slub.c 129.8 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127 128 129 130 131 132 133 134 135
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
136 137 138 139 140 141 142 143 144 145 146
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

147 148 149
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

150 151 152 153
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
154
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
155

156 157 158
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
159
 * sort the partial list by the number of objects in use.
160 161 162
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
163 164
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
165

166
/*
167 168 169
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
170
 */
171
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172

173 174
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
175
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176

C
Christoph Lameter 已提交
177
/* Internal SLUB flags */
C
Christoph Lameter 已提交
178
#define __OBJECT_POISON		0x80000000UL /* Poison object */
179
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
180 181 182 183 184

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

185 186 187
/*
 * Tracking user of a slab.
 */
188
#define TRACK_ADDRS_COUNT 16
189
struct track {
190
	unsigned long addr;	/* Called from address */
191 192 193
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
194 195 196 197 198 199 200
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

201
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
202 203
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
204
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
205
#else
206 207 208
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
209
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
210 211
#endif

212
static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 214
{
#ifdef CONFIG_SLUB_STATS
215 216 217 218 219
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
220 221 222
#endif
}

C
Christoph Lameter 已提交
223 224 225 226
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
227
/* Verify that a pointer has an address that is valid within a slab page */
228 229 230 231 232
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

233
	if (!object)
234 235
		return 1;

236
	base = page_address(page);
237
	if (object < base || object >= base + page->objects * s->size ||
238 239 240 241 242 243 244
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

245 246 247 248 249
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

250 251 252 253 254
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

255 256 257 258 259 260 261 262 263 264 265 266
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

267 268 269 270 271 272
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
273 274
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 276
			__p += (__s)->size)

277 278 279 280
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

281 282 283 284 285 286
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291 292 293 294
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295
		return s->object_size;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

311 312 313 314 315
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

316
static inline struct kmem_cache_order_objects oo_make(int order,
317
		unsigned long size, int reserved)
318 319
{
	struct kmem_cache_order_objects x = {
320
		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 322 323 324 325 326 327
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
328
	return x.x >> OO_SHIFT;
329 330 331 332
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
333
	return x.x & OO_MASK;
334 335
}

336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

364 365 366 367 368 369 370
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
371 372
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373
	if (s->flags & __CMPXCHG_DOUBLE) {
374
		if (cmpxchg_double(&page->freelist, &page->counters,
375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
377
			return true;
378 379 380 381
	} else
#endif
	{
		slab_lock(page);
382 383
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
384
			page->freelist = freelist_new;
385
			set_page_slub_counters(page, counters_new);
386
			slab_unlock(page);
387
			return true;
388 389 390 391 392 393 394 395
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
396
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 398
#endif

399
	return false;
400 401
}

402 403 404 405 406
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
407 408
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409
	if (s->flags & __CMPXCHG_DOUBLE) {
410
		if (cmpxchg_double(&page->freelist, &page->counters,
411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
413
			return true;
414 415 416
	} else
#endif
	{
417 418 419
		unsigned long flags;

		local_irq_save(flags);
420
		slab_lock(page);
421 422
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
423
			page->freelist = freelist_new;
424
			set_page_slub_counters(page, counters_new);
425
			slab_unlock(page);
426
			local_irq_restore(flags);
427
			return true;
428
		}
429
		slab_unlock(page);
430
		local_irq_restore(flags);
431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
437
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 439
#endif

440
	return false;
441 442
}

C
Christoph Lameter 已提交
443
#ifdef CONFIG_SLUB_DEBUG
444 445 446
/*
 * Determine a map of object in use on a page.
 *
447
 * Node listlock must be held to guarantee that the page does
448 449 450 451 452 453 454 455 456 457 458
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
459 460 461
/*
 * Debug settings:
 */
462 463 464
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
465
static int slub_debug;
466
#endif
C
Christoph Lameter 已提交
467 468

static char *slub_debug_slabs;
469
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
487 488 489 490 491
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
492
	metadata_access_enable();
493 494
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
495
	metadata_access_disable();
C
Christoph Lameter 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
512
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
513
{
A
Akinobu Mita 已提交
514
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
515 516

	if (addr) {
517 518 519 520 521 522 523 524
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
525
		metadata_access_enable();
526
		save_stack_trace(&trace);
527
		metadata_access_disable();
528 529 530 531 532 533 534 535 536

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
537 538
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
539
		p->pid = current->pid;
C
Christoph Lameter 已提交
540 541 542 543 544 545 546
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
547 548 549
	if (!(s->flags & SLAB_STORE_USER))
		return;

550 551
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
552 553 554 555 556 557 558
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

559 560
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 562 563 564 565
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
566
				pr_err("\t%pS\n", (void *)t->addrs[i]);
567 568 569 570
			else
				break;
	}
#endif
571 572 573 574 575 576 577 578 579 580 581 582 583
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
584
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585
	       page, page->objects, page->inuse, page->freelist, page->flags);
586 587 588 589 590

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
591
	struct va_format vaf;
592 593 594
	va_list args;

	va_start(args, fmt);
595 596
	vaf.fmt = fmt;
	vaf.va = &args;
597
	pr_err("=============================================================================\n");
598
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599
	pr_err("-----------------------------------------------------------------------------\n\n");
600

601
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602
	va_end(args);
C
Christoph Lameter 已提交
603 604
}

605 606
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
607
	struct va_format vaf;
608 609 610
	va_list args;

	va_start(args, fmt);
611 612 613
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
614 615 616 617
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
618 619
{
	unsigned int off;	/* Offset of last byte */
620
	u8 *addr = page_address(page);
621 622 623 624 625

	print_tracking(s, p);

	print_page_info(page);

626 627
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
628 629

	if (p > addr + 16)
630
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
631

632
	print_section("Object ", p, min_t(unsigned long, s->object_size,
633
				PAGE_SIZE));
C
Christoph Lameter 已提交
634
	if (s->flags & SLAB_RED_ZONE)
635 636
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
637 638 639 640 641 642

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

643
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
644 645 646 647
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
648
		print_section("Padding ", p + off, s->size - off);
649 650

	dump_stack();
C
Christoph Lameter 已提交
651 652
}

653
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
654 655
			u8 *object, char *reason)
{
656
	slab_bug(s, "%s", reason);
657
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
658 659
}

660 661
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
662 663 664 665
{
	va_list args;
	char buf[100];

666 667
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
668
	va_end(args);
669
	slab_bug(s, "%s", buf);
670
	print_page_info(page);
C
Christoph Lameter 已提交
671 672 673
	dump_stack();
}

674
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
675 676 677 678
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
679 680
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
681 682 683
	}

	if (s->flags & SLAB_RED_ZONE)
684
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
685 686
}

687 688 689 690 691 692 693 694 695
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
696
			u8 *start, unsigned int value, unsigned int bytes)
697 698 699 700
{
	u8 *fault;
	u8 *end;

701
	metadata_access_enable();
702
	fault = memchr_inv(start, value, bytes);
703
	metadata_access_disable();
704 705 706 707 708 709 710 711
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
712
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 714 715 716 717
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
718 719 720 721 722 723 724 725 726
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
727
 *
C
Christoph Lameter 已提交
728 729 730
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
731
 * object + s->object_size
C
Christoph Lameter 已提交
732
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
733
 * 	Padding is extended by another word if Redzoning is enabled and
734
 * 	object_size == inuse.
C
Christoph Lameter 已提交
735
 *
C
Christoph Lameter 已提交
736 737 738 739
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
740 741
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
742 743
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
744
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
745
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
746 747 748
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
749 750
 *
 * object + s->size
C
Christoph Lameter 已提交
751
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
752
 *
753
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
754
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

773 774
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
775 776
}

777
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
778 779
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
780 781 782 783 784
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
785 786 787 788

	if (!(s->flags & SLAB_POISON))
		return 1;

789
	start = page_address(page);
790
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 792
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
793 794 795
	if (!remainder)
		return 1;

796
	metadata_access_enable();
797
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798
	metadata_access_disable();
799 800 801 802 803 804
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805
	print_section("Padding ", end - remainder, remainder);
806

E
Eric Dumazet 已提交
807
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808
	return 0;
C
Christoph Lameter 已提交
809 810 811
}

static int check_object(struct kmem_cache *s, struct page *page,
812
					void *object, u8 val)
C
Christoph Lameter 已提交
813 814
{
	u8 *p = object;
815
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
816 817

	if (s->flags & SLAB_RED_ZONE) {
818
		if (!check_bytes_and_report(s, page, object, "Redzone",
819
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
820 821
			return 0;
	} else {
822
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
823
			check_bytes_and_report(s, page, p, "Alignment padding",
824 825
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
826
		}
C
Christoph Lameter 已提交
827 828 829
	}

	if (s->flags & SLAB_POISON) {
830
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831
			(!check_bytes_and_report(s, page, p, "Poison", p,
832
					POISON_FREE, s->object_size - 1) ||
833
			 !check_bytes_and_report(s, page, p, "Poison",
834
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
835 836 837 838 839 840 841
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

