/* * intel_pstate.c: Native P state management for Intel processors * * (C) Copyright 2012 Intel Corporation * Author: Dirk Brandewie * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ATOM_RATIOS 0x66a #define ATOM_VIDS 0x66b #define ATOM_TURBO_RATIOS 0x66c #define ATOM_TURBO_VIDS 0x66d #ifdef CONFIG_ACPI #include #endif #define FRAC_BITS 8 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) #define fp_toint(X) ((X) >> FRAC_BITS) #define EXT_BITS 6 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) static inline int32_t mul_fp(int32_t x, int32_t y) { return ((int64_t)x * (int64_t)y) >> FRAC_BITS; } static inline int32_t div_fp(s64 x, s64 y) { return div64_s64((int64_t)x << FRAC_BITS, y); } static inline int ceiling_fp(int32_t x) { int mask, ret; ret = fp_toint(x); mask = (1 << FRAC_BITS) - 1; if (x & mask) ret += 1; return ret; } static inline u64 mul_ext_fp(u64 x, u64 y) { return (x * y) >> EXT_FRAC_BITS; } static inline u64 div_ext_fp(u64 x, u64 y) { return div64_u64(x << EXT_FRAC_BITS, y); } /** * struct sample - Store performance sample * @core_avg_perf: Ratio of APERF/MPERF which is the actual average * performance during last sample period * @busy_scaled: Scaled busy value which is used to calculate next * P state. This can be different than core_avg_perf * to account for cpu idle period * @aperf: Difference of actual performance frequency clock count * read from APERF MSR between last and current sample * @mperf: Difference of maximum performance frequency clock count * read from MPERF MSR between last and current sample * @tsc: Difference of time stamp counter between last and * current sample * @time: Current time from scheduler * * This structure is used in the cpudata structure to store performance sample * data for choosing next P State. */ struct sample { int32_t core_avg_perf; int32_t busy_scaled; u64 aperf; u64 mperf; u64 tsc; u64 time; }; /** * struct pstate_data - Store P state data * @current_pstate: Current requested P state * @min_pstate: Min P state possible for this platform * @max_pstate: Max P state possible for this platform * @max_pstate_physical:This is physical Max P state for a processor * This can be higher than the max_pstate which can * be limited by platform thermal design power limits * @scaling: Scaling factor to convert frequency to cpufreq * frequency units * @turbo_pstate: Max Turbo P state possible for this platform * * Stores the per cpu model P state limits and current P state. */ struct pstate_data { int current_pstate; int min_pstate; int max_pstate; int max_pstate_physical; int scaling; int turbo_pstate; }; /** * struct vid_data - Stores voltage information data * @min: VID data for this platform corresponding to * the lowest P state * @max: VID data corresponding to the highest P State. * @turbo: VID data for turbo P state * @ratio: Ratio of (vid max - vid min) / * (max P state - Min P State) * * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) * This data is used in Atom platforms, where in addition to target P state, * the voltage data needs to be specified to select next P State. */ struct vid_data { int min; int max; int turbo; int32_t ratio; }; /** * struct _pid - Stores PID data * @setpoint: Target set point for busyness or performance * @integral: Storage for accumulated error values * @p_gain: PID proportional gain * @i_gain: PID integral gain * @d_gain: PID derivative gain * @deadband: PID deadband * @last_err: Last error storage for integral part of PID calculation * * Stores PID coefficients and last error for PID controller. */ struct _pid { int setpoint; int32_t integral; int32_t p_gain; int32_t i_gain; int32_t d_gain; int deadband; int32_t last_err; }; /** * struct cpudata - Per CPU instance data storage * @cpu: CPU number for this instance data * @update_util: CPUFreq utility callback information * @update_util_set: CPUFreq utility callback is set * @iowait_boost: iowait-related boost fraction * @last_update: Time of the last update. * @pstate: Stores P state limits for this CPU * @vid: Stores VID limits for this CPU * @pid: Stores PID parameters for this CPU * @last_sample_time: Last Sample time * @prev_aperf: Last APERF value read from APERF MSR * @prev_mperf: Last MPERF value read from MPERF MSR * @prev_tsc: Last timestamp counter (TSC) value * @prev_cummulative_iowait: IO Wait time difference from last and * current sample * @sample: Storage for storing last Sample data * @acpi_perf_data: Stores ACPI perf information read from _PSS * @valid_pss_table: Set to true for valid ACPI _PSS entries found * * This structure stores per CPU instance data for all CPUs. */ struct cpudata { int cpu; struct update_util_data update_util; bool update_util_set; struct pstate_data pstate; struct vid_data vid; struct _pid pid; u64 last_update; u64 last_sample_time; u64 prev_aperf; u64 prev_mperf; u64 prev_tsc; u64 prev_cummulative_iowait; struct sample sample; #ifdef CONFIG_ACPI struct acpi_processor_performance acpi_perf_data; bool valid_pss_table; #endif unsigned int iowait_boost; }; static struct cpudata **all_cpu_data; /** * struct pstate_adjust_policy - Stores static PID configuration data * @sample_rate_ms: PID calculation sample rate in ms * @sample_rate_ns: Sample rate calculation in ns * @deadband: PID deadband * @setpoint: PID Setpoint * @p_gain_pct: PID proportional gain * @i_gain_pct: PID integral gain * @d_gain_pct: PID derivative gain * * Stores per CPU model static PID configuration data. */ struct pstate_adjust_policy { int sample_rate_ms; s64 sample_rate_ns; int deadband; int setpoint; int p_gain_pct; int d_gain_pct; int i_gain_pct; }; /** * struct pstate_funcs - Per CPU model specific callbacks * @get_max: Callback to get maximum non turbo effective P state * @get_max_physical: Callback to get maximum non turbo physical P state * @get_min: Callback to get minimum P state * @get_turbo: Callback to get turbo P state * @get_scaling: Callback to get frequency scaling factor * @get_val: Callback to convert P state to actual MSR write value * @get_vid: Callback to get VID data for Atom platforms * @get_target_pstate: Callback to a function to calculate next P state to use * * Core and Atom CPU models have different way to get P State limits. This * structure is used to store those callbacks. */ struct pstate_funcs { int (*get_max)(void); int (*get_max_physical)(void); int (*get_min)(void); int (*get_turbo)(void); int (*get_scaling)(void); u64 (*get_val)(struct cpudata*, int pstate); void (*get_vid)(struct cpudata *); int32_t (*get_target_pstate)(struct cpudata *); }; /** * struct cpu_defaults- Per CPU model default config data * @pid_policy: PID config data * @funcs: Callback function data */ struct cpu_defaults { struct pstate_adjust_policy pid_policy; struct pstate_funcs funcs; }; static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu); static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu); static struct pstate_adjust_policy pid_params __read_mostly; static struct pstate_funcs pstate_funcs __read_mostly; static int hwp_active __read_mostly; #ifdef CONFIG_ACPI static bool acpi_ppc; #endif /** * struct perf_limits - Store user and policy limits * @no_turbo: User requested turbo state from intel_pstate sysfs * @turbo_disabled: Platform turbo status either from msr * MSR_IA32_MISC_ENABLE or when maximum available pstate * matches the maximum turbo pstate * @max_perf_pct: Effective maximum performance limit in percentage, this * is minimum of either limits enforced by cpufreq policy * or limits from user set limits via intel_pstate sysfs * @min_perf_pct: Effective minimum performance limit in percentage, this * is maximum of either limits enforced by cpufreq policy * or limits from user set limits via intel_pstate sysfs * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct * This value is used to limit max pstate * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct * This value is used to limit min pstate * @max_policy_pct: The maximum performance in percentage enforced by * cpufreq setpolicy interface * @max_sysfs_pct: The maximum performance in percentage enforced by * intel pstate sysfs interface * @min_policy_pct: The minimum performance in percentage enforced by * cpufreq setpolicy interface * @min_sysfs_pct: The minimum performance in percentage enforced by * intel pstate sysfs interface * * Storage for user and policy defined limits. */ struct perf_limits { int no_turbo; int turbo_disabled; int max_perf_pct; int min_perf_pct; int32_t max_perf; int32_t min_perf; int max_policy_pct; int max_sysfs_pct; int min_policy_pct; int min_sysfs_pct; }; static struct perf_limits performance_limits = { .no_turbo = 0, .turbo_disabled = 0, .max_perf_pct = 100, .max_perf = int_tofp(1), .min_perf_pct = 100, .min_perf = int_tofp(1), .max_policy_pct = 100, .max_sysfs_pct = 100, .min_policy_pct = 0, .min_sysfs_pct = 0, }; static struct perf_limits powersave_limits = { .no_turbo = 0, .turbo_disabled = 0, .max_perf_pct = 100, .max_perf = int_tofp(1), .min_perf_pct = 0, .min_perf = 0, .max_policy_pct = 100, .max_sysfs_pct = 100, .min_policy_pct = 0, .min_sysfs_pct = 0, }; #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE static struct perf_limits *limits = &performance_limits; #else static struct perf_limits *limits = &powersave_limits; #endif #ifdef CONFIG_ACPI static bool intel_pstate_get_ppc_enable_status(void) { if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) return true; return acpi_ppc; } static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) { struct cpudata *cpu; int ret; int i; if (hwp_active) return; if (!intel_pstate_get_ppc_enable_status()) return; cpu = all_cpu_data[policy->cpu]; ret = acpi_processor_register_performance(&cpu->acpi_perf_data, policy->cpu); if (ret) return; /* * Check if the control value in _PSS is for PERF_CTL MSR, which should * guarantee that the states returned by it map to the states in our * list directly. */ if (cpu->acpi_perf_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) goto err; /* * If there is only one entry _PSS, simply ignore _PSS and continue as * usual without taking _PSS into account */ if (cpu->acpi_perf_data.state_count < 2) goto err; pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", (i == cpu->acpi_perf_data.state ? '*' : ' '), i, (u32) cpu->acpi_perf_data.states[i].core_frequency, (u32) cpu->acpi_perf_data.states[i].power, (u32) cpu->acpi_perf_data.states[i].control); } /* * The _PSS table doesn't contain whole turbo frequency range. * This just contains +1 MHZ above the max non turbo frequency, * with control value corresponding to max turbo ratio. But * when cpufreq set policy is called, it will call with this * max frequency, which will cause a reduced performance as * this driver uses real max turbo frequency as the max * frequency. So correct this frequency in _PSS table to * correct max turbo frequency based on the turbo state. * Also need to convert to MHz as _PSS