113
{
1114 1115
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1116

1117
	if (v == -1)
1118
		return 0;
1119
	return __blkg_prfill_u64(sf, pd, v);
1120 1121
}

1122 1123
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1124
{
1125 1126
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1127

1128 1129
	if (v == -1)
		return 0;
1130
	return __blkg_prfill_u64(sf, pd, v);
1131 1132
}

1133
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1134
{
1135 1136
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1137
	return 0;
1138 1139
}

1140
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1141
{
1142 1143
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1144
	return 0;
1145 1146
}

1147
static void tg_conf_updated(struct throtl_grp *tg)
1148
{
1149
	struct throtl_service_queue *sq = &tg->service_queue;
1150
	struct cgroup_subsys_state *pos_css;
1151
	struct blkcg_gq *blkg;
1152

1153 1154 1155 1156
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1157

1158 1159 1160 1161 1162 1163 1164
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1165
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1166 1167
		tg_update_has_rules(blkg_to_tg(blkg));

1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1176 1177
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1178

1179
	if (tg->flags & THROTL_TG_PENDING) {
1180
		tg_update_disptime(tg);
1181
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1182
	}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
		v = -1;

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1210

1211
	tg_conf_updated(tg);
1212 1213
	ret = 0;
out_finish:
1214
	blkg_conf_finish(&ctx);
1215
	return ret ?: nbytes;
1216 1217
}

1218 1219
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1220
{
1221
	return tg_set_conf(of, buf, nbytes, off, true);
1222 1223
}

1224 1225
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1226
{
1227
	return tg_set_conf(of, buf, nbytes, off, false);
1228 1229
}

1230
static struct cftype throtl_legacy_files[] = {
1231 1232
	{
		.name = "throttle.read_bps_device",
1233
		.private = offsetof(struct throtl_grp, bps[READ]),
1234
		.seq_show = tg_print_conf_u64,
1235
		.write = tg_set_conf_u64,
1236 1237 1238
	},
	{
		.name = "throttle.write_bps_device",
1239
		.private = offsetof(struct throtl_grp, bps[WRITE]),
1240
		.seq_show = tg_print_conf_u64,
1241
		.write = tg_set_conf_u64,
1242 1243 1244
	},
	{
		.name = "throttle.read_iops_device",
1245
		.private = offsetof(struct throtl_grp, iops[READ]),
1246
		.seq_show = tg_print_conf_uint,
1247
		.write = tg_set_conf_uint,
1248 1249 1250
	},
	{
		.name = "throttle.write_iops_device",
1251
		.private = offsetof(struct throtl_grp, iops[WRITE]),
1252
		.seq_show = tg_print_conf_uint,
1253
		.write = tg_set_conf_uint,
1254 1255 1256
	},
	{
		.name = "throttle.io_service_bytes",
1257 1258
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1259 1260 1261
	},
	{
		.name = "throttle.io_serviced",
1262 1263
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1264 1265 1266 1267
	},
	{ }	/* terminate */
};

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };

	if (!dname)
		return 0;
	if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
	    tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
		return 0;

	if (tg->bps[READ] != -1)
		snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
	if (tg->bps[WRITE] != -1)
		snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
	if (tg->iops[READ] != -1)
		snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
	if (tg->iops[WRITE] != -1)
		snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

static int tg_print_max(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

static ssize_t tg_set_max(struct kernfs_open_file *of,
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

	v[0] = tg->bps[READ];
	v[1] = tg->bps[WRITE];
	v[2] = tg->iops[READ];
	v[3] = tg->iops[WRITE];

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
		u64 val = -1;
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

	tg->bps[READ] = v[0];
	tg->bps[WRITE] = v[1];
	tg->iops[READ] = v[2];
	tg->iops[WRITE] = v[3];

	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_max,
		.write = tg_set_max,
	},
	{ }	/* terminate */
};