842
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
843 844 845 846 847 848 849 850 851 852
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
853
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
854
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
855
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
856
		 */
857
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
858 859 860 861 862 863 864
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
865 866
	int maxobj;

C
Christoph Lameter 已提交
867 868 869
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
870
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
871 872
		return 0;
	}
873

874
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 876
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
877
			page->objects, maxobj);
878 879 880
		return 0;
	}
	if (page->inuse > page->objects) {
881
		slab_err(s, page, "inuse %u > max %u",
882
			page->inuse, page->objects);
C
Christoph Lameter 已提交
883 884 885 886 887 888 889 890
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
891 892
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
893 894 895 896
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
897
	void *fp;
C
Christoph Lameter 已提交
898
	void *object = NULL;
899
	int max_objects;
C
Christoph Lameter 已提交
900

901
	fp = page->freelist;
902
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
903 904 905 906 907 908
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
909
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
910
			} else {
911
				slab_err(s, page, "Freepointer corrupt");
912
				page->freelist = NULL;
913
				page->inuse = page->objects;
914
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
915 916 917 918 919 920 921 922 923
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

924
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 926
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
927 928 929 930 931 932 933

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
934
	if (page->inuse != page->objects - nr) {
935
		slab_err(s, page, "Wrong object count. Counter is %d but "
936 937
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
938
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
939 940 941 942
	}
	return search == NULL;
}

943 944
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
945 946
{
	if (s->flags & SLAB_TRACE) {
947
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
948 949 950 951 952 953
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
954 955
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
956 957 958 959 960

		dump_stack();
	}
}

961
/*
C
Christoph Lameter 已提交
962
 * Tracking of fully allocated slabs for debugging purposes.
963
 */
964 965
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
966
{
967 968 969
	if (!(s->flags & SLAB_STORE_USER))
		return;

970
	lockdep_assert_held(&n->list_lock);
971 972 973
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
974
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 976 977 978
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

979
	lockdep_assert_held(&n->list_lock);
980 981 982
	list_del(&page->lru);
}

983 984 985 986 987 988 989 990
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

991 992 993 994 995
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

996
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 998 999 1000 1001 1002 1003 1004 1005
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1006
	if (likely(n)) {
1007
		atomic_long_inc(&n->nr_slabs);
1008 1009
		atomic_long_add(objects, &n->total_objects);
	}
1010
}
1011
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 1013 1014 1015
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1016
	atomic_long_sub(objects, &n->total_objects);
1017 1018 1019
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1020 1021 1022 1023 1024 1025
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1026
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1027 1028 1029
	init_tracking(s, object);
}

1030 1031
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1032
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1033 1034 1035 1036 1037 1038
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1039
		goto bad;
C
Christoph Lameter 已提交
1040 1041
	}

1042
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1043 1044
		goto bad;

C
Christoph Lameter 已提交
1045 1046 1047 1048
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1049
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1050
	return 1;
C
Christoph Lameter 已提交
1051

C
Christoph Lameter 已提交
1052 1053 1054 1055 1056
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1057
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1058
		 */
1059
		slab_fix(s, "Marking all objects used");
1060
		page->inuse = page->objects;
1061
		page->freelist = NULL;
C
Christoph Lameter 已提交
1062 1063 1064 1065
	}
	return 0;
}

1066 1067 1068
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1069
{
1070
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071

1072
	spin_lock_irqsave(&n->list_lock, *flags);
1073 1074
	slab_lock(page);

C
Christoph Lameter 已提交
1075 1076 1077 1078
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1079
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1080 1081 1082 1083
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1084
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1085 1086 1087
		goto fail;
	}

1088
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089
		goto out;
C
Christoph Lameter 已提交
1090

1091
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1092
		if (!PageSlab(page)) {
1093 1094
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1095
		} else if (!page->slab_cache) {
1096 1097
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1098
			dump_stack();
P
Pekka Enberg 已提交
1099
		} else
1100 1101
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1102 1103
		goto fail;
	}
C
Christoph Lameter 已提交
1104 1105 1106 1107

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1108
	init_object(s, object, SLUB_RED_INACTIVE);
1109
out:
1110
	slab_unlock(page);
1111 1112 1113 1114 1115
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1116

C
Christoph Lameter 已提交
1117
fail:
1118 1119
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1120
	slab_fix(s, "Object at 0x%p not freed", object);
1121
	return NULL;
C
Christoph Lameter 已提交
1122 1123
}

C
Christoph Lameter 已提交
1124 1125
static int __init setup_slub_debug(char *str)
{
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1150
	for (; *str && *str != ','; str++) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1167 1168 1169
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1170 1171 1172 1173 1174 1175 1176
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1177
		default:
1178 1179
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1180
		}
C
Christoph Lameter 已提交
1181 1182
	}

1183
check_slabs:
C
Christoph Lameter 已提交
1184 1185
	if (*str == ',')
		slub_debug_slabs = str + 1;
1186
out:
C
Christoph Lameter 已提交
1187 1188 1189 1190 1191
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1192
unsigned long kmem_cache_flags(unsigned long object_size,
1193
	unsigned long flags, const char *name,
1194
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1195 1196
{
	/*
1197
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1198
	 */
1199 1200
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201
		flags |= slub_debug;
1202 1203

	return flags;
C
Christoph Lameter 已提交
1204 1205
}
#else
C
Christoph Lameter 已提交
1206 1207
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1208

C
Christoph Lameter 已提交
1209
static inline int alloc_debug_processing(struct kmem_cache *s,
1210
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1211

1212 1213 1214
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1215 1216 1217 1218

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1219
			void *object, u8 val) { return 1; }
1220 1221
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1222 1223
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1224
unsigned long kmem_cache_flags(unsigned long object_size,
1225
	unsigned long flags, const char *name,
1226
	void (*ctor)(void *))
1227 1228 1229
{
	return flags;
}
C
Christoph Lameter 已提交
1230
#define slub_debug 0
1231

1232 1233
#define disable_higher_order_debug 0

1234 1235
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1236 1237
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1238 1239 1240 1241
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1242

1243 1244 1245 1246 1247 1248
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1249 1250 1251
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1252
	kasan_kmalloc_large(ptr, size);
1253 1254 1255 1256 1257
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1258
	kasan_kfree_large(x);
1259 1260
}

1261 1262
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
1263 1264 1265 1266
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1267

1268 1269 1270 1271
	if (should_failslab(s->object_size, flags, s->flags))
		return NULL;

	return memcg_kmem_get_cache(s, flags);
1272 1273 1274 1275
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1276
{
1277 1278 1279
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280
	memcg_kmem_put_cache(s);
1281
	kasan_slab_alloc(s, object);
1282
}
1283

1284 1285 1286
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1305 1306

	kasan_slab_free(s, x);
1307
}
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1320 1321 1322
/*
 * Slab allocation and freeing
 */
1323 1324
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1325
{
1326
	struct page *page;
1327 1328
	int order = oo_order(oo);

1329 1330
	flags |= __GFP_NOTRACK;

1331 1332 1333
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1334
	if (node == NUMA_NO_NODE)
1335
		page = alloc_pages(flags, order);
1336
	else
1337
		page = __alloc_pages_node(node, flags, order);
1338 1339 1340 1341 1342

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1343 1344
}

C
Christoph Lameter 已提交
1345 1346
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1347
	struct page *page;
1348
	struct kmem_cache_order_objects oo = s->oo;
1349
	gfp_t alloc_gfp;
1350 1351
	void *start, *p;
	int idx, order;
C
Christoph Lameter 已提交
1352

1353 1354 1355 1356 1357
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1358
	flags |= s->allocflags;
1359

1360 1361 1362 1363 1364
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1365 1366
	if ((alloc_gfp & __GFP_WAIT) && oo_order(oo) > oo_order(s->min))
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_WAIT;
1367

1368
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1369 1370
	if (unlikely(!page)) {
		oo = s->min;
1371
		alloc_gfp = flags;
1372 1373 1374 1375
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1376
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1377 1378 1379
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1380
	}
V
Vegard Nossum 已提交
1381

1382 1383
	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1384 1385
		int pages = 1 << oo_order(oo);

1386
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1387 1388 1389 1390 1391 1392 1393 1394 1395

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1396 1397
	}

1398
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1399

G
Glauber Costa 已提交
1400
	order = compound_order(page);
1401
	page->slab_cache = s;
1402
	__SetPageSlab(page);
1403
	if (page_is_pfmemalloc(page))
1404
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1405 1406 1407 1408

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1409
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1410

1411 1412
	kasan_poison_slab(page);

1413 1414 1415 1416 1417 1418
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1419 1420 1421
	}

	page->freelist = start;
1422
	page->inuse = page->objects;
1423
	page->frozen = 1;
1424

C
Christoph Lameter 已提交
1425
out:
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1438 1439 1440
	return page;
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1452 1453
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1454 1455
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1456

