gadget.c 96.5 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/clk.h>
29
#include <linux/regulator/consumer.h>
30
#include <linux/of_platform.h>
31
#include <linux/phy/phy.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37

38
#include "core.h"
39
#include "hw.h"
40 41

/* conversion functions */
42
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
43
{
44
	return container_of(req, struct dwc2_hsotg_req, req);
45 46
}

47
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
48
{
49
	return container_of(ep, struct dwc2_hsotg_ep, ep);
50 51
}

52
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53
{
54
	return container_of(gadget, struct dwc2_hsotg, gadget);
55 56 57 58
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
59
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
60 61 62 63
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
64
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
65 66
}

67
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
68 69 70 71 72 73 74 75
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

76
/* forward declaration of functions */
77
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
96
 * g_using_dma is set depending on dts flag.
97
 */
98
static inline bool using_dma(struct dwc2_hsotg *hsotg)
99
{
100
	return hsotg->g_using_dma;
101 102 103
}

/**
104
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
105 106 107
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
108
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109
{
110
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
111 112 113 114 115 116
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
118 119 120 121
	}
}

/**
122
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
123 124 125
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
126
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127
{
128
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
129 130 131 132 133
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
134
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 136 137
}

/**
138
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
139 140 141 142 143 144 145 146
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
147
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148 149 150 151 152 153 154 155 156 157 158
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
159
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
160 161 162 163
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
164
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
165 166 167 168
	local_irq_restore(flags);
}

/**
169
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
170 171
 * @hsotg: The device instance.
 */
172
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173
{
174 175
	unsigned int ep;
	unsigned int addr;
176
	int timeout;
177 178
	u32 val;

179 180 181 182
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

183
	/* set RX/NPTX FIFO sizes */
184 185
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
186 187
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
188

189 190
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
191 192
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
193 194
	 * known values.
	 */
195 196

	/* start at the end of the GNPTXFSIZ, rounded up */
197
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198

199
	/*
200
	 * Configure fifos sizes from provided configuration and assign
201 202
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
203
	 */
204 205 206
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
207
		val = addr;
208 209
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210
			  "insufficient fifo memory");
211
		addr += hsotg->g_tx_fifo_sz[ep];
212

213
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
214
	}
215

216 217 218 219
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
220

221
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
222
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223 224 225 226

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
227
		val = dwc2_readl(hsotg->regs + GRSTCTL);
228

229
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230 231 232 233 234 235
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
236
			break;
237 238 239 240 241 242
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 244 245 246 247 248 249 250
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
251
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
252
						      gfp_t flags)
253
{
254
	struct dwc2_hsotg_req *req;
255

256
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
272
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
273 274 275 276 277
{
	return hs_ep->periodic;
}

/**
278
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
279 280 281 282
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
283
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
284
 * of a request to ensure the buffer is ready for access by the caller.
285
 */
286 287 288
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
289 290 291 292 293 294 295
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

296
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 298 299
}

/**
300
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
301 302 303 304 305 306 307 308 309 310 311 312 313
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
314
 */
315 316 317
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
318 319
{
	bool periodic = is_ep_periodic(hs_ep);
320
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
321 322 323 324 325
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
326
	int max_transfer;
327 328 329 330 331 332 333

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

334
	if (periodic && !hsotg->dedicated_fifos) {
335
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336 337 338
		int size_left;
		int size_done;

339 340 341 342
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
343

344
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345

346 347
		/*
		 * if shared fifo, we cannot write anything until the
348 349 350
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
351
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352 353 354
			return -ENOSPC;
		}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
372
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373 374
			return -ENOSPC;
		}
375
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376
		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
377 378 379

		can_write &= 0xffff;
		can_write *= 4;
380
	} else {
381
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382 383 384 385
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

386
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387 388 389
			return -ENOSPC;
		}

390
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391
		can_write *= 4;	/* fifo size is in 32bit quantities. */
392 393
	}

394 395 396 397
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
398

399 400
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
401 402 403
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
404
	if (can_write > 512 && !periodic)
405 406
		can_write = 512;

407 408
	/*
	 * limit the write to one max-packet size worth of data, but allow
409
	 * the transfer to return that it did not run out of fifo space
410 411
	 * doing it.
	 */
412 413
	if (to_write > max_transfer) {
		to_write = max_transfer;
414

415 416
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
417
			dwc2_hsotg_en_gsint(hsotg,
418 419
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
420 421
	}

422 423 424 425
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
426
		pkt_round = to_write % max_transfer;
427

428 429
		/*
		 * Round the write down to an
430 431 432 433 434 435 436 437 438
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

439 440 441 442
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
443

444 445
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
446
			dwc2_hsotg_en_gsint(hsotg,
447 448
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

466
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467 468 469 470 471 472 473 474 475 476 477

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
478
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
479 480 481 482 483 484
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
485 486
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487
	} else {
488
		maxsize = 64+64;
489
		if (hs_ep->dir_in)
490
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491
		else
492 493 494 495 496 497 498
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

499 500 501 502
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
503 504 505 506 507 508 509 510

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
511
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
512 513 514 515 516 517 518 519
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
520 521 522
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

549 550
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551 552

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
554 555
		hs_ep->dir_in ? "in" : "out");

556
	/* If endpoint is stalled, we will restart request later */
557
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
558

559
	if (index && ctrl & DXEPCTL_STALL) {
560 561 562 563
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

564
	length = ureq->length - ureq->actual;
565 566
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

587 588 589 590 591
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

592
	if (dir_in && index != 0)
593
		if (hs_ep->isochronous)
594
			epsize = DXEPTSIZ_MC(packets);
595
		else
596
			epsize = DXEPTSIZ_MC(1);
597 598 599
	else
		epsize = 0;

600 601 602 603 604 605 606 607
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
608
			hs_ep->send_zlp = 1;
609 610
	}

611 612
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
613 614 615 616 617 618 619 620

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
621
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
622

623
	if (using_dma(hsotg) && !continuing) {
624 625
		unsigned int dma_reg;

626 627
		/*
		 * write DMA address to control register, buffer already
628
		 * synced by dwc2_hsotg_ep_queue().
629
		 */
630

631
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
633

634
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635
			__func__, &ureq->dma, dma_reg);
636 637
	}

638 639
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
640

641
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642 643

	/* For Setup request do not clear NAK */
644
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
646

647
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
648
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
649

650 651
	/*
	 * set these, it seems that DMA support increments past the end
652
	 * of the packet buffer so we need to calculate the length from
653 654
	 * this information.
	 */
655 656 657 658 659 660 661
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

662
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
663 664
	}

665 666 667 668
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
669
	if (dir_in)
670
		dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
671
		       hsotg->regs + DIEPINT(index));
672