freq is in MHz. */ if (!limits->turbo_disabled) cpu->acpi_perf_data.states[0].core_frequency = policy->cpuinfo.max_freq / 1000; cpu->valid_pss_table = true; pr_debug("_PPC limits will be enforced\n"); return; err: cpu->valid_pss_table = false; acpi_processor_unregister_performance(policy->cpu); } static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) { struct cpudata *cpu; cpu = all_cpu_data[policy->cpu]; if (!cpu->valid_pss_table) return; acpi_processor_unregister_performance(policy->cpu); } #else static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) { } static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) { } #endif static inline void pid_reset(struct _pid *pid, int setpoint, int busy, int deadband, int integral) { pid->setpoint = int_tofp(setpoint); pid->deadband = int_tofp(deadband); pid->integral = int_tofp(integral); pid->last_err = int_tofp(setpoint) - int_tofp(busy); } static inline void pid_p_gain_set(struct _pid *pid, int percent) { pid->p_gain = div_fp(percent, 100); } static inline void pid_i_gain_set(struct _pid *pid, int percent) { pid->i_gain = div_fp(percent, 100); } static inline void pid_d_gain_set(struct _pid *pid, int percent) { pid->d_gain = div_fp(percent, 100); } static signed int pid_calc(struct _pid *pid, int32_t busy) { signed int result; int32_t pterm, dterm, fp_error; int32_t integral_limit; fp_error = pid->setpoint - busy; if (abs(fp_error) <= pid->deadband) return 0; pterm = mul_fp(pid->p_gain, fp_error); pid->integral += fp_error; /* * We limit the integral here so that it will never * get higher than 30. This prevents it from becoming * too large an input over long periods of time and allows * it to get factored out sooner. * * The value of 30 was chosen through experimentation. */ integral_limit = int_tofp(30); if (pid->integral > integral_limit) pid->integral = integral_limit; if (pid->integral < -integral_limit) pid->integral = -integral_limit; dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); pid->last_err = fp_error; result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; result = result + (1 << (FRAC_BITS-1)); return (signed int)fp_toint(result); } static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) { pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0); } static inline void intel_pstate_reset_all_pid(void) { unsigned int cpu; for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) intel_pstate_busy_pid_reset(all_cpu_data[cpu]); } } static inline void update_turbo_state(void) { u64 misc_en; struct cpudata *cpu; cpu = all_cpu_data[0]; rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); limits->turbo_disabled = (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); } static void intel_pstate_hwp_set(const struct cpumask *cpumask) { int min, hw_min, max, hw_max, cpu, range, adj_range; u64 value, cap; for_each_cpu(cpu, cpumask) { rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap); hw_min = HWP_LOWEST_PERF(cap); hw_max = HWP_HIGHEST_PERF(cap); range = hw_max - hw_min; rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); adj_range = limits->min_perf_pct * range / 100; min = hw_min + adj_range; value &= ~HWP_MIN_PERF(~0L); value |= HWP_MIN_PERF(min); adj_range = limits->max_perf_pct * range / 100; max = hw_min + adj_range; if (limits->no_turbo) { hw_max = HWP_GUARANTEED_PERF(cap); if (hw_max < max) max = hw_max; } value &= ~HWP_MAX_PERF(~0L); value |= HWP_MAX_PERF(max); wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); } } static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy) { if (hwp_active) intel_pstate_hwp_set(policy->cpus); return 0; } static void intel_pstate_hwp_set_online_cpus(void) { get_online_cpus(); intel_pstate_hwp_set(cpu_online_mask); put_online_cpus(); } /************************** debugfs begin ************************/ static int pid_param_set(void *data, u64 val) { *(u32 *)data = val; intel_pstate_reset_all_pid(); return 0; } static int pid_param_get(void *data, u64 *val) { *val = *(u32 *)data; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); struct pid_param { char *name; void *value; }; static struct pid_param pid_files[] = { {"sample_rate_ms", &pid_params.sample_rate_ms}, {"d_gain_pct", &pid_params.d_gain_pct}, {"i_gain_pct", &pid_params.i_gain_pct}, {"deadband", &pid_params.deadband}, {"setpoint", &pid_params.setpoint}, {"p_gain_pct", &pid_params.p_gain_pct}, {NULL, NULL} }; static void __init intel_pstate_debug_expose_params(void) { struct dentry *debugfs_parent; int i = 0; if (hwp_active) return; debugfs_parent = debugfs_create_dir("pstate_snb", NULL); if (IS_ERR_OR_NULL(debugfs_parent)) return; while (pid_files[i].name) { debugfs_create_file(pid_files[i].name, 0660, debugfs_parent, pid_files[i].value, &fops_pid_param); i++; } } /************************** debugfs end ************************/ /************************** sysfs begin ************************/ #define show_one(file_name, object) \ static ssize_t show_##file_name \ (struct kobject *kobj, struct attribute *attr, char *buf) \ { \ return sprintf(buf, "%u\n", limits->object); \ } static ssize_t show_turbo_pct(struct kobject *kobj, struct attribute *attr, char *buf) { struct cpudata *cpu; int total, no_turbo, turbo_pct; uint32_t turbo_fp; cpu = all_cpu_data[0]; total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; turbo_fp = div_fp(no_turbo, total); turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); return sprintf(buf, "%u\n", turbo_pct); } static ssize_t