1457
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1458 1459 1460
		void *p;

		slab_pad_check(s, page);
1461 1462
		for_each_object(p, s, page_address(page),
						page->objects)
1463
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1464 1465
	}

1466
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1467

C
Christoph Lameter 已提交
1468 1469 1470
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1471
		-pages);
C
Christoph Lameter 已提交
1472

1473
	__ClearPageSlabPfmemalloc(page);
1474
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1475

1476
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1477 1478
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1479 1480
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1481 1482
}

1483 1484 1485
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1486 1487 1488 1489
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1490 1491 1492 1493 1494
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1495
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1496 1497 1498 1499 1500
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1515 1516 1517 1518 1519 1520 1521 1522

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1523
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1524 1525 1526 1527
	free_slab(s, page);
}

/*
1528
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1529
 */
1530 1531
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1532
{
C
Christoph Lameter 已提交
1533
	n->nr_partial++;
1534
	if (tail == DEACTIVATE_TO_TAIL)
1535 1536 1537
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1538 1539
}

1540 1541
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1542
{
P
Peter Zijlstra 已提交
1543
	lockdep_assert_held(&n->list_lock);
1544 1545
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1546

1547 1548 1549
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1550 1551 1552 1553
	list_del(&page->lru);
	n->nr_partial--;
}

1554 1555 1556 1557 1558 1559 1560
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1561
/*
1562 1563
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1564
 *
1565
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1566
 */
1567
static inline void *acquire_slab(struct kmem_cache *s,
1568
		struct kmem_cache_node *n, struct page *page,
1569
		int mode, int *objects)
C
Christoph Lameter 已提交
1570
{
1571 1572 1573 1574
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1575 1576
	lockdep_assert_held(&n->list_lock);

1577 1578 1579 1580 1581
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1582 1583 1584
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1585
	*objects = new.objects - new.inuse;
1586
	if (mode) {
1587
		new.inuse = page->objects;
1588 1589 1590 1591
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1592

1593
	VM_BUG_ON(new.frozen);
1594
	new.frozen = 1;
1595

1596
	if (!__cmpxchg_double_slab(s, page,
1597
			freelist, counters,
1598
			new.freelist, new.counters,
1599 1600
			"acquire_slab"))
		return NULL;
1601 1602

	remove_partial(n, page);
1603
	WARN_ON(!freelist);
1604
	return freelist;
C
Christoph Lameter 已提交
1605 1606
}

1607
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1608
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1609

C
Christoph Lameter 已提交
1610
/*
C
Christoph Lameter 已提交
1611
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1612
 */
1613 1614
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1615
{
1616 1617
	struct page *page, *page2;
	void *object = NULL;
1618 1619
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1620 1621 1622 1623

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1624 1625
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1626 1627 1628 1629 1630
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1631
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1632
		void *t;
1633

1634 1635 1636
		if (!pfmemalloc_match(page, flags))
			continue;

1637
		t = acquire_slab(s, n, page, object == NULL, &objects);
1638 1639 1640
		if (!t)
			break;

1641
		available += objects;
1642
		if (!object) {
1643 1644 1645 1646
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1647
			put_cpu_partial(s, page, 0);
1648
			stat(s, CPU_PARTIAL_NODE);
1649
		}
1650 1651
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1652 1653
			break;

1654
	}
C
Christoph Lameter 已提交
1655
	spin_unlock(&n->list_lock);
1656
	return object;
C
Christoph Lameter 已提交
1657 1658 1659
}

/*
C
Christoph Lameter 已提交
1660
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1661
 */
1662
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1663
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1664 1665 1666
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1667
	struct zoneref *z;
1668 1669
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1670
	void *object;
1671
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1672 1673

	/*
C
Christoph Lameter 已提交
1674 1675 1676 1677
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1678
	 *
C
Christoph Lameter 已提交
1679 1680 1681 1682
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1683
	 *
C
Christoph Lameter 已提交
1684
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1685 1686 1687 1688 1689
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1690
	 */
1691 1692
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1693 1694
		return NULL;

1695
	do {
1696
		cpuset_mems_cookie = read_mems_allowed_begin();
1697
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1698 1699 1700 1701 1702
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1703
			if (n && cpuset_zone_allowed(zone, flags) &&
1704
					n->nr_partial > s->min_partial) {
1705
				object = get_partial_node(s, n, c, flags);
1706 1707
				if (object) {
					/*
1708 1709 1710 1711 1712
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1713 1714 1715
					 */
					return object;
				}
1716
			}
C
Christoph Lameter 已提交
1717
		}
1718
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1719 1720 1721 1722 1723 1724 1725
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1726
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1727
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1728
{
1729
	void *object;
1730 1731 1732 1733 1734 1735
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1736

1737
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1738 1739
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1740

1741
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1742 1743
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1785
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1786 1787 1788

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1789
		pr_warn("due to cpu change %d -> %d\n",
1790 1791 1792 1793
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1794
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1795 1796
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1797
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1798 1799
			actual_tid, tid, next_tid(tid));
#endif
1800
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1801 1802
}

1803
static void init_kmem_cache_cpus(struct kmem_cache *s)
1804 1805 1806 1807 1808 1809
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1810

C
Christoph Lameter 已提交
1811 1812 1813
/*
 * Remove the cpu slab
 */
1814 1815
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1816
{
1817 1818 1819 1820 1821
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1822
	int tail = DEACTIVATE_TO_HEAD;
1823 1824 1825 1826
	struct page new;
	struct page old;

	if (page->freelist) {
1827
		stat(s, DEACTIVATE_REMOTE_FREES);
1828
		tail = DEACTIVATE_TO_TAIL;
1829 1830
	}

1831
	/*
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1849
			VM_BUG_ON(!new.frozen);
1850

1851
		} while (!__cmpxchg_double_slab(s, page,
1852 1853 1854 1855 1856 1857 1858
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1859
	/*
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1872
	 */
1873
redo:
1874

1875 1876
	old.freelist = page->freelist;
	old.counters = page->counters;
1877
	VM_BUG_ON(!old.frozen);
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1890
	if (!new.inuse && n->nr_partial >= s->min_partial)
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1923

P
Peter Zijlstra 已提交
1924
			remove_full(s, n, page);
1925 1926 1927 1928

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1929
			stat(s, tail);
1930 1931

		} else if (m == M_FULL) {
1932

1933 1934 1935 1936 1937 1938 1939
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1940
	if (!__cmpxchg_double_slab(s, page,
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1953
	}
C
Christoph Lameter 已提交
1954 1955
}

1956 1957 1958
/*
 * Unfreeze all the cpu partial slabs.
 *
1959 1960 1961
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1962
 */
1963 1964
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1965
{
1966
#ifdef CONFIG_SLUB_CPU_PARTIAL
1967
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1968
	struct page *page, *discard_page = NULL;
1969 1970 1971 1972 1973 1974

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1975 1976 1977 1978 1979 1980 1981 1982 1983

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1984 1985 1986 1987 1988

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1989
			VM_BUG_ON(!old.frozen);
1990 1991 1992 1993 1994 1995

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1996
		} while (!__cmpxchg_double_slab(s, page,
1997 1998 1999 2000
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2001
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2002 2003
			page->next = discard_page;
			discard_page = page;
2004 2005 2006
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2007 2008 2009 2010 2011
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2012 2013 2014 2015 2016 2017 2018 2019 2020

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2021
#endif
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2033
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2034
{
2035
#ifdef CONFIG_SLUB_CPU_PARTIAL
2036 2037 2038 2039
	struct page *oldpage;
	int pages;
	int pobjects;

2040
	preempt_disable();
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2056
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2057
				local_irq_restore(flags);
2058
				oldpage = NULL;
2059 2060
				pobjects = 0;
				pages = 0;
2061
				stat(s, CPU_PARTIAL_DRAIN);
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2072 2073
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2074 2075 2076 2077 2078 2079 2080 2081
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2082
#endif
2083 2084
}

2085
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2086
{
2087
	stat(s, CPUSLAB_FLUSH);
2088 2089 2090 2091 2092
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2093 2094 2095 2096
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2097
 *
C
Christoph Lameter 已提交
2098 2099
 * Called from IPI handler with interrupts disabled.
 */
2100
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2101
{
2102
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2103

2104 2105 2106 2107
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2108
		unfreeze_partials(s, c);
2109
	}
C
Christoph Lameter 已提交
2110 2111 2112 2113 2114 2115
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2116
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2117 2118
}

2119 2120 2121 2122 2123
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2124
	return c->page || c->partial;
2125 2126
}

C
Christoph Lameter 已提交
2127 2128
static void flush_all(struct kmem_cache *s)
{
2129
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2130 2131
}

2132 2133 2134 2135
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2136
static inline int node_match(struct page *page, int node)
2137 2138
{
#ifdef CONFIG_NUMA
2139
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2140 2141 2142 2143 2144
		return 0;
#endif
	return 1;
}

2145
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2146 2147 2148 2149 2150
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2151 2152 2153 2154 2155 2156 2157
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2171
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2172