673 674 675 676
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
677 678

	/* check ep is enabled */
679
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680
		dev_dbg(hsotg->dev,
681
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
683

684
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
686 687

	/* enable ep interrupts */
688
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 690 691
}

/**
692
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
693 694 695 696 697 698 699 700 701
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
702
 */
703 704
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
705 706
			     struct usb_request *req)
{
707
	struct dwc2_hsotg_req *hs_req = our_req(req);
708
	int ret;
709 710 711 712 713

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

714 715 716
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
717 718 719 720 721 722 723 724 725 726

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

727 728
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

758 759
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

780
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
781 782
			      gfp_t gfp_flags)
{
783 784
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
785
	struct dwc2_hsotg *hs = hs_ep->parent;
786
	bool first;
787
	int ret;
788 789 790 791 792

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

793 794 795 796 797 798 799
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

800 801 802 803 804
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

805
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
806 807 808
	if (ret)
		return ret;

809 810
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
811
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
812 813 814 815 816 817 818 819
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
820
		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
821 822 823 824

	return 0;
}

825
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
826 827
			      gfp_t gfp_flags)
{
828
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
829
	struct dwc2_hsotg *hs = hs_ep->parent;
830 831 832 833
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
834
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
835 836 837 838 839
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

840
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
841 842
				      struct usb_request *req)
{
843
	struct dwc2_hsotg_req *hs_req = our_req(req);
844 845 846 847 848

	kfree(hs_req);
}

/**
849
 * dwc2_hsotg_complete_oursetup - setup completion callback
850 851 852 853 854 855
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
856
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
857 858
					struct usb_request *req)
{
859
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
860
	struct dwc2_hsotg *hsotg = hs_ep->parent;
861 862 863

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

864
	dwc2_hsotg_ep_free_request(ep, req);
865 866 867 868 869 870 871 872 873
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
874
 */
875
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
876 877
					   u32 windex)
{
878
	struct dwc2_hsotg_ep *ep;
879 880 881 882 883 884
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

885
	if (idx > hsotg->num_of_eps)
886 887
		return NULL;

888 889
	ep = index_to_ep(hsotg, idx, dir);

890 891 892 893 894 895
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

896
/**
897
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
898 899 900 901
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
902
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
903
{
904
	int dctl = dwc2_readl(hsotg->regs + DCTL);
905 906 907 908 909 910 911 912 913 914 915 916 917

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
918
	dwc2_writel(dctl, hsotg->regs + DCTL);
919 920 921
	return 0;
}

922
/**
923
 * dwc2_hsotg_send_reply - send reply to control request
924 925 926 927 928 929 930 931
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
932 933
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
934 935 936 937 938 939 940 941
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

942
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
943 944 945 946 947 948 949 950
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
951 952 953 954 955
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
956
	req->complete = dwc2_hsotg_complete_oursetup;
957 958 959 960

	if (length)
		memcpy(req->buf, buff, length);

961
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
962 963 964 965 966 967 968 969 970
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
971
 * dwc2_hsotg_process_req_status - process request GET_STATUS
972 973 974
 * @hsotg: The device state
 * @ctrl: USB control request
 */
975
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
976 977
					struct usb_ctrlrequest *ctrl)
{
978 979
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1016
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1017 1018 1019 1020 1021 1022 1023 1024
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1025
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1026

1027 1028 1029 1030 1031 1032
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1033
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1034 1035 1036 1037
{
	if (list_empty(&hs_ep->queue))
		return NULL;

1038
	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1039 1040
}

1041
/**
1042
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1043 1044 1045
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1046
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1047 1048
					 struct usb_ctrlrequest *ctrl)
{
1049 1050
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1051
	bool restart;
1052
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1053
	struct dwc2_hsotg_ep *ep;
1054
	int ret;
1055
	bool halted;
1056 1057 1058
	u32 recip;
	u32 wValue;
	u32 wIndex;
1059 1060 1061 1062

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1077
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1091 1092
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1093
				__func__, wIndex);
1094 1095 1096
			return -ENOENT;
		}

1097
		switch (wValue) {
1098
		case USB_ENDPOINT_HALT:
1099 1100
			halted = ep->halted;

1101
			dwc2_hsotg_ep_sethalt(&ep->ep, set);
1102

1103
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1104 1105 1106 1107 1108
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1109

1110 1111 1112 1113 1114 1115
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1116 1117 1118 1119 1120 1121 1122 1123
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1124 1125 1126 1127 1128 1129
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1130 1131 1132
				}

				/* If we have pending request, then start it */
1133 1134 1135 1136
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
1137
						dwc2_hsotg_start_req(hsotg, ep,
1138 1139
								hs_req, false);
					}
1140 1141 1142
				}
			}

1143 1144 1145 1146 1147
			break;

		default:
			return -ENOENT;
		}
1148 1149 1150 1151
		break;
	default:
		return -ENOENT;
	}
1152 1153 1154
	return 1;
}

1155
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1156

1157
/**
1158
 * dwc2_hsotg_stall_ep0 - stall ep0
1159 1160 1161 1162
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1163
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1164
{
1165
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1177
	ctrl = dwc2_readl(hsotg->regs + reg);
1178 1179
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1180
	dwc2_writel(ctrl, hsotg->regs + reg);
1181 1182

	dev_dbg(hsotg->dev,
1183
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1184
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1185 1186 1187 1188 1189

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1190
	 dwc2_hsotg_enqueue_setup(hsotg);
1191 1192
}

1193
/**
1194
 * dwc2_hsotg_process_control - process a control request
1195 1196 1197 1198 1199 1200 1201
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1202
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1203 1204
				      struct usb_ctrlrequest *ctrl)
{
1205
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1206 1207 1208
	int ret = 0;
	u32 dcfg;

1209 1210 1211 1212
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1213

1214 1215 1216 1217
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1218
		ep0->dir_in = 1;
1219 1220 1221 1222 1223
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1224 1225 1226 1227

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1228
			hsotg->connected = 1;
1229
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1230
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1231 1232
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1233
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1234 1235 1236

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1237
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1238 1239 1240
			return;

		case USB_REQ_GET_STATUS:
1241
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1242 1243 1244 1245
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1246
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1247 1248 1249 1250 1251 1252 1253
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1254
		spin_unlock(&hsotg->lock);
1255
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1256
		spin_lock(&hsotg->lock);
1257 1258 1259 1260
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1261 1262
	/*
	 * the request is either unhandlable, or is not formatted correctly
1263 1264 1265
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1266
	if (ret < 0)
1267
		dwc2_hsotg_stall_ep0(hsotg);
1268 1269 1270
}

/**
1271
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1272 1273 1274 1275 1276 1277
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1278
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1279 1280
				     struct usb_request *req)
{
1281
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1282
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1283 1284 1285 1286 1287 1288