show_num_pstates(struct kobject *kobj, struct attribute *attr, char *buf) { struct cpudata *cpu; int total; cpu = all_cpu_data[0]; total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; return sprintf(buf, "%u\n", total); } static ssize_t show_no_turbo(struct kobject *kobj, struct attribute *attr, char *buf) { ssize_t ret; update_turbo_state(); if (limits->turbo_disabled) ret = sprintf(buf, "%u\n", limits->turbo_disabled); else ret = sprintf(buf, "%u\n", limits->no_turbo); return ret; } static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; update_turbo_state(); if (limits->turbo_disabled) { pr_warn("Turbo disabled by BIOS or unavailable on processor\n"); return -EPERM; } limits->no_turbo = clamp_t(int, input, 0, 1); if (hwp_active) intel_pstate_hwp_set_online_cpus(); return count; } static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits->max_sysfs_pct = clamp_t(int, input, 0 , 100); limits->max_perf_pct = min(limits->max_policy_pct, limits->max_sysfs_pct); limits->max_perf_pct = max(limits->min_policy_pct, limits->max_perf_pct); limits->max_perf_pct = max(limits->min_perf_pct, limits->max_perf_pct); limits->max_perf = div_fp(limits->max_perf_pct, 100); if (hwp_active) intel_pstate_hwp_set_online_cpus(); return count; } static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits->min_sysfs_pct = clamp_t(int, input, 0 , 100); limits->min_perf_pct = max(limits->min_policy_pct, limits->min_sysfs_pct); limits->min_perf_pct = min(limits->max_policy_pct, limits->min_perf_pct); limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct); limits->min_perf = div_fp(limits->min_perf_pct, 100); if (hwp_active) intel_pstate_hwp_set_online_cpus(); return count; } show_one(max_perf_pct, max_perf_pct); show_one(min_perf_pct, min_perf_pct); define_one_global_rw(no_turbo); define_one_global_rw(max_perf_pct); define_one_global_rw(min_perf_pct); define_one_global_ro(turbo_pct); define_one_global_ro(num_pstates); static struct attribute *intel_pstate_attributes[] = { &no_turbo.attr, &max_perf_pct.attr, &min_perf_pct.attr, &turbo_pct.attr, &num_pstates.attr, NULL }; static struct attribute_group intel_pstate_attr_group = { .attrs = intel_pstate_attributes, }; static void __init intel_pstate_sysfs_expose_params(void) { struct kobject *intel_pstate_kobject; int rc; intel_pstate_kobject = kobject_create_and_add("intel_pstate", &cpu_subsys.dev_root->kobj); BUG_ON(!intel_pstate_kobject); rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); BUG_ON(rc); } /************************** sysfs end ************************/ static void intel_pstate_hwp_enable(struct cpudata *cpudata) { /* First disable HWP notification interrupt as we don't process them */ if (static_cpu_has(X86_FEATURE_HWP_NOTIFY)) wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); } static int atom_get_min_pstate(void) { u64 value; rdmsrl(ATOM_RATIOS, value); return (value >> 8) & 0x7F; } static int atom_get_max_pstate(void) { u64 value; rdmsrl(ATOM_RATIOS, value); return (value >> 16) & 0x7F; } static int atom_get_turbo_pstate(void) { u64 value; rdmsrl(ATOM_TURBO_RATIOS, value); return value & 0x7F; } static u64 atom_get_val(struct cpudata *cpudata, int pstate) { u64 val; int32_t vid_fp; u32 vid; val = (u64)pstate << 8; if (limits->no_turbo && !limits->turbo_disabled) val |= (u64)1 << 32; vid_fp = cpudata->vid.min + mul_fp( int_tofp(pstate - cpudata->pstate.min_pstate), cpudata->vid.ratio); vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); vid = ceiling_fp(vid_fp); if (pstate > cpudata->pstate.max_pstate) vid = cpudata->vid.turbo; return val | vid; } static int silvermont_get_scaling(void) { u64 value; int i; /* Defined in Table 35-6 from SDM (Sept 2015) */ static int silvermont_freq_table[] = { 83300, 100000, 133300, 116700, 80000}; rdmsrl(MSR_FSB_FREQ, value); i = value & 0x7; WARN_ON(i > 4); return silvermont_freq_table[i]; } static int airmont_get_scaling(void) { u64 value; int i; /* Defined in Table 35-10 from SDM (Sept 2015) */ static int airmont_freq_table[] = { 83300, 100000, 133300, 116700, 80000, 93300, 90000, 88900, 87500}; rdmsrl(MSR_FSB_FREQ, value); i = value & 0xF; WARN_ON(i > 8); return airmont_freq_table[i]; } static void atom_get_vid(struct cpudata *cpudata) { u64 value; rdmsrl(ATOM_VIDS, value); cpudata->vid.min = int_tofp((value >> 8) & 0x7f); cpudata->vid.max = int_tofp((value >> 16) & 0x7f); cpudata->vid.ratio = div_fp( cpudata->vid.max - cpudata->vid.min, int_tofp(cpudata->pstate.max_pstate - cpudata->pstate.min_pstate)); rdmsrl(ATOM_TURBO_VIDS, value); cpudata->vid.turbo = value & 0x7f; } static int core_get_min_pstate(void) { u64 value; rdmsrl(MSR_PLATFORM_INFO, value); return (value >> 40) & 0xFF; } static int core_get_max_pstate_physical(void) { u64 value; rdmsrl(MSR_PLATFORM_INFO, value); return (value >> 8) & 0xFF; } static int core_get_max_pstate(void) { u64 tar; u64 plat_info; int max_pstate; int err; rdmsrl(MSR_PLATFORM_INFO, plat_info); max_pstate = (plat_info >> 8) & 0xFF; err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); if (!err) { /* Do some sanity checking for safety */ if (plat_info & 0x600000000) { u64 tdp_ctrl; u64 tdp_ratio; int tdp_msr; err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); if (err) goto skip_tar; tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3); err = rdmsrl_safe(tdp_msr, &tdp_ratio); if (err) goto skip_tar; /* For level 1 and 2, bits[23:16] contain the ratio */ if (tdp_ctrl) tdp_ratio >>= 16; tdp_ratio &= 