P
Pekka Enberg 已提交
2173 2174 2175
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2176 2177 2178
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2179
	int node;
C
Christoph Lameter 已提交
2180
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2181

2182 2183 2184
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2185
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2186
		nid, gfpflags);
2187 2188 2189
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2190

2191
	if (oo_order(s->min) > get_order(s->object_size))
2192 2193
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2194

C
Christoph Lameter 已提交
2195
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2196 2197 2198 2199
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2200 2201 2202
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2203

2204
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2205 2206
			node, nr_slabs, nr_objs, nr_free);
	}
2207
#endif
P
Pekka Enberg 已提交
2208 2209
}

2210 2211 2212
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2213
	void *freelist;
2214 2215
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2216

2217
	freelist = get_partial(s, flags, node, c);
2218

2219 2220 2221 2222
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2223
	if (page) {
2224
		c = raw_cpu_ptr(s->cpu_slab);
2225 2226 2227 2228 2229 2230 2231
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2232
		freelist = page->freelist;
2233 2234 2235 2236 2237 2238
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2239
		freelist = NULL;
2240

2241
	return freelist;
2242 2243
}

2244 2245 2246 2247 2248 2249 2250 2251
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2252
/*
2253 2254
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2255 2256 2257 2258
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2259 2260
 *
 * This function must be called with interrupt disabled.
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2271

2272
		new.counters = counters;
2273
		VM_BUG_ON(!new.frozen);
2274 2275 2276 2277

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2278
	} while (!__cmpxchg_double_slab(s, page,
2279 2280 2281 2282 2283 2284 2285
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2286
/*
2287 2288 2289 2290 2291 2292
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2293
 *
2294 2295 2296
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2297
 *
2298
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2299 2300
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2301
 */
2302 2303
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2304
{
2305
	void *freelist;
2306
	struct page *page;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2318

2319 2320
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2321
		goto new_slab;
2322
redo:
2323

2324
	if (unlikely(!node_match(page, node))) {
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2337
	}
C
Christoph Lameter 已提交
2338

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2351
	/* must check again c->freelist in case of cpu migration or IRQ */
2352 2353
	freelist = c->freelist;
	if (freelist)
2354
		goto load_freelist;
2355

2356
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2357

2358
	if (!freelist) {
2359 2360
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2361
		goto new_slab;
2362
	}
C
Christoph Lameter 已提交
2363

2364
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2365

2366
load_freelist:
2367 2368 2369 2370 2371
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2372
	VM_BUG_ON(!c->page->frozen);
2373
	c->freelist = get_freepointer(s, freelist);
2374 2375
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2376
	return freelist;
C
Christoph Lameter 已提交
2377 2378

new_slab:
2379

2380
	if (c->partial) {
2381 2382
		page = c->page = c->partial;
		c->partial = page->next;
2383 2384 2385
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2386 2387
	}

2388
	freelist = new_slab_objects(s, gfpflags, node, &c);
2389

2390
	if (unlikely(!freelist)) {
2391
		slab_out_of_memory(s, gfpflags, node);
2392 2393
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2394
	}
2395

2396
	page = c->page;
2397
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2398
		goto load_freelist;
2399

2400
	/* Only entered in the debug case */
2401 2402
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2403
		goto new_slab;	/* Slab failed checks. Next slab needed */
2404

2405
	deactivate_slab(s, page, get_freepointer(s, freelist));
2406 2407
	c->page = NULL;
	c->freelist = NULL;
2408
	local_irq_restore(flags);
2409
	return freelist;
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2422
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2423
		gfp_t gfpflags, int node, unsigned long addr)
2424 2425
{
	void **object;
2426
	struct kmem_cache_cpu *c;
2427
	struct page *page;
2428
	unsigned long tid;
2429

2430 2431
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2432
		return NULL;
2433 2434 2435 2436 2437 2438
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2439
	 *
2440 2441 2442
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2443
	 */
2444 2445 2446
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2447 2448
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2459 2460 2461 2462 2463 2464 2465 2466

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2467
	object = c->freelist;
2468
	page = c->page;
D
Dave Hansen 已提交
2469
	if (unlikely(!object || !node_match(page, node))) {
2470
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2471 2472
		stat(s, ALLOC_SLOWPATH);
	} else {
2473 2474
		void *next_object = get_freepointer_safe(s, object);

2475
		/*
L
Lucas De Marchi 已提交
2476
		 * The cmpxchg will only match if there was no additional
2477 2478
		 * operation and if we are on the right processor.
		 *
2479 2480
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2481 2482 2483 2484
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2485 2486 2487
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2488
		 */
2489
		if (unlikely(!this_cpu_cmpxchg_double(
2490 2491
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2492
				next_object, next_tid(tid)))) {
2493 2494 2495 2496

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2497
		prefetch_freepointer(s, next_object);
2498
		stat(s, ALLOC_FASTPATH);
2499
	}
2500

2501
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2502
		memset(object, 0, s->object_size);
2503

2504
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2505

2506
	return object;
C
Christoph Lameter 已提交
2507 2508
}

2509 2510 2511 2512 2513 2514
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2515 2516
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2517
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2518

2519 2520
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2521 2522

	return ret;
C
Christoph Lameter 已提交
2523 2524 2525
}
EXPORT_SYMBOL(kmem_cache_alloc);

2526
#ifdef CONFIG_TRACING
2527 2528
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2529
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2530
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2531
	kasan_kmalloc(s, ret, size);
2532 2533 2534
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2535 2536
#endif

C
Christoph Lameter 已提交
2537 2538 2539
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2540
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2541

2542
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2543
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2544 2545

	return ret;
C
Christoph Lameter 已提交
2546 2547 2548
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2549
#ifdef CONFIG_TRACING
2550
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2551
				    gfp_t gfpflags,
2552
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2553
{
2554
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2555 2556 2557

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2558 2559

	kasan_kmalloc(s, ret, size);
2560
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2561
}
2562
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2563
#endif
2564
#endif
E
Eduard - Gabriel Munteanu 已提交
2565

C
Christoph Lameter 已提交
2566
/*
K
Kim Phillips 已提交
2567
 * Slow path handling. This may still be called frequently since objects
2568
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2569
 *
2570 2571 2572
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2573
 */
2574
static void __slab_free(struct kmem_cache *s, struct page *page,
2575
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2576 2577 2578
{
	void *prior;
	void **object = (void *)x;
2579 2580 2581 2582
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2583
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2584

2585
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2586

2587 2588
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2589
		return;
C
Christoph Lameter 已提交
2590

2591
	do {
2592 2593 2594 2595
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2596 2597 2598 2599 2600 2601
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2602
		if ((!new.inuse || !prior) && !was_frozen) {
2603

P
Peter Zijlstra 已提交
2604
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2605 2606

				/*
2607 2608 2609 2610
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2611 2612 2613
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2614
			} else { /* Needs to be taken off a list */
2615

2616
				n = get_node(s, page_to_nid(page));
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2628
		}
C
Christoph Lameter 已提交
2629

2630 2631 2632 2633
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2634

2635
	if (likely(!n)) {
2636 2637 2638 2639 2640

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2641
		if (new.frozen && !was_frozen) {
2642
			put_cpu_partial(s, page, 1);
2643 2644
			stat(s, CPU_PARTIAL_FREE);
		}
2645
		/*
2646 2647 2648
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2649 2650 2651 2652
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2653

2654
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2655 2656
		goto slab_empty;

C
Christoph Lameter 已提交
2657
	/*
2658 2659
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2660
	 */
2661 2662
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2663
			remove_full(s, n, page);
2664 2665
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2666
	}
2667
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2668 2669 2670
	return;

slab_empty:
2671
	if (prior) {
C
Christoph Lameter 已提交
2672
		/*
2673
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2674
		 */
2675
		remove_partial(n, page);
2676
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2677
	} else {
2678
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2679 2680
		remove_full(s, n, page);
	}
2681

2682
	spin_unlock_irqrestore(&n->list_lock, flags);
2683
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2684 2685 2686
	discard_slab(s, page);
}

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2698
static __always_inline void slab_free(struct kmem_cache *s,
2699
			struct page *page, void *x, unsigned long addr)
2700 2701
{
	void **object = (void *)x;
2702
	struct kmem_cache_cpu *c;
2703
	unsigned long tid;
2704

2705 2706
	slab_free_hook(s, x);

2707 2708 2709 2710 2711
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2712
	 * during the cmpxchg then the free will succeed.
2713
	 */
2714 2715 2716
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2717 2718
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2719

2720 2721
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2722

2723
	if (likely(page == c->page)) {
2724
		set_freepointer(s, object, c->freelist);
2725

2726
		if (unlikely(!this_cpu_cmpxchg_double(
2727 2728 2729 2730 2731 2732 2733
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2734
		stat(s, FREE_FASTPATH);
2735
	} else
2736
		__slab_free(s, page, x, addr);
2737 2738 2739