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1289
	spin_lock(&hsotg->lock);
1290
	if (req->actual == 0)
1291
		dwc2_hsotg_enqueue_setup(hsotg);
1292
	else
1293
		dwc2_hsotg_process_control(hsotg, req->buf);
1294
	spin_unlock(&hsotg->lock);
1295 1296 1297
}

/**
1298
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1299 1300 1301 1302 1303
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1304
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1305 1306
{
	struct usb_request *req = hsotg->ctrl_req;
1307
	struct dwc2_hsotg_req *hs_req = our_req(req);
1308 1309 1310 1311 1312 1313 1314
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1315
	req->complete = dwc2_hsotg_complete_setup;
1316 1317 1318 1319 1320 1321

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1322
	hsotg->eps_out[0]->dir_in = 0;
1323
	hsotg->eps_out[0]->send_zlp = 0;
1324
	hsotg->ep0_state = DWC2_EP0_SETUP;
1325

1326
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1327 1328
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1329 1330 1331 1332
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1333 1334 1335
	}
}

1336 1337
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1338 1339 1340 1341 1342 1343
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1344 1345 1346 1347 1348 1349
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1350

1351 1352 1353
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1354

1355
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1356 1357 1358
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1359
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1360 1361
}

1362
/**
1363
 * dwc2_hsotg_complete_request - complete a request given to us
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1374
 */
1375 1376 1377
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1390 1391 1392 1393
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1394 1395 1396 1397

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1398 1399 1400
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1401
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1402

1403 1404 1405
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1406 1407 1408 1409
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1410 1411

	if (hs_req->req.complete) {
1412
		spin_unlock(&hsotg->lock);
1413
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1414
		spin_lock(&hsotg->lock);
1415 1416
	}

1417 1418
	/*
	 * Look to see if there is anything else to do. Note, the completion
1419
	 * of the previous request may have caused a new request to be started
1420 1421
	 * so be careful when doing this.
	 */
1422 1423 1424 1425 1426

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
1427
			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1428 1429 1430 1431 1432
		}
	}
}

/**
1433
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1434 1435 1436 1437 1438 1439 1440 1441
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1442
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1443
{
1444 1445
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1446
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1447 1448 1449 1450
	int to_read;
	int max_req;
	int read_ptr;

1451

1452
	if (!hs_req) {
1453
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1454 1455
		int ptr;

1456
		dev_dbg(hsotg->dev,
1457
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1458 1459 1460 1461
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1462
			(void)dwc2_readl(fifo);
1463 1464 1465 1466 1467 1468 1469 1470

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1471 1472 1473
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1474
	if (to_read > max_req) {
1475 1476
		/*
		 * more data appeared than we where willing
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1488 1489 1490 1491
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1492
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1493 1494 1495
}

/**
1496
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1497
 * @hsotg: The device instance
1498
 * @dir_in: If IN zlp
1499 1500 1501 1502 1503
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1504
 * currently believed that we do not need to wait for any space in
1505 1506
 * the TxFIFO.
 */
1507
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1508
{
1509
	/* eps_out[0] is used in both directions */
1510 1511
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1512

1513
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1514 1515 1516
}

/**
1517
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1518 1519 1520 1521 1522 1523
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1524
 */
1525
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1526
{
1527
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1528 1529
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1530
	struct usb_request *req = &hs_req->req;
1531
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1532 1533 1534 1535 1536 1537 1538
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1539 1540
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1541 1542
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1543 1544 1545
		return;
	}

1546 1547 1548
	if (using_dma(hsotg)) {
		unsigned size_done;

1549 1550
		/*
		 * Calculate the size of the transfer by checking how much
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1564 1565
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1566
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1567 1568 1569
		return;
	}

1570 1571 1572 1573
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1574 1575 1576 1577
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1578 1579
	}

1580 1581
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1582
		dwc2_hsotg_ep0_zlp(hsotg, true);
1583
		return;
1584 1585
	}

1586
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1587 1588 1589
}

/**
1590
 * dwc2_hsotg_read_frameno - read current frame number
1591 1592 1593
 * @hsotg: The device instance
 *
 * Return the current frame number
1594
 */
1595
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1596 1597 1598
{
	u32 dsts;

1599
	dsts = dwc2_readl(hsotg->regs + DSTS);
1600 1601
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1602 1603 1604 1605 1606

	return dsts;
}

/**
1607
 * dwc2_hsotg_handle_rx - RX FIFO has data
1608 1609 1610 1611 1612 1613
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1614
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1615 1616 1617 1618 1619 1620 1621
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1622
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1623
{
1624
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1625 1626 1627 1628
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1629 1630
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1631

1632 1633
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1634

1635
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1636 1637
			__func__, grxstsr, size, epnum);

1638 1639 1640
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1641 1642
		break;

1643
	case GRXSTS_PKTSTS_OUTDONE:
1644
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1645
			dwc2_hsotg_read_frameno(hsotg));
1646 1647

		if (!using_dma(hsotg))
1648
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1649 1650
		break;

1651
	case GRXSTS_PKTSTS_SETUPDONE:
1652 1653
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1654
			dwc2_hsotg_read_frameno(hsotg),
1655
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1656
		/*
1657
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1658 1659 1660 1661
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1662
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1663 1664
		break;

1665
	case GRXSTS_PKTSTS_OUTRX:
1666
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1667 1668
		break;

1669
	case GRXSTS_PKTSTS_SETUPRX:
1670 1671
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1672
			dwc2_hsotg_read_frameno(hsotg),
1673
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1674

1675 1676
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1677
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1678 1679 1680 1681 1682 1683
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1684
		dwc2_hsotg_dump(hsotg);
1685 1686 1687 1688 1689
		break;
	}
}

/**
1690
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1691
 * @mps: The maximum packet size in bytes.
1692
 */
1693
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1694 1695 1696
{
	switch (mps) {
	case 64:
1697
		return D0EPCTL_MPS_64;
1698
	case 32:
1699
		return D0EPCTL_MPS_32;
1700
	case 16:
1701
		return D0EPCTL_MPS_16;
1702
	case 8:
1703
		return D0EPCTL_MPS_8;
1704 1705 1706 1707 1708 1709 1710 1711
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1712
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1713 1714 1715 1716 1717 1718 1719
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1720
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1721
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1722
{
1723
	struct dwc2_hsotg_ep *hs_ep;
1724 1725
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1726
	u32 mcval;
1727 1728
	u32 reg;

1729 1730 1731 1732
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1733 1734
	if (ep == 0) {
		/* EP0 is a special case */
1735
		mpsval = dwc2_hsotg_ep0_mps(mps);
1736 1737
		if (mpsval > 3)
			goto bad_mps;
1738
		hs_ep->ep.maxpacket = mps;
1739
		hs_ep->mc = 1;
1740
	} else {
1741
		mpsval = mps & DXEPCTL_MPS_MASK;
1742
		if (mpsval > 1024)
1743
			goto bad_mps;
1744 1745 1746 1747
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1748
		hs_ep->ep.maxpacket = mpsval;
1749 1750
	}