1379
static void throtl_shutdown_wq(struct request_queue *q)
1380 1381 1382
{
	struct throtl_data *td = q->td;

1383
	cancel_work_sync(&td->dispatch_work);
1384 1385
}

T
Tejun Heo 已提交
1386
static struct blkcg_policy blkcg_policy_throtl = {
1387
	.dfl_cftypes		= throtl_files,
1388
	.legacy_cftypes		= throtl_legacy_files,
1389

1390
	.pd_alloc_fn		= throtl_pd_alloc,
1391
	.pd_init_fn		= throtl_pd_init,
1392
	.pd_online_fn		= throtl_pd_online,
1393
	.pd_free_fn		= throtl_pd_free,
1394 1395
};

1396 1397
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1398
{
1399
	struct throtl_qnode *qn = NULL;
1400
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1401
	struct throtl_service_queue *sq;
1402
	bool rw = bio_data_dir(bio);
1403
	bool throttled = false;
1404

1405 1406
	WARN_ON_ONCE(!rcu_read_lock_held());

1407
	/* see throtl_charge_bio() */
1408
	if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw])
1409
		goto out;
1410 1411

	spin_lock_irq(q->queue_lock);
1412 1413

	if (unlikely(blk_queue_bypass(q)))
1414
		goto out_unlock;
1415

1416 1417
	sq = &tg->service_queue;

1418 1419 1420 1421
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1422

1423 1424 1425 1426 1427
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1428
		throtl_charge_bio(tg, bio);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1441
		throtl_trim_slice(tg, rw);
1442 1443 1444 1445 1446 1447

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1448
		qn = &tg->qnode_on_parent[rw];
1449 1450 1451 1452
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1453 1454
	}

1455
	/* out-of-limit, queue to @tg */
1456 1457
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1458
		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1459 1460
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1461

1462
	bio_associate_current(bio);
1463
	tg->td->nr_queued[rw]++;
1464
	throtl_add_bio_tg(bio, qn, tg);
1465
	throttled = true;
1466

1467 1468 1469 1470 1471 1472
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1473
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1474
		tg_update_disptime(tg);
1475
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1476 1477
	}

1478
out_unlock:
1479
	spin_unlock_irq(q->queue_lock);
1480
out:
1481 1482 1483 1484 1485 1486 1487
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
		bio->bi_rw &= ~REQ_THROTTLED;
1488
	return throttled;
1489 1490
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1506
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1507
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1508
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1509 1510 1511 1512
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1523
	struct blkcg_gq *blkg;
1524
	struct cgroup_subsys_state *pos_css;
1525
	struct bio *bio;
1526
	int rw;
1527

1528
	queue_lockdep_assert_held(q);
1529
	rcu_read_lock();
1530

1531 1532 1533 1534 1535 1536
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1537
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1538
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1539

1540 1541 1542 1543
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1544 1545
	spin_unlock_irq(q->queue_lock);

1546
	/* all bios now should be in td->service_queue, issue them */
1547
	for (rw = READ; rw <= WRITE; rw++)
1548 1549
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1550
			generic_make_request(bio);
1551 1552 1553 1554

	spin_lock_irq(q->queue_lock);
}

1555 1556 1557
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1558
	int ret;
1559 1560 1561 1562 1563

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1564
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1565
	throtl_service_queue_init(&td->service_queue);
1566

1567
	q->td = td;
1568
	td->queue = q;
V
Vivek Goyal 已提交
1569

1570
	/* activate policy */
T
Tejun Heo 已提交
1571
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1572
	if (ret)
1573
		kfree(td);
1574
	return ret;
1575 1576 1577 1578
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1579
	BUG_ON(!q->td);
1580
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1581
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1582
	kfree(q->td);
1583 1584 1585 1586
}

static int __init throtl_init(void)
{
1587 1588 1589 1590
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1591
	return blkcg_policy_register(&blkcg_policy_throtl);
1592 1593 1594
}

module_init(throtl_init);