}

C
Christoph Lameter 已提交
2740 2741
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2742 2743
	s = cache_from_obj(s, x);
	if (!s)
2744
		return;
2745
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2746
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2747 2748 2749
}
EXPORT_SYMBOL(kmem_cache_free);

2750
/* Note that interrupts must be enabled when calling this function. */
2751 2752
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	struct kmem_cache_cpu *c;
	struct page *page;
	int i;

	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = p[i];

		BUG_ON(!object);
2764 2765 2766 2767 2768 2769
		/* kmem cache debug support */
		s = cache_from_obj(s, object);
		if (unlikely(!s))
			goto exit;
		slab_free_hook(s, object);

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
		page = virt_to_head_page(object);

		if (c->page == page) {
			/* Fastpath: local CPU free */
			set_freepointer(s, object, c->freelist);
			c->freelist = object;
		} else {
			c->tid = next_tid(c->tid);
			local_irq_enable();
			/* Slowpath: overhead locked cmpxchg_double_slab */
			__slab_free(s, page, object, _RET_IP_);
			local_irq_disable();
			c = this_cpu_ptr(s->cpu_slab);
		}
	}
2785
exit:
2786 2787
	c->tid = next_tid(c->tid);
	local_irq_enable();
2788 2789 2790
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

2791
/* Note that interrupts must be enabled when calling this function. */
2792
bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2793
			   void **p)
2794
{
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	struct kmem_cache_cpu *c;
	int i;

	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
		if (unlikely(!object)) {
			local_irq_enable();
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
			p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
					    _RET_IP_, c);
			if (unlikely(!p[i])) {
				__kmem_cache_free_bulk(s, i, p);
				return false;
			}
			local_irq_disable();
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834
		/* kmem_cache debug support */
		s = slab_pre_alloc_hook(s, flags);
		if (unlikely(!s)) {
			__kmem_cache_free_bulk(s, i, p);
			c->tid = next_tid(c->tid);
			local_irq_enable();
			return false;
		}

2835 2836
		c->freelist = get_freepointer(s, object);
		p[i] = object;
2837 2838 2839

		/* kmem_cache debug support */
		slab_post_alloc_hook(s, flags, object);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

	return true;
2853 2854 2855 2856
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
2857
/*
C
Christoph Lameter 已提交
2858 2859 2860 2861
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2862 2863 2864 2865
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2866
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2877
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2878
static int slub_min_objects;
C
Christoph Lameter 已提交
2879 2880 2881 2882

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2883 2884 2885 2886
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2887
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2888 2889 2890 2891 2892 2893
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2894
 *
C
Christoph Lameter 已提交
2895 2896 2897 2898
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2899
 *
C
Christoph Lameter 已提交
2900 2901 2902 2903
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2904
 */
2905
static inline int slab_order(int size, int min_objects,
2906
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2907 2908 2909
{
	int order;
	int rem;
2910
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2911

2912
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2913
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2914

2915
	for (order = max(min_order,
2916 2917
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2918

2919
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2920

2921
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2922 2923
			continue;

2924
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2925

2926
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2927 2928 2929
			break;

	}
C
Christoph Lameter 已提交
2930

C
Christoph Lameter 已提交
2931 2932 2933
	return order;
}

2934
static inline int calculate_order(int size, int reserved)
2935 2936 2937 2938
{
	int order;
	int min_objects;
	int fraction;
2939
	int max_objects;
2940 2941 2942 2943 2944 2945

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
2946
	 * First we increase the acceptable waste in a slab. Then
2947 2948 2949
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2950 2951
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2952
	max_objects = order_objects(slub_max_order, size, reserved);
2953 2954
	min_objects = min(min_objects, max_objects);

2955
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2956
		fraction = 16;
2957 2958
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2959
					slub_max_order, fraction, reserved);
2960 2961 2962 2963
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2964
		min_objects--;
2965 2966 2967 2968 2969 2970
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2971
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2972 2973 2974 2975 2976 2977
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2978
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2979
	if (order < MAX_ORDER)
2980 2981 2982 2983
		return order;
	return -ENOSYS;
}

2984
static void
2985
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2986 2987 2988 2989
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2990
#ifdef CONFIG_SLUB_DEBUG
2991
	atomic_long_set(&n->nr_slabs, 0);
2992
	atomic_long_set(&n->total_objects, 0);
2993
	INIT_LIST_HEAD(&n->full);
2994
#endif
C
Christoph Lameter 已提交
2995 2996
}

2997
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2998
{
2999
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3000
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3001

3002
	/*
3003 3004
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3005
	 */
3006 3007
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3008 3009 3010 3011 3012

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3013

3014
	return 1;
3015 3016
}

3017 3018
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3019 3020 3021 3022 3023
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3024 3025
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3026
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3027
 */
3028
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3029 3030 3031 3032
{
	struct page *page;
	struct kmem_cache_node *n;

3033
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3034

3035
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3036 3037

	BUG_ON(!page);
3038
	if (page_to_nid(page) != node) {
3039 3040
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3041 3042
	}

C
Christoph Lameter 已提交
3043 3044
	n = page->freelist;
	BUG_ON(!n);
3045
	page->freelist = get_freepointer(kmem_cache_node, n);
3046
	page->inuse = 1;
3047
	page->frozen = 0;
3048
	kmem_cache_node->node[node] = n;
3049
#ifdef CONFIG_SLUB_DEBUG
3050
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3051
	init_tracking(kmem_cache_node, n);
3052
#endif
3053
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3054
	init_kmem_cache_node(n);
3055
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3056

3057
	/*
3058 3059
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3060
	 */
3061
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3062 3063 3064 3065 3066
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3067
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3068

C
Christoph Lameter 已提交
3069 3070
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3071 3072 3073 3074
		s->node[node] = NULL;
	}
}

3075
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3076 3077 3078
{
	int node;

C
Christoph Lameter 已提交
3079
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3080 3081
		struct kmem_cache_node *n;

3082
		if (slab_state == DOWN) {
3083
			early_kmem_cache_node_alloc(node);
3084 3085
			continue;
		}
3086
		n = kmem_cache_alloc_node(kmem_cache_node,
3087
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3088

3089 3090 3091
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3092
		}
3093

C
Christoph Lameter 已提交
3094
		s->node[node] = n;
3095
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
3096 3097 3098 3099
	}
	return 1;
}

3100
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3101 3102 3103 3104 3105 3106 3107 3108
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3109 3110 3111 3112
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3113
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3114 3115
{
	unsigned long flags = s->flags;
3116
	unsigned long size = s->object_size;
3117
	int order;
C
Christoph Lameter 已提交
3118

3119 3120 3121 3122 3123 3124 3125 3126
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3127 3128 3129 3130 3131 3132
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3133
			!s->ctor)
C
Christoph Lameter 已提交
3134 3135 3136 3137 3138 3139
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3140
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3141
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3142
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3143
	 */
3144
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3145
		size += sizeof(void *);
C
Christoph Lameter 已提交
3146
#endif
C
Christoph Lameter 已提交
3147 3148

	/*
C
Christoph Lameter 已提交
3149 3150
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3151 3152 3153 3154
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3155
		s->ctor)) {
C
Christoph Lameter 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3168
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3169 3170 3171 3172 3173 3174 3175
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3176
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3177 3178 3179 3180
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3181
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3182 3183 3184
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3185
#endif
C
Christoph Lameter 已提交
3186

C
Christoph Lameter 已提交
3187 3188 3189 3190 3191
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3192
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3193
	s->size = size;
3194 3195 3196
	if (forced_order >= 0)
		order = forced_order;
	else
3197
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3198

3199
	if (order < 0)
C
Christoph Lameter 已提交
3200 3201
		return 0;

3202
	s->allocflags = 0;
3203
	if (order)
3204 3205 3206
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3207
		s->allocflags |= GFP_DMA;
3208 3209 3210 3211

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3212 3213 3214
	/*
	 * Determine the number of objects per slab
	 */
3215 3216
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3217 3218
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3219

3220
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3221 3222
}

3223
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3224
{
3225
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3226
	s->reserved = 0;
C
Christoph Lameter 已提交
3227

3228 3229
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3230

3231
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3232
		goto error;
3233 3234 3235 3236 3237
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3238
		if (get_order(s->size) > get_order(s->object_size)) {
3239 3240 3241 3242 3243 3244
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3245

3246 3247
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3248 3249 3250 3251 3252
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3253 3254 3255 3256
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3272
	 * B) The number of objects in cpu partial slabs to extract from the
3273 3274
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3275
	 */
3276
	if (!kmem_cache_has_cpu_partial(s))
3277 3278
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3279 3280 3281 3282 3283 3284 3285 3286
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3287
#ifdef CONFIG_NUMA
3288
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3289
#endif
3290
	if (!init_kmem_cache_nodes(s))
3291
		goto error;
C
Christoph Lameter 已提交
3292

3293
	if (alloc_kmem_cache_cpus(s))
3294
		return 0;
3295

3296
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3297 3298 3299 3300
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3301 3302
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3303
	return -EINVAL;
C
Christoph Lameter 已提交
3304 3305
}