1751
	if (dir_in) {
1752
		reg = dwc2_readl(regs + DIEPCTL(ep));
1753 1754
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1755
		dwc2_writel(reg, regs + DIEPCTL(ep));
1756
	} else {
1757
		reg = dwc2_readl(regs + DOEPCTL(ep));
1758
		reg &= ~DXEPCTL_MPS_MASK;
1759
		reg |= mpsval;
1760
		dwc2_writel(reg, regs + DOEPCTL(ep));
1761
	}
1762 1763 1764 1765 1766 1767 1768

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1769
/**
1770
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1771 1772 1773
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1774
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1775 1776 1777 1778
{
	int timeout;
	int val;

1779 1780
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1781 1782 1783 1784 1785

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1786
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1787

1788
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1789 1790 1791 1792 1793 1794
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1795
			break;
1796 1797 1798 1799 1800
		}

		udelay(1);
	}
}
1801 1802

/**
1803
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1804 1805 1806 1807 1808 1809
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1810 1811
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1812
{
1813
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1814

1815 1816 1817 1818 1819 1820
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1821
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1822
					     hs_ep->dir_in, 0);
1823
		return 0;
1824
	}
1825 1826 1827 1828

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1829
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1830 1831 1832 1833 1834 1835
	}

	return 0;
}

/**
1836
 * dwc2_hsotg_complete_in - complete IN transfer
1837 1838 1839 1840 1841 1842
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1843 1844
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1845
{
1846
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1847
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1848 1849 1850 1851 1852 1853 1854
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1855
	/* Finish ZLP handling for IN EP0 transactions */
1856 1857
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1858
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1859 1860 1861
		if (hsotg->test_mode) {
			int ret;

1862
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1863 1864 1865
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1866
				dwc2_hsotg_stall_ep0(hsotg);
1867 1868 1869
				return;
			}
		}
1870
		dwc2_hsotg_enqueue_setup(hsotg);
1871 1872 1873
		return;
	}

1874 1875
	/*
	 * Calculate the size of the transfer by checking how much is left
1876 1877 1878 1879 1880 1881 1882 1883
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1884
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1885 1886 1887 1888 1889 1890 1891 1892 1893

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1894 1895 1896
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1897 1898
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1899
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1900 1901 1902
		return;
	}

1903
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1904
	if (hs_ep->send_zlp) {
1905
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1906
		hs_ep->send_zlp = 0;
1907 1908 1909 1910
		/* transfer will be completed on next complete interrupt */
		return;
	}

1911 1912
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
1913
		dwc2_hsotg_ep0_zlp(hsotg, false);
1914 1915 1916
		return;
	}

1917
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1918 1919 1920
}

/**
1921
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1922 1923 1924 1925 1926
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1927
 */
1928
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1929 1930
			    int dir_in)
{
1931
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1932 1933 1934
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1935
	u32 ints;
1936
	u32 ctrl;
1937

1938 1939
	ints = dwc2_readl(hsotg->regs + epint_reg);
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1940

1941
	/* Clear endpoint interrupts */
1942
	dwc2_writel(ints, hsotg->regs + epint_reg);
1943

1944 1945 1946 1947 1948 1949
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1950 1951 1952
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1953 1954 1955 1956
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1957
	if (ints & DXEPINT_XFERCOMPL) {
1958
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1959 1960
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1961
			else
1962
				ctrl |= DXEPCTL_SETODDFR;
1963
			dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1964 1965
		}

1966
		dev_dbg(hsotg->dev,
1967
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1968 1969
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
1970

1971 1972 1973 1974
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1975
		if (dir_in) {
1976
			dwc2_hsotg_complete_in(hsotg, hs_ep);
1977

1978
			if (idx == 0 && !hs_ep->req)
1979
				dwc2_hsotg_enqueue_setup(hsotg);
1980
		} else if (using_dma(hsotg)) {
1981 1982 1983 1984
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1985

1986
			dwc2_hsotg_handle_outdone(hsotg, idx);
1987 1988 1989
		}
	}

1990
	if (ints & DXEPINT_EPDISBLD) {
1991 1992
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1993
		if (dir_in) {
1994
			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
1995

1996
			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1997

1998 1999
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
2000
				int dctl = dwc2_readl(hsotg->regs + DCTL);
2001

2002
				dctl |= DCTL_CGNPINNAK;
2003
				dwc2_writel(dctl, hsotg->regs + DCTL);
2004 2005 2006 2007
			}
		}
	}

2008
	if (ints & DXEPINT_AHBERR)
2009 2010
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2011
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2012 2013 2014
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2015 2016
			/*
			 * this is the notification we've received a
2017 2018
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2019 2020
			 * the setup here.
			 */
2021 2022 2023 2024

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2025
				dwc2_hsotg_handle_outdone(hsotg, 0);
2026 2027 2028
		}
	}

2029
	if (ints & DXEPINT_BACK2BACKSETUP)
2030 2031
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2032
	if (dir_in && !hs_ep->isochronous) {
2033
		/* not sure if this is important, but we'll clear it anyway */
2034
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2035 2036 2037 2038 2039
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2040
		if (ints & DIEPMSK_INTKNEPMISMSK) {
2041 2042 2043
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2044 2045 2046

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2047
		    ints & DIEPMSK_TXFIFOEMPTY) {
2048 2049
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2050
			if (!using_dma(hsotg))
2051
				dwc2_hsotg_trytx(hsotg, hs_ep);
2052
		}
2053 2054 2055 2056
	}
}

/**
2057
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2058 2059 2060 2061
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2062
 */
2063
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2064
{
2065
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2066
	int ep0_mps = 0, ep_mps = 8;
2067

2068 2069
	/*
	 * This should signal the finish of the enumeration phase
2070
	 * of the USB handshaking, so we should now know what rate
2071 2072
	 * we connected at.
	 */
2073 2074 2075

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2076 2077
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2078
	 * it seems IN transfers must be a even number of packets we do
2079 2080
	 * not advertise a 64byte MPS on EP0.
	 */
2081 2082

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2083 2084 2085
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2086 2087
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2088
		ep_mps = 1023;
2089 2090
		break;

2091
	case DSTS_ENUMSPD_HS:
2092 2093
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2094
		ep_mps = 1024;
2095 2096
		break;

2097
	case DSTS_ENUMSPD_LS:
2098
		hsotg->gadget.speed = USB_SPEED_LOW;
2099 2100
		/*
		 * note, we don't actually support LS in this driver at the
2101 2102 2103 2104 2105
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2106 2107
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2108