0xff; /* ratios are only 8 bits long */ if (tdp_ratio - 1 == tar) { max_pstate = tar; pr_debug("max_pstate=TAC %x\n", max_pstate); } else { goto skip_tar; } } } skip_tar: return max_pstate; } static int core_get_turbo_pstate(void) { u64 value; int nont, ret; rdmsrl(MSR_TURBO_RATIO_LIMIT, value); nont = core_get_max_pstate(); ret = (value) & 255; if (ret <= nont) ret = nont; return ret; } static inline int core_get_scaling(void) { return 100000; } static u64 core_get_val(struct cpudata *cpudata, int pstate) { u64 val; val = (u64)pstate << 8; if (limits->no_turbo && !limits->turbo_disabled) val |= (u64)1 << 32; return val; } static int knl_get_turbo_pstate(void) { u64 value; int nont, ret; rdmsrl(MSR_TURBO_RATIO_LIMIT, value); nont = core_get_max_pstate(); ret = (((value) >> 8) & 0xFF); if (ret <= nont) ret = nont; return ret; } static struct cpu_defaults core_params = { .pid_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 97, .p_gain_pct = 20, .d_gain_pct = 0, .i_gain_pct = 0, }, .funcs = { .get_max = core_get_max_pstate, .get_max_physical = core_get_max_pstate_physical, .get_min = core_get_min_pstate, .get_turbo = core_get_turbo_pstate, .get_scaling = core_get_scaling, .get_val = core_get_val, .get_target_pstate = get_target_pstate_use_performance, }, }; static const struct cpu_defaults silvermont_params = { .pid_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 60, .p_gain_pct = 14, .d_gain_pct = 0, .i_gain_pct = 4, }, .funcs = { .get_max = atom_get_max_pstate, .get_max_physical = atom_get_max_pstate, .get_min = atom_get_min_pstate, .get_turbo = atom_get_turbo_pstate, .get_val = atom_get_val, .get_scaling = silvermont_get_scaling, .get_vid = atom_get_vid, .get_target_pstate = get_target_pstate_use_cpu_load, }, }; static const struct cpu_defaults airmont_params = { .pid_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 60, .p_gain_pct = 14, .d_gain_pct = 0, .i_gain_pct = 4, }, .funcs = { .get_max = atom_get_max_pstate, .get_max_physical = atom_get_max_pstate, .get_min = atom_get_min_pstate, .get_turbo = atom_get_turbo_pstate, .get_val = atom_get_val, .get_scaling = airmont_get_scaling, .get_vid = atom_get_vid, .get_target_pstate = get_target_pstate_use_cpu_load, }, }; static const struct cpu_defaults knl_params = { .pid_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 97, .p_gain_pct = 20, .d_gain_pct = 0, .i_gain_pct = 0, }, .funcs = { .get_max = core_get_max_pstate, .get_max_physical = core_get_max_pstate_physical, .get_min = core_get_min_pstate, .get_turbo = knl_get_turbo_pstate, .get_scaling = core_get_scaling, .get_val = core_get_val, .get_target_pstate = get_target_pstate_use_performance, }, }; static const struct cpu_defaults bxt_params = { .pid_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 60, .p_gain_pct = 14, .d_gain_pct = 0, .i_gain_pct = 4, }, .funcs = { .get_max = core_get_max_pstate, .get_max_physical = core_get_max_pstate_physical, .get_min = core_get_min_pstate, .get_turbo = core_get_turbo_pstate, .get_scaling = core_get_scaling, .get_val = core_get_val, .get_target_pstate = get_target_pstate_use_cpu_load, }, }; static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) { int max_perf = cpu->pstate.turbo_pstate; int max_perf_adj; int min_perf; if (limits->no_turbo || limits->turbo_disabled) max_perf = cpu->pstate.max_pstate; /* * performance can be limited by user through sysfs, by cpufreq * policy, or by cpu specific default values determined through * experimentation. */ max_perf_adj = fp_toint(max_perf * limits->max_perf); *max = clamp_t(int, max_perf_adj, cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); min_perf = fp_toint(max_perf * limits->min_perf); *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); } static void intel_pstate_set_min_pstate(struct cpudata *cpu) { int pstate = cpu->pstate.min_pstate; trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); cpu->pstate.current_pstate = pstate; /* * Generally, there is no guarantee that this code will always run on * the CPU being updated, so force the register update to run on the * right CPU. */ wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); } static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) { cpu->pstate.min_pstate = pstate_funcs.get_min(); cpu->pstate.max_pstate = pstate_funcs.get_max(); cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); cpu->pstate.scaling = pstate_funcs.get_scaling(); if (pstate_funcs.get_vid) pstate_funcs.get_vid(cpu); intel_pstate_set_min_pstate(cpu); } static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) { struct sample *sample = &cpu->sample; sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); } static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) { u64 aperf, mperf; unsigned long flags; u64 tsc; local_irq_save(flags); rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); tsc = rdtsc(); if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { local_irq_restore(flags); return false; } local_irq_restore(flags); cpu->last_sample_time = cpu->sample.time; cpu->sample.time = time; cpu->sample.aperf = aperf; cpu->sample.mperf = mperf; cpu->sample.tsc = tsc; cpu->sample.aperf -= cpu->prev_aperf; cpu->sample.mperf -= cpu->prev_mperf; cpu->sample.tsc -= cpu->prev_tsc; cpu->prev_aperf = aperf; cpu->prev_mperf = mperf; cpu->prev_tsc = tsc; /* * First time this function is invoked in a given cycle, all of the * previous sample data fields are equal to zero or stale and they must * be populated with