3306 3307 3308 3309 3310 3311
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3312 3313
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3314 3315
	if (!map)
		return;
3316
	slab_err(s, page, text, s->name);
3317 3318
	slab_lock(page);

3319
	get_map(s, page, map);
3320 3321 3322
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3323
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3324 3325 3326 3327
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3328
	kfree(map);
3329 3330 3331
#endif
}

C
Christoph Lameter 已提交
3332
/*
C
Christoph Lameter 已提交
3333
 * Attempt to free all partial slabs on a node.
3334 3335
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3336
 */
C
Christoph Lameter 已提交
3337
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3338 3339 3340
{
	struct page *page, *h;

3341
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3342
		if (!page->inuse) {
3343
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3344
			discard_slab(s, page);
3345 3346
		} else {
			list_slab_objects(s, page,
3347
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3348
		}
3349
	}
C
Christoph Lameter 已提交
3350 3351 3352
}

/*
C
Christoph Lameter 已提交
3353
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3354
 */
3355
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3356 3357
{
	int node;
C
Christoph Lameter 已提交
3358
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3359 3360 3361

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3362
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3363 3364
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3365 3366
			return 1;
	}
3367
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3368 3369 3370 3371
	free_kmem_cache_nodes(s);
	return 0;
}

3372
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3373
{
3374
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3375 3376 3377 3378 3379 3380 3381 3382
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3383
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3384 3385 3386 3387 3388 3389 3390 3391

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3392
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3393
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3394 3395 3396 3397 3398 3399 3400 3401

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3402
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3403 3404 3405 3406 3407 3408 3409 3410

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3411
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3412
	void *ret;
C
Christoph Lameter 已提交
3413

3414
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3415
		return kmalloc_large(size, flags);
3416

3417
	s = kmalloc_slab(size, flags);
3418 3419

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3420 3421
		return s;

3422
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3423

3424
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3425

3426 3427
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3428
	return ret;
C
Christoph Lameter 已提交
3429 3430 3431
}
EXPORT_SYMBOL(__kmalloc);

3432
#ifdef CONFIG_NUMA
3433 3434
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3435
	struct page *page;
3436
	void *ptr = NULL;
3437

V
Vladimir Davydov 已提交
3438 3439
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3440
	if (page)
3441 3442
		ptr = page_address(page);

3443
	kmalloc_large_node_hook(ptr, size, flags);
3444
	return ptr;
3445 3446
}

C
Christoph Lameter 已提交
3447 3448
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3449
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3450
	void *ret;
C
Christoph Lameter 已提交
3451

3452
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3453 3454
		ret = kmalloc_large_node(size, flags, node);

3455 3456 3457
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3458 3459 3460

		return ret;
	}
3461

3462
	s = kmalloc_slab(size, flags);
3463 3464

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3465 3466
		return s;

3467
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3468

3469
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3470

3471 3472
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3473
	return ret;
C
Christoph Lameter 已提交
3474 3475 3476 3477
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

3478
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3479
{
3480
	struct page *page;
C
Christoph Lameter 已提交
3481

3482
	if (unlikely(object == ZERO_SIZE_PTR))
3483 3484
		return 0;

3485 3486
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3487 3488
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3489
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3490
	}
C
Christoph Lameter 已提交
3491

3492
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3493
}
3494 3495 3496 3497 3498 3499 3500 3501 3502

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
K
Kirill A. Shutemov 已提交
3503
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3504 3505 3506 3507

void kfree(const void *x)
{
	struct page *page;
3508
	void *object = (void *)x;
C
Christoph Lameter 已提交
3509

3510 3511
	trace_kfree(_RET_IP_, x);

3512
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3513 3514
		return;

3515
	page = virt_to_head_page(x);
3516
	if (unlikely(!PageSlab(page))) {
3517
		BUG_ON(!PageCompound(page));
3518
		kfree_hook(x);
V
Vladimir Davydov 已提交
3519
		__free_kmem_pages(page, compound_order(page));
3520 3521
		return;
	}
3522
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3523 3524 3525
}
EXPORT_SYMBOL(kfree);

3526 3527
#define SHRINK_PROMOTE_MAX 32

3528
/*
3529 3530 3531
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3532 3533 3534 3535
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3536
 */
3537
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3538 3539 3540 3541 3542 3543
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3544 3545
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3546
	unsigned long flags;
3547
	int ret = 0;
3548

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3564
	flush_all(s);
C
Christoph Lameter 已提交
3565
	for_each_kmem_cache_node(s, node, n) {
3566 3567 3568
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3569 3570 3571 3572

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3573
		 * Build lists of slabs to discard or promote.
3574
		 *
C
Christoph Lameter 已提交
3575 3576
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3577 3578
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3589
				n->nr_partial--;
3590 3591
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3592 3593 3594
		}

		/*
3595 3596
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3597
		 */
3598 3599
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3600 3601

		spin_unlock_irqrestore(&n->list_lock, flags);
3602 3603

		/* Release empty slabs */
3604
		list_for_each_entry_safe(page, t, &discard, lru)
3605
			discard_slab(s, page);
3606 3607 3608

		if (slabs_node(s, node))
			ret = 1;
3609 3610
	}

3611
	return ret;
3612 3613
}

3614 3615 3616 3617
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3618
	mutex_lock(&slab_mutex);
3619
	list_for_each_entry(s, &slab_caches, list)
3620
		__kmem_cache_shrink(s, false);
3621
	mutex_unlock(&slab_mutex);
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3633
	offline_node = marg->status_change_nid_normal;
3634 3635 3636 3637 3638 3639 3640 3641

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3642
	mutex_lock(&slab_mutex);
3643 3644 3645 3646 3647 3648
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3649
			 * and offline_pages() function shouldn't call this
3650 3651
			 * callback. So, we must fail.
			 */
3652
			BUG_ON(slabs_node(s, offline_node));
3653 3654

			s->node[offline_node] = NULL;
3655
			kmem_cache_free(kmem_cache_node, n);
3656 3657
		}
	}
3658
	mutex_unlock(&slab_mutex);
3659 3660 3661 3662 3663 3664 3665
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3666
	int nid = marg->status_change_nid_normal;
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3677
	 * We are bringing a node online. No memory is available yet. We must
3678 3679 3680
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3681
	mutex_lock(&slab_mutex);
3682 3683 3684 3685 3686 3687
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3688
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3689 3690 3691 3692
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3693
		init_kmem_cache_node(n);
3694 3695 3696
		s->node[nid] = n;
	}
out:
3697
	mutex_unlock(&slab_mutex);
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3721 3722 3723 3724
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3725 3726 3727
	return ret;
}

3728 3729 3730 3731
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3732

C
Christoph Lameter 已提交
3733 3734 3735 3736
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3737 3738
/*
 * Used for early kmem_cache structures that were allocated using
3739 3740
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3741 3742
 */

3743
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3744 3745
{
	int node;
3746
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3747
	struct kmem_cache_node *n;
3748

3749
	memcpy(s, static_cache, kmem_cache->object_size);
3750

3751 3752 3753 3754 3755 3756
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3757
	for_each_kmem_cache_node(s, node, n) {
3758 3759
		struct page *p;

C
Christoph Lameter 已提交
3760 3761
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3762

L
Li Zefan 已提交
3763
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3764 3765
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3766 3767
#endif
	}
3768
	slab_init_memcg_params(s);
3769 3770
	list_add(&s->list, &slab_caches);
	return s;
3771 3772
}

C
Christoph Lameter 已提交
3773 3774
void __init kmem_cache_init(void)
{
3775 3776
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3777

3778 3779 3780
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3781 3782
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3783

3784 3785
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3786

3787
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3788 3789 3790 3791

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3792 3793 3794 3795
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3796

3797
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3798

3799 3800 3801 3802 3803
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3804
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3805 3806

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3807
	setup_kmalloc_cache_index_table();
3808
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3809 3810 3811

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3812
#endif
C
Christoph Lameter 已提交
3813

3814
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3815
		cache_line_size(),
C
Christoph Lameter 已提交
3816 3817 3818 3819
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3820 3821 3822 3823
void __init kmem_cache_init_late(void)
{
}

3824
struct kmem_cache *
3825 3826
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3827
{
3828
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
3829

3830
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3831 3832
	if (s) {
		s->refcount++;
3833

C
Christoph Lameter 已提交
3834 3835 3836 3837
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3838
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3839
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3840

3841
		for_each_memcg_cache(c, s) {
3842 3843 3844 3845 3846
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3847 3848
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3849
			s = NULL;
3850
		}
3851
	}
C
Christoph Lameter 已提交
3852

3853 3854
	return s;
}
P
Pekka Enberg 已提交
3855

3856
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3857
{
3858 3859 3860 3861 3862
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3863

3864 3865 3866 3867
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3868
	memcg_propagate_slab_attrs(s);
3869 3870 3871
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3872