2109 2110 2111 2112
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2113 2114 2115

	if (ep0_mps) {
		int i;
2116
		/* Initialize ep0 for both in and out directions */
2117 2118
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2119 2120
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2121
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2122
			if (hsotg->eps_out[i])
2123
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2124
		}
2125 2126 2127 2128
	}

	/* ensure after enumeration our EP0 is active */

2129
	dwc2_hsotg_enqueue_setup(hsotg);
2130 2131

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2132 2133
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2145
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2146
			      struct dwc2_hsotg_ep *ep,
2147
			      int result)
2148
{
2149
	struct dwc2_hsotg_req *req, *treq;
2150
	unsigned size;
2151

2152
	ep->req = NULL;
2153

2154
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2155
		dwc2_hsotg_complete_request(hsotg, ep, req,
2156
					   result);
2157

2158 2159
	if (!hsotg->dedicated_fifos)
		return;
2160
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2161
	if (size < ep->fifo_size)
2162
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2163 2164 2165
}

/**
2166
 * dwc2_hsotg_disconnect - disconnect service
2167 2168
 * @hsotg: The device state.
 *
2169 2170 2171
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2172
 */
2173
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2174 2175 2176
{
	unsigned ep;

2177 2178 2179 2180
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2181
	hsotg->test_mode = 0;
2182 2183 2184 2185 2186 2187 2188 2189 2190

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2191 2192

	call_gadget(hsotg, disconnect);
2193
	hsotg->lx_state = DWC2_L3;
2194 2195 2196
}

/**
2197
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2198 2199 2200
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2201
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2202
{
2203
	struct dwc2_hsotg_ep *ep;
2204 2205 2206
	int epno, ret;

	/* look through for any more data to transmit */
2207
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2208 2209 2210 2211
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2212 2213 2214 2215 2216 2217 2218 2219

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2220
		ret = dwc2_hsotg_trytx(hsotg, ep);
2221 2222 2223 2224 2225 2226
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2227 2228 2229
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2230

2231
/**
2232
 * dwc2_hsotg_corereset - issue softreset to the core
2233 2234 2235
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2236
 */
2237
static int dwc2_hsotg_corereset(struct dwc2_hsotg *hsotg)
2238 2239 2240 2241 2242 2243 2244
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2245
	dwc2_writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2246

2247
	timeout = 10000;
2248
	do {
2249
		grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2250
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2251

2252
	if (grstctl & GRSTCTL_CSFTRST) {
2253 2254 2255 2256
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2257
	timeout = 10000;
2258 2259

	while (1) {
2260
		u32 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2261 2262 2263 2264 2265 2266 2267 2268

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2269
		if (!(grstctl & GRSTCTL_AHBIDLE))
2270 2271 2272 2273 2274 2275 2276 2277 2278
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2279
/**
2280
 * dwc2_hsotg_core_init - issue softreset to the core
2281 2282 2283 2284
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2285
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2286
						bool is_usb_reset)
2287
{
2288
	u32 intmsk;
2289 2290
	u32 val;

2291 2292 2293
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2294
	if (!is_usb_reset)
2295 2296
		if (dwc2_hsotg_corereset(hsotg))
			return;
2297 2298 2299 2300 2301 2302 2303

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2304
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2305
	dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2306
	       (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2307

2308
	dwc2_hsotg_init_fifo(hsotg);
2309

2310 2311
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2312

2313
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2314 2315

	/* Clear any pending OTG interrupts */
2316
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2317 2318

	/* Clear any pending interrupts */
2319
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2320
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2321
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2322 2323 2324 2325 2326 2327 2328 2329
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2330 2331

	if (using_dma(hsotg))
2332 2333 2334
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2335
	else
2336 2337 2338 2339
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2340 2341

	/*
2342 2343 2344
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2345 2346
	 */

2347
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2348
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2349 2350 2351 2352
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2353 2354 2355 2356 2357

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2358
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2359 2360 2361 2362
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2363

2364
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2365 2366

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2367 2368
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2369 2370

	/* enable in and out endpoint interrupts */
2371
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2372 2373 2374 2375 2376 2377 2378

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2379
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2380 2381

	/* Enable interrupts for EP0 in and out */
2382 2383
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2384

2385 2386 2387 2388 2389
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2390

2391
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2392 2393

	/*
2394
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2395 2396 2397 2398
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2399
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2400
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2401

2402
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2403 2404
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2405
	       hsotg->regs + DOEPCTL0);
2406 2407

	/* enable, but don't activate EP0in */
2408
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2409
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2410

2411
	dwc2_hsotg_enqueue_setup(hsotg);
2412 2413

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2414 2415
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2416 2417

	/* clear global NAKs */
2418 2419 2420 2421
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2422 2423 2424 2425

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2426
	hsotg->lx_state = DWC2_L0;
2427 2428
}

2429
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2430 2431 2432 2433
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2434

2435
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2436
{
2437
	/* remove the soft-disconnect and let's go */
2438
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2439 2440
}

2441
/**
2442
 * dwc2_hsotg_irq - handle device interrupt
2443 2444 2445
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2446
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2447
{
2448
	struct dwc2_hsotg *hsotg = pw;
2449 2450 2451 2452
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2453
	spin_lock(&hsotg->lock);
2454
irq_retry:
2455 2456
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2457 2458 2459 2460 2461 2462

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2493
	if (gintsts & GINTSTS_ENUMDONE) {
2494
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2495

2496
		dwc2_hsotg_irq_enumdone(hsotg);
2497 2498
	}

2499
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2500 2501
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2502
		u32 daint_out, daint_in;
2503 2504
		int ep;

2505
		daint &= daintmsk;
2506 2507
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2508

2509 2510
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2511 2512
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2513
			if (daint_out & 1)
2514
				dwc2_hsotg_epint(hsotg, ep, 0);
2515 2516
		}

2517 2518
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2519
			if (daint_in & 1)
2520
				dwc2_hsotg_epint(hsotg, ep, 1);
2521 2522 2523 2524 2525
		}
	}

	/* check both FIFOs */

2526
	if (gintsts & GINTSTS_NPTXFEMP) {
2527 2528
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2529 2530
		/*
		 * Disable the interrupt to stop it happening again
2531
		 * unless one of these endpoint routines decides that
2532 2533
		 * it needs re-enabling
		 */
2534

2535 2536
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2537 2538
	}

2539
	if (gintsts & GINTSTS_PTXFEMP) {
2540 2541
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2542
		/* See note in GINTSTS_NPTxFEmp */
2543

2544 2545
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2546 2547
	}

2548
	if (gintsts & GINTSTS_RXFLVL) {
2549 2550
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2551
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2552 2553
		 * set.
		 */
2554