meaningful numbers for things to work, so assume * that sample.time will always be reset before setting the utilization * update hook and make the caller skip the sample then. */ return !!cpu->last_sample_time; } static inline int32_t get_avg_frequency(struct cpudata *cpu) { return mul_ext_fp(cpu->sample.core_avg_perf, cpu->pstate.max_pstate_physical * cpu->pstate.scaling); } static inline int32_t get_avg_pstate(struct cpudata *cpu) { return mul_ext_fp(cpu->pstate.max_pstate_physical, cpu->sample.core_avg_perf); } static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu) { struct sample *sample = &cpu->sample; int32_t busy_frac, boost; int target, avg_pstate; busy_frac = div_fp(sample->mperf, sample->tsc); boost = cpu->iowait_boost; cpu->iowait_boost >>= 1; if (busy_frac < boost) busy_frac = boost; sample->busy_scaled = busy_frac * 100; target = limits->no_turbo || limits->turbo_disabled ? cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; target += target >> 2; target = mul_fp(target, busy_frac); if (target < cpu->pstate.min_pstate) target = cpu->pstate.min_pstate; /* * If the average P-state during the previous cycle was higher than the * current target, add 50% of the difference to the target to reduce * possible performance oscillations and offset possible performance * loss related to moving the workload from one CPU to another within * a package/module. */ avg_pstate = get_avg_pstate(cpu); if (avg_pstate > target) target += (avg_pstate - target) >> 1; return target; } static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu) { int32_t perf_scaled, max_pstate, current_pstate, sample_ratio; u64 duration_ns; /* * perf_scaled is the ratio of the average P-state during the last * sampling period to the P-state requested last time (in percent). * * That measures the system's response to the previous P-state * selection. */ max_pstate = cpu->pstate.max_pstate_physical; current_pstate = cpu->pstate.current_pstate; perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf, div_fp(100 * max_pstate, current_pstate)); /* * Since our utilization update callback will not run unless we are * in C0, check if the actual elapsed time is significantly greater (3x) * than our sample interval. If it is, then we were idle for a long * enough period of time to adjust our performance metric. */ duration_ns = cpu->sample.time - cpu->last_sample_time; if ((s64)duration_ns > pid_params.sample_rate_ns * 3) { sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns); perf_scaled = mul_fp(perf_scaled, sample_ratio); } else { sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc); if (sample_ratio < int_tofp(1)) perf_scaled = 0; } cpu->sample.busy_scaled = perf_scaled; return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled); } static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) { int max_perf, min_perf; update_turbo_state(); intel_pstate_get_min_max(cpu, &min_perf, &max_perf); pstate = clamp_t(int, pstate, min_perf, max_perf); trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); if (pstate == cpu->pstate.current_pstate) return; cpu->pstate.current_pstate = pstate; wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); } static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) { int from, target_pstate; struct sample *sample; from = cpu->pstate.current_pstate; target_pstate = pstate_funcs.get_target_pstate(cpu); intel_pstate_update_pstate(cpu, target_pstate); sample = &cpu->sample; trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), fp_toint(sample->busy_scaled), from, cpu->pstate.current_pstate, sample->mperf, sample->aperf, sample->tsc, get_avg_frequency(cpu), fp_toint(cpu->iowait_boost * 100)); } static void intel_pstate_update_util(struct update_util_data *data, u64 time, unsigned int flags) { struct cpudata *cpu = container_of(data, struct cpudata, update_util); u64 delta_ns; if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) { if (flags & SCHED_CPUFREQ_IOWAIT) { cpu->iowait_boost = int_tofp(1); } else if (cpu->iowait_boost) { /* Clear iowait_boost if the CPU may have been idle. */ delta_ns = time - cpu->last_update; if (delta_ns > TICK_NSEC) cpu->iowait_boost = 0; } cpu->last_update = time; } delta_ns = time - cpu->sample.time; if ((s64)delta_ns >= pid_params.sample_rate_ns) { bool sample_taken = intel_pstate_sample(cpu, time); if (sample_taken) { intel_pstate_calc_avg_perf(cpu); if (!hwp_active) intel_pstate_adjust_busy_pstate(cpu); } } } #define ICPU(model, policy) \ { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ (unsigned long)&policy } static const struct x86_cpu_id intel_pstate_cpu_ids[] = { ICPU(INTEL_FAM6_SANDYBRIDGE, core_params), ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params), ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params), ICPU(INTEL_FAM6_IVYBRIDGE, core_params), ICPU(INTEL_FAM6_HASWELL_CORE, core_params), ICPU(INTEL_FAM6_BROADWELL_CORE, core_params), ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params), ICPU(INTEL_FAM6_HASWELL_X, core_params), ICPU(INTEL_FAM6_HASWELL_ULT, core_params), ICPU(INTEL_FAM6_HASWELL_GT3E, core_params), ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params), ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params), ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params), ICPU(INTEL_FAM6_BROADWELL_X, core_params), ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params), ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params), ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params), ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params), ICPU(INTEL_FAM6_BROADWELL_X, core_params), ICPU(INTEL_FAM6_SKYLAKE_X, core_params), {} }; static int intel_pstate_init_cpu(unsigned int cpunum) { struct cpudata *cpu; if (!all_cpu_data[cpunum]) all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL); if (!all_cpu_data[cpunum]) return -ENOMEM; cpu = all_cpu_data[cpunum]; cpu->cpu = cpunum; if (hwp_active) { intel_pstate_hwp_enable(cpu); pid_params.sample_rate_ms = 50; pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC; } intel_pstate_get_cpu_pstates(cpu); intel_pstate_busy_pid_reset(cpu); pr_debug("controlling: cpu %d\n", cpunum); return 0; } static unsigned int intel_pstate_get(unsigned int cpu_num) { struct cpudata *cpu = all_cpu_data[cpu_num]; return cpu ? get_avg_frequency(cpu) : 0; } static void intel_pstate_set_update_util_hook(unsigned int cpu_num) { struct cpudata *cpu = all_cpu_data[cpu_num]; if (cpu->update_util_set) return; /* Prevent intel_pstate_update_util() from using stale data. */ cpu->sample.time = 0; cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, intel_pstate_update_util); cpu->update_util_set = true; } static void intel_pstate_clear_update_util_hook(unsigned int cpu) { struct cpudata *cpu_data = all_cpu_data[cpu]; if (!cpu_data->update_util_set) return; cpufreq_remove_update_util_hook(cpu); cpu_data->update_util_set = false; synchronize_sched(); } static void intel_pstate_set_performance_limits(struct perf_limits *limits) { limits->no_turbo = 0; limits->turbo_disabled = 0; limits->max_perf_pct = 100; limits->max_perf = int_tofp(1); limits->min_perf_pct = 100; limits->min_perf = int_tofp(1); limits->max_policy_pct = 100; limits->max_sysfs_pct = 100; limits->min_policy_pct = 0; limits->min_sysfs_pct = 0; } static int intel_pstate_set_policy(struct cpufreq_policy *policy) { struct cpudata *cpu; if (!policy->cpuinfo.max_freq) return -ENODEV; pr_debug("set_policy cpuinfo.max %u policy->max %u\n", policy->cpuinfo.max_freq, policy->max); cpu = all_cpu_data[0]; if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && policy->max < policy->cpuinfo.max_freq && policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) { pr_debug("policy->max > max non turbo frequency\n"); policy->max = policy->cpuinfo.max_freq; } if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) { limits = &performance_limits; if (policy->max >= policy->cpuinfo.max_freq) { pr_debug("set performance\n"); intel_pstate_set_performance_limits(limits); goto out; } } else { pr_debug("set powersave\n"); limits = &powersave_limits; } limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq; limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100); limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100, policy->cpuinfo.max_freq); limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100); /* Normalize user input to [min_policy_pct, max_policy_pct] */ limits->min_perf_pct = max(limits->min_policy_pct, limits->min_sysfs_pct); limits->min_perf_pct = min(limits->max_policy_pct, limits->min_perf_pct); limits->max_perf_pct = min(limits->max_policy_pct, limits->max_sysfs_pct); limits->max_perf_pct = max(limits->min_policy_pct, limits->max_perf_pct); /* Make sure min_perf_pct <= max_perf_pct */ limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct); limits->min_perf = div_fp(limits->min_perf_pct, 100); limits->max_perf = div_fp(limits->max_perf_pct, 100); limits->max_perf = round_up(limits->max_perf, FRAC_BITS); out: intel_pstate_set_update_util_hook(policy->cpu); intel_pstate_hwp_set_policy(policy); return 0; } static int intel_pstate_verify_policy(struct cpufreq_policy *policy) { cpufreq_verify_within_cpu_limits(policy); if (policy->policy != CPUFREQ_POLICY_POWERSAVE && policy->policy != CPUFREQ_POLICY_PERFORMANCE) return -EINVAL; return 0; } static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) { int cpu_num = policy->cpu; struct cpudata *cpu = all_cpu_data[cpu_num]; pr_debug("CPU %d exiting\n", cpu_num); intel_pstate_clear_update_util_hook(cpu_num); if (hwp_active) return; intel_pstate_set_min_pstate(cpu); } static int intel_pstate_cpu_init(struct cpufreq_policy *policy) { struct cpudata *cpu; int rc; rc = intel_pstate_init_cpu(policy->cpu); if (rc) return rc; cpu = all_cpu_data[policy->cpu]; if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100) policy->policy = CPUFREQ_POLICY_PERFORMANCE; else policy->policy = CPUFREQ_POLICY_POWERSAVE; policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; /* cpuinfo and default policy values */ policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; update_turbo_state(); policy->cpuinfo.max_freq = limits->turbo_disabled ? cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; policy->cpuinfo.max_freq *= cpu->pstate.scaling; intel_pstate_init_acpi_perf_limits(policy); policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; cpumask_set_cpu(policy->cpu, policy->cpus); return 0; } static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) { intel_pstate_exit_perf_limits(policy); return 0; } static struct cpufreq_driver intel_pstate_driver = { .flags = CPUFREQ_CONST_LOOPS, .verify = intel_pstate_verify_policy, .setpolicy = intel_pstate_set_policy, .resume = intel_pstate_hwp_set_policy, .get = intel_pstate_get, .init = intel_pstate_cpu_init, .exit = intel_pstate_cpu_exit, .stop_cpu = intel_pstate_stop_cpu, .name = "intel_pstate", }; static