3873
	return err;
C
Christoph Lameter 已提交
3874 3875 3876 3877
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3878 3879
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3880
 */
3881
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3882 3883 3884
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3885 3886
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3887 3888 3889

	switch (action) {
	case CPU_UP_CANCELED:
3890
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3891
	case CPU_DEAD:
3892
	case CPU_DEAD_FROZEN:
3893
		mutex_lock(&slab_mutex);
3894 3895 3896 3897 3898
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3899
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3900 3901 3902 3903 3904 3905 3906
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3907
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3908
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3909
};
C
Christoph Lameter 已提交
3910 3911 3912

#endif

3913
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3914
{
3915
	struct kmem_cache *s;
3916
	void *ret;
3917

3918
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3919 3920
		return kmalloc_large(size, gfpflags);

3921
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3922

3923
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3924
		return s;
C
Christoph Lameter 已提交
3925

3926
	ret = slab_alloc(s, gfpflags, caller);
3927

L
Lucas De Marchi 已提交
3928
	/* Honor the call site pointer we received. */
3929
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3930 3931

	return ret;
C
Christoph Lameter 已提交
3932 3933
}

3934
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3935
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3936
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3937
{
3938
	struct kmem_cache *s;
3939
	void *ret;
3940

3941
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3942 3943 3944 3945 3946 3947 3948 3949
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3950

3951
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3952

3953
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3954
		return s;
C
Christoph Lameter 已提交
3955

3956
	ret = slab_alloc_node(s, gfpflags, node, caller);
3957

L
Lucas De Marchi 已提交
3958
	/* Honor the call site pointer we received. */
3959
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3960 3961

	return ret;
C
Christoph Lameter 已提交
3962
}
3963
#endif
C
Christoph Lameter 已提交
3964

3965
#ifdef CONFIG_SYSFS
3966 3967 3968 3969 3970 3971 3972 3973 3974
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3975
#endif
3976

3977
#ifdef CONFIG_SLUB_DEBUG
3978 3979
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3980 3981
{
	void *p;
3982
	void *addr = page_address(page);
3983 3984 3985 3986 3987 3988

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3989
	bitmap_zero(map, page->objects);
3990

3991 3992 3993 3994 3995
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3996 3997
	}

3998
	for_each_object(p, s, addr, page->objects)
3999
		if (!test_bit(slab_index(p, s, addr), map))
4000
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4001 4002 4003 4004
				return 0;
	return 1;
}

4005 4006
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4007
{
4008 4009 4010
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4011 4012
}

4013 4014
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4015 4016 4017 4018 4019 4020 4021 4022
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4023
		validate_slab_slab(s, page, map);
4024 4025 4026
		count++;
	}
	if (count != n->nr_partial)
4027 4028
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4029 4030 4031 4032 4033

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4034
		validate_slab_slab(s, page, map);
4035 4036 4037
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4038 4039
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4040 4041 4042 4043 4044 4045

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4046
static long validate_slab_cache(struct kmem_cache *s)
4047 4048 4049
{
	int node;
	unsigned long count = 0;
4050
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4051
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4052
	struct kmem_cache_node *n;
4053 4054 4055

	if (!map)
		return -ENOMEM;
4056 4057

	flush_all(s);
C
Christoph Lameter 已提交
4058
	for_each_kmem_cache_node(s, node, n)
4059 4060
		count += validate_slab_node(s, n, map);
	kfree(map);
4061 4062
	return count;
}
4063
/*
C
Christoph Lameter 已提交
4064
 * Generate lists of code addresses where slabcache objects are allocated
4065 4066 4067 4068 4069
 * and freed.
 */

struct location {
	unsigned long count;
4070
	unsigned long addr;
4071 4072 4073 4074 4075
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4076
	DECLARE_BITMAP(cpus, NR_CPUS);
4077
	nodemask_t nodes;
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4093
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4094 4095 4096 4097 4098 4099
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4100
	l = (void *)__get_free_pages(flags, order);
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4114
				const struct track *track)
4115 4116 4117
{
	long start, end, pos;
	struct location *l;
4118
	unsigned long caddr;
4119
	unsigned long age = jiffies - track->when;
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4151 4152
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4153 4154
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4155 4156 4157
			return 1;
		}

4158
		if (track->addr < caddr)
4159 4160 4161 4162 4163 4164
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4165
	 * Not found. Insert new tracking element.
4166
	 */
4167
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4168 4169 4170 4171 4172 4173 4174 4175
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4176 4177 4178 4179 4180 4181
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4182 4183
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4184 4185
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4186 4187 4188 4189
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4190
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4191
		unsigned long *map)
4192
{
4193
	void *addr = page_address(page);
4194 4195
	void *p;

4196
	bitmap_zero(map, page->objects);
4197
	get_map(s, page, map);
4198

4199
	for_each_object(p, s, addr, page->objects)
4200 4201
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4202 4203 4204 4205 4206
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4207
	int len = 0;
4208
	unsigned long i;
4209
	struct loc_track t = { 0, 0, NULL };
4210
	int node;
E
Eric Dumazet 已提交
4211 4212
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4213
	struct kmem_cache_node *n;
4214

E
Eric Dumazet 已提交
4215 4216 4217
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4218
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4219
	}
4220 4221 4222
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4223
	for_each_kmem_cache_node(s, node, n) {
4224 4225 4226
		unsigned long flags;
		struct page *page;

4227
		if (!atomic_long_read(&n->nr_slabs))
4228 4229 4230 4231
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4232
			process_slab(&t, s, page, alloc, map);
4233
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4234
			process_slab(&t, s, page, alloc, map);
4235 4236 4237 4238
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4239
		struct location *l = &t.loc[i];
4240

H
Hugh Dickins 已提交
4241
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4242
			break;
4243
		len += sprintf(buf + len, "%7ld ", l->count);
4244 4245

		if (l->addr)
J
Joe Perches 已提交
4246
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4247
		else
4248
			len += sprintf(buf + len, "<not-available>");
4249 4250

		if (l->sum_time != l->min_time) {
4251
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4252 4253 4254
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4255
		} else
4256
			len += sprintf(buf + len, " age=%ld",
4257 4258 4259
				l->min_time);

		if (l->min_pid != l->max_pid)
4260
			len += sprintf(buf + len, " pid=%ld-%ld",
4261 4262
				l->min_pid, l->max_pid);
		else
4263
			len += sprintf(buf + len, " pid=%ld",
4264 4265
				l->min_pid);

R
Rusty Russell 已提交
4266 4267
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4268 4269 4270 4271
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4272

4273
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4274 4275 4276 4277
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4278

4279
		len += sprintf(buf + len, "\n");
4280 4281 4282
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4283
	kfree(map);
4284
	if (!t.count)
4285 4286
		len += sprintf(buf, "No data\n");
	return len;
4287
}
4288
#endif
4289

4290
#ifdef SLUB_RESILIENCY_TEST
4291
static void __init resiliency_test(void)
4292 4293 4294
{
	u8 *p;

4295
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4296

4297 4298 4299
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4300 4301 4302

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4303 4304
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4305 4306 4307 4308 4309 4310

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4311 4312 4313
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4314 4315 4316 4317 4318

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4319 4320 4321
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4322 4323
	validate_slab_cache(kmalloc_caches[6]);

4324
	pr_err("\nB. Corruption after free\n");
4325 4326 4327
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4328
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4329 4330 4331 4332 4333
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4334
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4335 4336 4337 4338 4339
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4340
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4341 4342 4343 4344 4345 4346 4347 4348
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4349
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4350
enum slab_stat_type {
4351 4352 4353 4354 4355
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4356 4357
};

4358
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4359 4360 4361
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4362
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4363

4364 4365
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4366 4367 4368 4369 4370 4371
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4372
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4373 4374
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4375

4376 4377
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4378

4379
		for_each_possible_cpu(cpu) {
4380 4381
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4382
			int node;
4383
			struct page *page;
4384

4385
			page = READ_ONCE(c->page);
4386 4387
			if (!page)
				continue;
4388

4389 4390 4391 4392 4393 4394 4395
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4396

4397 4398 4399
			total += x;
			nodes[node] += x;

4400
			page = READ_ONCE(c->partial);
4401
			if (page) {
L
Li Zefan 已提交
4402 4403 4404 4405 4406 4407 4408
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4409 4410
				total += x;
				nodes[node] += x;
4411
			}
C
Christoph Lameter 已提交
4412 4413 4414
		}
	}

4415
	get_online_mems();
4416
#ifdef CONFIG_SLUB_DEBUG
4417
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4418 4419 4420
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4421

4422 4423 4424 4425 4426
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4427
			else
4428
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4429 4430 4431 4432
			total += x;
			nodes[node] += x;
		}

4433 4434 4435
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4436
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4437

C
Christoph Lameter 已提交
4438
		for_each_kmem_cache_node(s, node, n) {
4439 4440 4441 4442
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4443
			else
4444
				x = n->nr_partial;
C
Christoph Lameter 已提交
4445 4446 4447 4448 4449 4450
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4451
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4452 4453 4454 4455
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4456
	put_online_mems();
C
Christoph Lameter 已提交
4457 4458 4459 4460
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4461
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4462 4463 4464
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4465
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4466