2555
		dwc2_hsotg_handle_rx(hsotg);
2556 2557
	}

2558
	if (gintsts & GINTSTS_ERLYSUSP) {
2559
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2560
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2561 2562
	}

2563 2564
	/*
	 * these next two seem to crop-up occasionally causing the core
2565
	 * to shutdown the USB transfer, so try clearing them and logging
2566 2567
	 * the occurrence.
	 */
2568

2569
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2570 2571
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2572
		dwc2_writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2573

2574
		dwc2_hsotg_dump(hsotg);
2575 2576
	}

2577
	if (gintsts & GINTSTS_GINNAKEFF) {
2578 2579
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2580
		dwc2_writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2581

2582
		dwc2_hsotg_dump(hsotg);
2583 2584
	}

2585 2586 2587 2588
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2589 2590 2591 2592

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2593 2594
	spin_unlock(&hsotg->lock);

2595 2596 2597 2598
	return IRQ_HANDLED;
}

/**
2599
 * dwc2_hsotg_ep_enable - enable the given endpoint
2600 2601 2602 2603
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2604
 */
2605
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2606 2607
			       const struct usb_endpoint_descriptor *desc)
{
2608
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2609
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2610
	unsigned long flags;
2611
	unsigned int index = hs_ep->index;
2612 2613 2614
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2615 2616
	unsigned int dir_in;
	unsigned int i, val, size;
2617
	int ret = 0;
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2633
	mps = usb_endpoint_maxp(desc);
2634

2635
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2636

2637
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2638
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2639 2640 2641 2642

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2643
	spin_lock_irqsave(&hsotg->lock, flags);
2644

2645 2646
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2647

2648 2649 2650 2651
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2652
	epctrl |= DXEPCTL_USBACTEP;
2653

2654 2655
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2656 2657 2658 2659 2660
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2661
	epctrl |= DXEPCTL_SNAK;
2662 2663

	/* update the endpoint state */
2664
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2665 2666

	/* default, set to non-periodic */
2667
	hs_ep->isochronous = 0;
2668
	hs_ep->periodic = 0;
2669
	hs_ep->halted = 0;
2670
	hs_ep->interval = desc->bInterval;
2671

2672 2673 2674
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2675 2676
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2677 2678
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2679 2680 2681 2682
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2683 2684

	case USB_ENDPOINT_XFER_BULK:
2685
		epctrl |= DXEPCTL_EPTYPE_BULK;
2686 2687 2688
		break;

	case USB_ENDPOINT_XFER_INT:
2689
		if (dir_in)
2690 2691
			hs_ep->periodic = 1;

2692
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2693 2694 2695
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2696
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2697 2698 2699
		break;
	}

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2711 2712
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2713 2714
	 * a unique tx-fifo even if it is non-periodic.
	 */
2715
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2716 2717
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2718
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2719
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2720 2721
			if (hsotg->fifo_map & (1<<i))
				continue;
2722
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2723 2724 2725
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2726 2727 2728 2729 2730
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2731
		}
2732
		if (!fifo_index) {
2733 2734
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2735 2736 2737
			ret = -ENOMEM;
			goto error;
		}
2738 2739 2740 2741
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2742
	}
2743

2744 2745
	/* for non control endpoints, set PID to D0 */
	if (index)
2746
		epctrl |= DXEPCTL_SETD0PID;
2747 2748 2749 2750

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

2751
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2752
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2753
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2754 2755

	/* enable the endpoint interrupt */
2756
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2757

2758
error:
2759
	spin_unlock_irqrestore(&hsotg->lock, flags);
2760
	return ret;
2761 2762
}

2763
/**
2764
 * dwc2_hsotg_ep_disable - disable given endpoint
2765 2766
 * @ep: The endpoint to disable.
 */
2767
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2768
{
2769
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2770
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2771 2772 2773 2774 2775 2776
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2777
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2778

2779
	if (ep == &hsotg->eps_out[0]->ep) {
2780 2781 2782 2783
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2784
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2785

2786
	spin_lock_irqsave(&hsotg->lock, flags);
2787

2788 2789 2790
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2791

2792
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2793 2794 2795
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2796 2797

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2798
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2799 2800

	/* disable endpoint interrupts */
2801
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2802

2803 2804 2805
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2806
	spin_unlock_irqrestore(&hsotg->lock, flags);
2807 2808 2809 2810 2811 2812 2813
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2814
 */
2815
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2816
{
2817
	struct dwc2_hsotg_req *req, *treq;
2818 2819 2820 2821 2822 2823 2824 2825 2826

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
		/* Clear any pending nak effect interrupt */
		dwc2_writel(GINTSTS_GINNAKEFF, hsotg->regs + GINTSTS);

		__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						GINTSTS_GINNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout GINTSTS.GINNAKEFF\n", __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
		__bic32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
	}
}

2900
/**
2901
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2902 2903 2904
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2905
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2906
{
2907 2908
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2909
	struct dwc2_hsotg *hs = hs_ep->parent;
2910 2911
	unsigned long flags;

2912
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2913

2914
	spin_lock_irqsave(&hs->lock, flags);
2915 2916

	if (!on_list(hs_ep, hs_req)) {
2917
		spin_unlock_irqrestore(&hs->lock, flags);
2918 2919 2920
		return -EINVAL;
	}

2921 2922 2923 2924
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

2925
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2926
	spin_unlock_irqrestore(&hs->lock, flags);
2927 2928 2929 2930

	return 0;
}

2931
/**
2932
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2933 2934 2935
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2936
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2937
{
2938
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2939
	struct dwc2_hsotg *hs = hs_ep->parent;
2940 2941 2942
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2943
	u32 xfertype;
2944 2945 2946

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2947 2948
	if (index == 0) {
		if (value)
2949
			dwc2_hsotg_stall_ep0(hs);
2950 2951 2952 2953 2954 2955
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2956 2957
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
2958
		epctl = dwc2_readl(hs->regs + epreg);
2959 2960

		if (value) {
2961
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2962 2963 2964 2965 2966 2967 2968 2969 2970
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
2971
		dwc2_writel(epctl, hs->regs + epreg);
2972
	} else {
2973

2974
		epreg = DOEPCTL(index);
2975
		epctl = dwc2_readl(hs->regs + epreg);
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
2986
		dwc2_writel(epctl, hs->regs + epreg);
2987
	}
2988

2989 2990
	hs_ep->halted = value;

2991 2992 2993
	return 0;
}

2994
/**
2995
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2996 2997 2998
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2999
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3000
{
3001
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3002
	struct dwc2_hsotg *hs = hs_ep->parent;
3003 3004 3005 3006
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3007
	ret = dwc2_hsotg_ep_sethalt(ep, value);
3008 3009 3010 3011 3012
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3013 3014 3015 3016 3017 3018 3019 3020
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3021
	/* note, don't believe we have any call for the fifo routines */
3022 3023
};