int no_load __initdata; static int no_hwp __initdata; static int hwp_only __initdata; static unsigned int force_load __initdata; static int __init intel_pstate_msrs_not_valid(void) { if (!pstate_funcs.get_max() || !pstate_funcs.get_min() || !pstate_funcs.get_turbo()) return -ENODEV; return 0; } static void __init copy_pid_params(struct pstate_adjust_policy *policy) { pid_params.sample_rate_ms = policy->sample_rate_ms; pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC; pid_params.p_gain_pct = policy->p_gain_pct; pid_params.i_gain_pct = policy->i_gain_pct; pid_params.d_gain_pct = policy->d_gain_pct; pid_params.deadband = policy->deadband; pid_params.setpoint = policy->setpoint; } static void __init copy_cpu_funcs(struct pstate_funcs *funcs) { pstate_funcs.get_max = funcs->get_max; pstate_funcs.get_max_physical = funcs->get_max_physical; pstate_funcs.get_min = funcs->get_min; pstate_funcs.get_turbo = funcs->get_turbo; pstate_funcs.get_scaling = funcs->get_scaling; pstate_funcs.get_val = funcs->get_val; pstate_funcs.get_vid = funcs->get_vid; pstate_funcs.get_target_pstate = funcs->get_target_pstate; } #ifdef CONFIG_ACPI static bool __init intel_pstate_no_acpi_pss(void) { int i; for_each_possible_cpu(i) { acpi_status status; union acpi_object *pss; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_processor *pr = per_cpu(processors, i); if (!pr) continue; status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); if (ACPI_FAILURE(status)) continue; pss = buffer.pointer; if (pss && pss->type == ACPI_TYPE_PACKAGE) { kfree(pss); return false; } kfree(pss); } return true; } static bool __init intel_pstate_has_acpi_ppc(void) { int i; for_each_possible_cpu(i) { struct acpi_processor *pr = per_cpu(processors, i); if (!pr) continue; if (acpi_has_method(pr->handle, "_PPC")) return true; } return false; } enum { PSS, PPC, }; struct hw_vendor_info { u16 valid; char oem_id[ACPI_OEM_ID_SIZE]; char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; int oem_pwr_table; }; /* Hardware vendor-specific info that has its own power management modes */ static struct hw_vendor_info vendor_info[] __initdata = { {1, "HP ", "ProLiant", PSS}, {1, "ORACLE", "X4-2 ", PPC}, {1, "ORACLE", "X4-2L ", PPC}, {1, "ORACLE", "X4-2B ", PPC}, {1, "ORACLE", "X3-2 ", PPC}, {1, "ORACLE", "X3-2L ", PPC}, {1, "ORACLE", "X3-2B ", PPC}, {1, "ORACLE", "X4470M2 ", PPC}, {1, "ORACLE", "X4270M3 ", PPC}, {1, "ORACLE", "X4270M2 ", PPC}, {1, "ORACLE", "X4170M2 ", PPC}, {1, "ORACLE", "X4170 M3", PPC}, {1, "ORACLE", "X4275 M3", PPC}, {1, "ORACLE", "X6-2 ", PPC}, {1, "ORACLE", "Sudbury ", PPC}, {0, "", ""}, }; static bool __init intel_pstate_platform_pwr_mgmt_exists(void) { struct acpi_table_header hdr; struct hw_vendor_info *v_info; const struct x86_cpu_id *id; u64 misc_pwr; id = x86_match_cpu(intel_pstate_cpu_oob_ids); if (id) { rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); if ( misc_pwr & (1 << 8)) return true; } if (acpi_disabled || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) return false; for (v_info = vendor_info; v_info->valid; v_info++) { if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)) switch (v_info->oem_pwr_table) { case PSS: return intel_pstate_no_acpi_pss(); case PPC: return intel_pstate_has_acpi_ppc() && (!force_load); } } return false; } #else /* CONFIG_ACPI not enabled */ static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } static inline bool intel_pstate_has_acpi_ppc(void) { return false; } #endif /* CONFIG_ACPI */ static const struct x86_cpu_id hwp_support_ids[] __initconst = { { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP }, {} }; static int __init intel_pstate_init(void) { int cpu, rc = 0; const struct x86_cpu_id *id; struct cpu_defaults *cpu_def; if (no_load) return -ENODEV; if (x86_match_cpu(hwp_support_ids) && !no_hwp) { copy_cpu_funcs(&core_params.funcs); hwp_active++; goto hwp_cpu_matched; } id = x86_match_cpu(intel_pstate_cpu_ids); if (!id) return -ENODEV; cpu_def = (struct cpu_defaults *)id->driver_data; copy_pid_params(&cpu_def->pid_policy); copy_cpu_funcs(&cpu_def->funcs); if (intel_pstate_msrs_not_valid()) return -ENODEV; hwp_cpu_matched: /* * The Intel pstate driver will be ignored if the platform * firmware has its own power management modes. */ if (intel_pstate_platform_pwr_mgmt_exists()) return -ENODEV; pr_info("Intel P-state driver initializing\n"); all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); if (!all_cpu_data) return -ENOMEM; if (!hwp_active && hwp_only) goto out; rc = cpufreq_register_driver(&intel_pstate_driver); if (rc) goto out; intel_pstate_debug_expose_params(); intel_pstate_sysfs_expose_params(); if (hwp_active) pr_info("HWP enabled\n"); return rc; out: get_online_cpus(); for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) { intel_pstate_clear_update_util_hook(cpu); kfree(all_cpu_data[cpu]); } } put_online_cpus(); vfree(all_cpu_data); return -ENODEV; } device_initcall(intel_pstate_init); static int __init intel_pstate_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "disable")) no_load = 1; if (!strcmp(str, "no_hwp")) { pr_info("HWP disabled\n"); no_hwp = 1; } if (!strcmp(str, "force")) force_load = 1; if (!strcmp(str, "hwp_only")) hwp_only = 1; #ifdef CONFIG_ACPI if (!strcmp(str, "support_acpi_ppc")) acpi_ppc = true; #endif return 0; } early_param("intel_pstate", intel_pstate_setup); MODULE_AUTHOR("Dirk Brandewie "); MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); MODULE_LICENSE("GPL");