C
Christoph Lameter 已提交
4467
	for_each_kmem_cache_node(s, node, n)
4468
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4469
			return 1;
C
Christoph Lameter 已提交
4470

C
Christoph Lameter 已提交
4471 4472
	return 0;
}
4473
#endif
C
Christoph Lameter 已提交
4474 4475

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4476
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4477 4478 4479 4480 4481 4482 4483 4484

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4485 4486
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4487 4488 4489

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4490
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4506
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4507 4508 4509 4510 4511
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4512
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4513 4514 4515
}
SLAB_ATTR_RO(objs_per_slab);

4516 4517 4518
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4519 4520 4521
	unsigned long order;
	int err;

4522
	err = kstrtoul(buf, 10, &order);
4523 4524
	if (err)
		return err;
4525 4526 4527 4528 4529 4530 4531 4532

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4533 4534
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4535
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4536
}
4537
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4538

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4550
	err = kstrtoul(buf, 10, &min);
4551 4552 4553
	if (err)
		return err;

4554
	set_min_partial(s, min);
4555 4556 4557 4558
	return length;
}
SLAB_ATTR(min_partial);

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4570
	err = kstrtoul(buf, 10, &objects);
4571 4572
	if (err)
		return err;
4573
	if (objects && !kmem_cache_has_cpu_partial(s))
4574
		return -EINVAL;
4575 4576 4577 4578 4579 4580 4581

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4582 4583
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4584 4585 4586
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4587 4588 4589 4590 4591
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4592
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4593 4594 4595 4596 4597
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4598
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4599 4600 4601 4602 4603
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4604
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4605 4606 4607 4608 4609
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4610
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4611 4612 4613
}
SLAB_ATTR_RO(objects);

4614 4615 4616 4617 4618 4619
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4686 4687 4688 4689 4690 4691
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4692
#ifdef CONFIG_SLUB_DEBUG
4693 4694 4695 4696 4697 4698
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4699 4700 4701 4702 4703 4704
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4714 4715
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4716
		s->flags |= SLAB_DEBUG_FREE;
4717
	}
C
Christoph Lameter 已提交
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4730 4731 4732 4733 4734 4735 4736 4737
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4738
	s->flags &= ~SLAB_TRACE;
4739 4740
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4741
		s->flags |= SLAB_TRACE;
4742
	}
C
Christoph Lameter 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4759 4760
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4761
		s->flags |= SLAB_RED_ZONE;
4762
	}
4763
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4780 4781
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4782
		s->flags |= SLAB_POISON;
4783
	}
4784
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4801 4802
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4803
		s->flags |= SLAB_STORE_USER;
4804
	}
4805
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4806 4807 4808 4809
	return length;
}
SLAB_ATTR(store_user);

4810 4811 4812 4813 4814 4815 4816 4817
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4818 4819 4820 4821 4822 4823 4824 4825
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4826 4827
}
SLAB_ATTR(validate);
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4855 4856 4857
	if (s->refcount > 1)
		return -EINVAL;

4858 4859 4860 4861 4862 4863
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4864
#endif
4865

4866 4867 4868 4869 4870 4871 4872 4873
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4874 4875 4876
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
4877 4878 4879 4880 4881
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4882
#ifdef CONFIG_NUMA
4883
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4884
{
4885
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4886 4887
}

4888
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4889 4890
				const char *buf, size_t length)
{
4891 4892 4893
	unsigned long ratio;
	int err;

4894
	err = kstrtoul(buf, 10, &ratio);
4895 4896 4897
	if (err)
		return err;

4898
	if (ratio <= 100)
4899
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4900 4901 4902

	return length;
}
4903
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4904 4905
#endif

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4918
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4919 4920 4921 4922 4923 4924 4925

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4926
#ifdef CONFIG_SMP
4927 4928
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4929
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4930
	}
4931
#endif
4932 4933 4934 4935
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4936 4937 4938 4939 4940
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4941
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4942 4943
}

4944 4945 4946 4947 4948
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4949 4950 4951 4952 4953 4954 4955 4956 4957
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4969
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4970 4971 4972 4973 4974 4975 4976
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4977
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4978
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4979 4980
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4981 4982
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4983 4984
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4985 4986
#endif

P
Pekka Enberg 已提交
4987
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4988 4989 4990 4991
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4992
	&min_partial_attr.attr,
4993
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4994
	&objects_attr.attr,
4995
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4996 4997 4998 4999 5000 5001 5002 5003
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5004
	&shrink_attr.attr,
5005
	&reserved_attr.attr,
5006
	&slabs_cpu_partial_attr.attr,
5007
#ifdef CONFIG_SLUB_DEBUG
5008 5009 5010 5011
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5012 5013 5014
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5015
	&validate_attr.attr,
5016 5017
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5018
#endif
C
Christoph Lameter 已提交
5019 5020 5021 5022
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5023
	&remote_node_defrag_ratio_attr.attr,
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5036
	&alloc_node_mismatch_attr.attr,
5037 5038 5039 5040 5041 5042 5043
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5044
	&deactivate_bypass_attr.attr,
5045
	&order_fallback_attr.attr,
5046 5047
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5048 5049
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5050 5051
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5052
#endif
5053 5054 5055 5056
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5098 5099
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5100
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5101

5102 5103 5104 5105
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5123 5124
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5125 5126 5127
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5128 5129 5130
	return err;
}

5131 5132 5133 5134 5135
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5136
	struct kmem_cache *root_cache;
5137

5138
	if (is_root_cache(s))
5139 5140
		return;

5141
	root_cache = s->memcg_params.root_cache;
5142

5143 5144 5145 5146
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5147
	if (!root_cache->max_attr_size)
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5169
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5170 5171 5172 5173 5174 5175 5176 5177
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5178
		attr->show(root_cache, buf);
5179 5180 5181 5182 5183 5184 5185 5186
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5187 5188 5189 5190 5191
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5192
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5193 5194 5195 5196 5197 5198
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5199
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5211
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5212 5213 5214
	.filter = uevent_filter,
};

5215
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5216

5217 5218 5219 5220
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5221
		return s->memcg_params.root_cache->memcg_kset;
5222 5223 5224 5225
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5226 5227 5228
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5229 5230
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5253 5254
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5255 5256 5257
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5258

C
Christoph Lameter 已提交
5259 5260 5261 5262 5263 5264 5265 5266
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5267
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5268 5269 5270 5271 5272 5273 5274

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5275
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5276 5277 5278 5279 5280 5281 5282 5283 5284
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5285
	s->kobj.kset = cache_kset(s);
5286
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5287
	if (err)
5288
		goto out;
C
Christoph Lameter 已提交
5289 5290

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5291 5292
	if (err)
		goto out_del_kobj;
5293 5294 5295 5296 5297

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5298 5299
			err = -ENOMEM;
			goto out_del_kobj;
5300 5301 5302 5303
		}
	}
#endif

C
Christoph Lameter 已提交
5304 5305 5306 5307 5308
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5309 5310 5311 5312 5313 5314 5315
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5316 5317
}

5318
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5319
{
5320
	if (slab_state < FULL)
5321 5322 5323 5324 5325 5326
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5327 5328 5329
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5330 5331
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5332
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5333 5334 5335 5336
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5337
 * available lest we lose that information.
C
Christoph Lameter 已提交
5338 5339 5340 5341 5342 5343 5344
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5345
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5346 5347 5348 5349 5350

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5351
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5352 5353 5354
		/*
		 * If we have a leftover link then remove it.
		 */
5355 5356
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5372
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5373 5374
	int err;

5375
	mutex_lock(&slab_mutex);
5376

5377
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5378
	if (!slab_kset) {
5379
		mutex_unlock(&slab_mutex);
5380
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5381 5382 5383
		return -ENOSYS;
	}

5384
	slab_state = FULL;
5385

5386
	list_for_each_entry(s, &slab_caches, list) {
5387
		err = sysfs_slab_add(s);
5388
		if (err)
5389 5390
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5391
	}
C
Christoph Lameter 已提交
5392 5393 5394 5395 5396 5397

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5398
		if (err)
5399 5400
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5401 5402 5403
		kfree(al);
	}

5404
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5405 5406 5407 5408 5409
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5410
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5411 5412 5413 5414

/*
 * The /proc/slabinfo ABI
 */
5415
#ifdef CONFIG_SLABINFO
5416
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5417 5418
{
	unsigned long nr_slabs = 0;
5419 5420
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5421
	int node;
C
Christoph Lameter 已提交
5422
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5423

C
Christoph Lameter 已提交
5424
	for_each_kmem_cache_node(s, node, n) {
5425 5426
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5427
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5428 5429
	}

5430 5431 5432 5433 5434 5435
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5436 5437
}

5438
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5439 5440 5441
{
}

5442 5443
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5444
{
5445
	return -EIO;
5446
}
5447
#endif /* CONFIG_SLABINFO */