3024
/**
3025
 * dwc2_hsotg_phy_enable - enable platform phy dev
3026
 * @hsotg: The driver state
3027 3028 3029 3030
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
3031
static void dwc2_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
3032 3033 3034 3035
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
3036

3037
	if (hsotg->uphy)
3038
		usb_phy_init(hsotg->uphy);
3039
	else if (hsotg->plat && hsotg->plat->phy_init)
3040
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
3041 3042 3043 3044
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
3045 3046 3047
}

/**
3048
 * dwc2_hsotg_phy_disable - disable platform phy dev
3049
 * @hsotg: The driver state
3050 3051 3052 3053
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
3054
static void dwc2_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
3055 3056 3057
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

3058
	if (hsotg->uphy)
3059
		usb_phy_shutdown(hsotg->uphy);
3060
	else if (hsotg->plat && hsotg->plat->phy_exit)
3061
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
3062 3063 3064 3065
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
3066 3067
}

3068
/**
3069
 * dwc2_hsotg_init - initalize the usb core
3070 3071
 * @hsotg: The driver state
 */
3072
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3073
{
3074
	u32 trdtim;
3075 3076
	/* unmask subset of endpoint interrupts */

3077 3078 3079
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3080

3081 3082 3083
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3084

3085
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3086 3087

	/* Be in disconnected state until gadget is registered */
3088
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3089 3090 3091 3092

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3093 3094
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3095

3096
	dwc2_hsotg_init_fifo(hsotg);
3097 3098

	/* set the PLL on, remove the HNP/SRP and set the PHY */
3099
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3100
	dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3101
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3102
		hsotg->regs + GUSBCFG);
3103

3104 3105
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3106 3107
}

3108
/**
3109
 * dwc2_hsotg_udc_start - prepare the udc for work
3110 3111 3112 3113 3114 3115
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3116
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3117
			   struct usb_gadget_driver *driver)
3118
{
3119
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3120
	unsigned long flags;
3121 3122 3123
	int ret;

	if (!hsotg) {
3124
		pr_err("%s: called with no device\n", __func__);
3125 3126 3127 3128 3129 3130 3131 3132
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3133
	if (driver->max_speed < USB_SPEED_FULL)
3134 3135
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3136
	if (!driver->setup) {
3137 3138 3139 3140
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

3141
	mutex_lock(&hsotg->init_mutex);
3142 3143 3144 3145
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3146
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3147 3148
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3149 3150
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
3151
	if (ret) {
3152
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3153 3154 3155
		goto err;
	}

3156
	dwc2_hsotg_phy_enable(hsotg);
3157 3158
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3159

3160
	spin_lock_irqsave(&hsotg->lock, flags);
3161 3162
	dwc2_hsotg_init(hsotg);
	dwc2_hsotg_core_init_disconnected(hsotg, false);
3163
	hsotg->enabled = 0;
3164 3165
	spin_unlock_irqrestore(&hsotg->lock, flags);

3166
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3167

3168 3169
	mutex_unlock(&hsotg->init_mutex);

3170 3171 3172
	return 0;

err:
3173
	mutex_unlock(&hsotg->init_mutex);
3174 3175 3176 3177
	hsotg->driver = NULL;
	return ret;
}

3178
/**
3179
 * dwc2_hsotg_udc_stop - stop the udc
3180 3181 3182 3183 3184
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3185
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3186
{
3187
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3188
	unsigned long flags = 0;
3189 3190 3191 3192 3193
	int ep;

	if (!hsotg)
		return -ENODEV;

3194 3195
	mutex_lock(&hsotg->init_mutex);

3196
	/* all endpoints should be shutdown */
3197 3198
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3199
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3200
		if (hsotg->eps_out[ep])
3201
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3202
	}
3203

3204 3205
	spin_lock_irqsave(&hsotg->lock, flags);

3206
	hsotg->driver = NULL;
3207
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3208
	hsotg->enabled = 0;
3209

3210 3211
	spin_unlock_irqrestore(&hsotg->lock, flags);

3212 3213
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3214
	dwc2_hsotg_phy_disable(hsotg);
3215

3216
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3217

3218 3219
	mutex_unlock(&hsotg->init_mutex);

3220 3221 3222
	return 0;
}

3223
/**
3224
 * dwc2_hsotg_gadget_getframe - read the frame number
3225 3226 3227 3228
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3229
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3230
{
3231
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3232 3233
}

3234
/**
3235
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3236 3237 3238 3239 3240
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3241
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3242
{
3243
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3244 3245
	unsigned long flags = 0;

3246 3247 3248 3249 3250 3251 3252 3253
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3254

3255
	mutex_lock(&hsotg->init_mutex);
3256 3257
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3258
		hsotg->enabled = 1;
3259 3260
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3261
	} else {
3262 3263
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3264
		hsotg->enabled = 0;
3265 3266 3267 3268
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3269
	mutex_unlock(&hsotg->init_mutex);
3270 3271 3272 3273

	return 0;
}

3274
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3275 3276 3277 3278 3279 3280 3281
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3282 3283 3284 3285 3286 3287 3288
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3289
	if (is_active) {
3290
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3291

3292
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3293
		if (hsotg->enabled)
3294
			dwc2_hsotg_core_connect(hsotg);
3295
	} else {
3296 3297
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3298 3299 3300 3301 3302 3303
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3304
/**
3305
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3306 3307 3308 3309 3310
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3311
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3312 3313 3314 3315 3316 3317 3318 3319
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3320 3321 3322 3323 3324 3325 3326
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3327 3328 3329
};

/**
3330
 * dwc2_hsotg_initep - initialise a single endpoint
3331 3332 3333 3334 3335 3336 3337 3338
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3339 3340
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3341 3342
				       int epnum,
				       bool dir_in)
3343 3344 3345 3346 3347
{
	char *dir;

	if (epnum == 0)
		dir = "";
3348
	else if (dir_in)
3349
		dir = "in";
3350 3351
	else
		dir = "out";
3352

3353
	hs_ep->dir_in = dir_in;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3367
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3368
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3369

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3383 3384
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3385 3386 3387 3388
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3389
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3390
		if (dir_in)
3391
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3392
		else
3393
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3394 3395 3396
	}
}

3397
/**
3398
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3399 3400 3401 3402
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3403
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3404
{
3405 3406 3407 3408
	u32 cfg;
	u32 ep_type;
	u32 i;

3409
	/* check hardware configuration */
3410

3411
	cfg = dwc2_readl(hsotg->regs + GHWCFG2);
3412
	hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3413 3414
	/* Add ep0 */
	hsotg->num_of_eps++;
3415

3416
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3417 3418 3419
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3420
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3421 3422
	hsotg->eps_out[0] = hsotg->eps_in[0];

3423
	cfg = dwc2_readl(hsotg->regs + GHWCFG1);
3424
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3425 3426 3427 3428
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3429
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3430 3431 3432 3433 3434 3435
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3436
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3437 3438 3439 3440 3441
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3442
	cfg = dwc2_readl(hsotg->regs + GHWCFG3);
3443
	hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3444

3445
	cfg = dwc2_readl(hsotg->regs + GHWCFG4);
3446
	hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3447

3448 3449 3450 3451
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3452
	return 0;
3453 3454
}

3455
/**
3456
 * dwc2_hsotg_dump - dump state of the udc
3457 3458
 * @param: The device state
 */
3459
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3460
{
M
Mark Brown 已提交
3461
#ifdef DEBUG
3462 3463 3464 3465 3466 3467
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3468 3469
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3470

3471
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3472
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3473 3474

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3475
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3476 3477 3478

	/* show periodic fifo settings */

3479
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3480
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3481
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3482 3483
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3484 3485
	}

3486
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3487 3488
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3489 3490 3491
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3492

3493
		val = dwc2_readl(regs + DOEPCTL(idx));
3494 3495
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3496 3497 3498
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3499 3500 3501 3502

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3503
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3504
#endif
3505 3506
}

3507
#ifdef CONFIG_OF
3508
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3509 3510
{
	struct device_node *np = hsotg->dev->of_node;
3511 3512
	u32 len = 0;
	u32 i = 0;
3513 3514 3515

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3547 3548
}
#else
3549
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3550 3551
#endif

3552
/**
3553 3554 3555
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3556
 */
3557
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3558
{
3559
	struct device *dev = hsotg->dev;
3560
	struct dwc2_hsotg_plat *plat = dev->platform_data;
3561 3562
	int epnum;
	int ret;
3563
	int i;
3564
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3565

3566 3567 3568
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3569 3570 3571 3572 3573
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
3574
	dwc2_hsotg_of_probe(hsotg);
3575 3576 3577 3578 3579 3580 3581
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3582
	/*
3583 3584
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3585
	 */
3586 3587 3588 3589 3590 3591 3592 3593 3594
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3595 3596 3597 3598
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3599
		if (phy_get_bus_width(hsotg->phy) == 8)
3600 3601
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3602

3603
	hsotg->clk = devm_clk_get(dev, "otg");
3604
	if (IS_ERR(hsotg->clk)) {
3605
		hsotg->clk = NULL;
3606
		dev_dbg(dev, "cannot get otg clock\n");
3607 3608
	}

3609
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3610
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3611
	hsotg->gadget.name = dev_name(dev);
3612 3613
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3614 3615
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3616 3617 3618

	/* reset the system */

3619 3620 3621 3622 3623 3624
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3625

3626 3627 3628
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3629
		hsotg->supplies[i].supply = dwc2_hsotg_supply_names[i];
3630

3631
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3632 3633 3634
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3635
		goto err_clk;
3636 3637 3638 3639 3640 3641
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3642
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3643
		goto err_clk;
3644 3645
	}

3646
	/* usb phy enable */
3647
	dwc2_hsotg_phy_enable(hsotg);
3648

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3662 3663
	dwc2_hsotg_corereset(hsotg);
	ret = dwc2_hsotg_hw_cfg(hsotg);
3664 3665 3666 3667 3668
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3669
	dwc2_hsotg_init(hsotg);
3670

3671 3672 3673
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3690
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3691
				dev_name(hsotg->dev), hsotg);
3692
	if (ret < 0) {
3693
		dwc2_hsotg_phy_disable(hsotg);
3694 3695 3696
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3697
		dev_err(dev, "cannot claim IRQ for gadget\n");
3698
		goto err_supplies;
3699 3700
	}

3701 3702 3703 3704
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3705
		ret = -EINVAL;
3706 3707 3708 3709 3710 3711
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3712
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3713 3714 3715

	/* allocate EP0 request */

3716
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3717 3718 3719
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3720
		ret = -ENOMEM;
3721
		goto err_supplies;
3722
	}
3723 3724

	/* initialise the endpoints now the core has been initialised */
3725 3726
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3727
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3728 3729
								epnum, 1);
		if (hsotg->eps_out[epnum])
3730
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3731 3732
								epnum, 0);
	}
3733

3734
	/* disable power and clock */
3735
	dwc2_hsotg_phy_disable(hsotg);
3736 3737 3738 3739

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3740
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3741
		goto err_supplies;
3742 3743
	}

3744
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3745
	if (ret)
3746
		goto err_supplies;
3747

3748
	dwc2_hsotg_dump(hsotg);
3749 3750 3751

	return 0;

3752
err_supplies:
3753
	dwc2_hsotg_phy_disable(hsotg);
3754
err_clk:
3755
	clk_disable_unprepare(hsotg->clk);
3756

3757 3758 3759
	return ret;
}

3760
/**
3761
 * dwc2_hsotg_remove - remove function for hsotg driver
3762 3763
 * @pdev: The platform information for the driver
 */
3764
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3765
{
3766
	usb_del_gadget_udc(&hsotg->gadget);
3767
	clk_disable_unprepare(hsotg->clk);
3768

3769 3770 3771
	return 0;
}

3772
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3773 3774 3775 3776
{
	unsigned long flags;
	int ret = 0;

3777 3778 3779
	if (hsotg->lx_state != DWC2_L0)
		return ret;

3780 3781
	mutex_lock(&hsotg->init_mutex);

3782 3783 3784
	if (hsotg->driver) {
		int ep;

3785 3786 3787
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3788 3789
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3790 3791
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3792 3793
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3794

3795
		dwc2_hsotg_phy_disable(hsotg);
3796

3797 3798
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3799
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3800
			if (hsotg->eps_out[ep])
3801
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3802
		}
3803 3804 3805

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3806
		clk_disable(hsotg->clk);
3807 3808
	}

3809 3810
	mutex_unlock(&hsotg->init_mutex);

3811 3812 3813
	return ret;
}

3814
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3815 3816 3817 3818
{
	unsigned long flags;
	int ret = 0;

3819 3820 3821
	if (hsotg->lx_state == DWC2_L2)
		return ret;

3822 3823
	mutex_lock(&hsotg->init_mutex);

3824 3825 3826
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3827 3828

		clk_enable(hsotg->clk);
3829
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3830
					    hsotg->supplies);
3831

3832
		dwc2_hsotg_phy_enable(hsotg);
3833

3834
		spin_lock_irqsave(&hsotg->lock, flags);
3835
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3836
		if (hsotg->enabled)
3837
			dwc2_hsotg_core_connect(hsotg);
3838 3839
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3840
	mutex_unlock(&hsotg->init_mutex);
3841 3842 3843

	return ret;
}