amd_iommu.c 46.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

48 49 50
/*
 * general struct to manage commands send to an IOMMU
 */
51
struct iommu_cmd {
52 53 54
	u32 data[4];
};

55 56
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
57 58
static struct dma_ops_domain *find_protection_domain(u16 devid);

59

60 61 62 63 64 65
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

66
DECLARE_STATS_COUNTER(compl_wait);
67
DECLARE_STATS_COUNTER(cnt_map_single);
68
DECLARE_STATS_COUNTER(cnt_unmap_single);
69
DECLARE_STATS_COUNTER(cnt_map_sg);
70
DECLARE_STATS_COUNTER(cnt_unmap_sg);
71
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
72
DECLARE_STATS_COUNTER(cnt_free_coherent);
73
DECLARE_STATS_COUNTER(cross_page);
74
DECLARE_STATS_COUNTER(domain_flush_single);
75
DECLARE_STATS_COUNTER(domain_flush_all);
76
DECLARE_STATS_COUNTER(alloced_io_mem);
77
DECLARE_STATS_COUNTER(total_map_requests);
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
103 104

	amd_iommu_stats_add(&compl_wait);
105
	amd_iommu_stats_add(&cnt_map_single);
106
	amd_iommu_stats_add(&cnt_unmap_single);
107
	amd_iommu_stats_add(&cnt_map_sg);
108
	amd_iommu_stats_add(&cnt_unmap_sg);
109
	amd_iommu_stats_add(&cnt_alloc_coherent);
110
	amd_iommu_stats_add(&cnt_free_coherent);
111
	amd_iommu_stats_add(&cross_page);
112
	amd_iommu_stats_add(&domain_flush_single);
113
	amd_iommu_stats_add(&domain_flush_all);
114
	amd_iommu_stats_add(&alloced_io_mem);
115
	amd_iommu_stats_add(&total_map_requests);
116 117 118 119
}

#endif

120
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
121 122
static int iommu_has_npcache(struct amd_iommu *iommu)
{
123
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
124 125
}

126 127 128 129 130 131
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

212 213
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
214 215
	struct amd_iommu *iommu;

216
	for_each_iommu(iommu)
217 218 219
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
220 221
}

222 223 224 225 226 227 228 229 230 231
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
232
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
233 234 235 236 237
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
238
	target = iommu->cmd_buf + tail;
239 240 241 242 243 244 245 246 247 248
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

249 250 251 252
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
253
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
254 255 256 257 258 259
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
260
	if (!ret)
261
		iommu->need_sync = true;
262 263 264 265 266
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

267 268 269 270 271 272 273 274 275 276
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

277 278
	INC_STATS_COUNTER(compl_wait);

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

309 310 311 312 313 314 315
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
316 317
static int iommu_completion_wait(struct amd_iommu *iommu)
{
318 319
	int ret = 0;
	unsigned long flags;
320

321 322
	spin_lock_irqsave(&iommu->lock, flags);

323 324 325
	if (!iommu->need_sync)
		goto out;

326
	ret = __iommu_completion_wait(iommu);
327

328
	iommu->need_sync = false;
329 330

	if (ret)
331
		goto out;
332

333
	__iommu_wait_for_completion(iommu);
334

335 336
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
337 338 339 340

	return 0;
}

341 342 343
/*
 * Command send function for invalidating a device table entry
 */
344 345
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
346
	struct iommu_cmd cmd;
347
	int ret;
348 349 350 351 352 353 354

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

355 356 357
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
358 359
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

375 376 377
/*
 * Generic command send function for invalidaing TLB entries
 */
378 379 380
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
381
	struct iommu_cmd cmd;
382
	int ret;
383

384
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
385

386 387 388
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
389 390
}

391 392 393 394 395
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
396 397 398
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
399
	int s = 0;
400
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
401 402 403

	address &= PAGE_MASK;

404 405 406 407 408 409 410
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
411 412
	}

413 414
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

415 416
	return 0;
}
417

418 419 420 421 422
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

423 424
	INC_STATS_COUNTER(domain_flush_single);

425 426 427
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

428 429 430 431 432 433 434 435 436 437
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

438 439
	INC_STATS_COUNTER(domain_flush_all);

440 441 442
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

443
	for_each_iommu(iommu) {
444 445 446 447 448 449 450 451
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}

452 453 454 455 456 457 458 459 460 461 462
void amd_iommu_flush_all_domains(void)
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
		iommu_flush_domain(i);
	}
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
477 478 479 480
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
481 482 483 484
{
	u64 __pte, *pte, *page;

	bus_addr  = PAGE_ALIGN(bus_addr);
485
	phys_addr = PAGE_ALIGN(phys_addr);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}

549 550 551 552
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
553 554 555 556 557 558 559 560 561 562 563 564 565 566
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

567 568 569 570 571 572
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

589 590 591 592
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
593 594 595 596 597 598 599 600
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
601
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
602 603 604 605 606 607 608 609 610 611 612 613 614
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
	}

	return 0;
}

615 616 617
/*
 * Inits the unity mappings required for a specific device
 */
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

635 636 637 638 639 640 641 642 643
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
644

645 646 647 648 649
/*
 * The address allocator core function.
 *
 * called with domain->lock held
 */
650 651
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
652
					     unsigned int pages,
653 654
					     unsigned long align_mask,
					     u64 dma_mask)
655
{
656
	unsigned long limit;
657 658 659 660 661
	unsigned long address;
	unsigned long boundary_size;

	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;
662 663
	limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
				       dma_mask >> PAGE_SHIFT);
664

665
	if (dom->next_bit >= limit) {
666
		dom->next_bit = 0;
667 668
		dom->need_flush = true;
	}
669 670

	address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
671
				   0 , boundary_size, align_mask);
672
	if (address == -1) {
673
		address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
674
				0, boundary_size, align_mask);
675 676
		dom->need_flush = true;
	}
677 678 679 680 681 682 683 684 685 686 687 688

	if (likely(address != -1)) {
		dom->next_bit = address + pages;
		address <<= PAGE_SHIFT;
	} else
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

689 690 691 692 693
/*
 * The address free function.
 *
 * called with domain->lock held
 */
694 695 696 697 698 699
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
	address >>= PAGE_SHIFT;
	iommu_area_free(dom->bitmap, address, pages);
700

701
	if (address >= dom->next_bit)
702
		dom->need_flush = true;
703 704
}

705 706 707 708 709 710 711 712 713 714
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

732 733 734 735 736 737 738 739 740 741
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

742 743 744 745
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
746 747 748 749 750 751 752 753 754
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

755
	iommu_area_reserve(dom->bitmap, start_page, pages);
756 757
}

758
static void free_pagetable(struct protection_domain *domain)
759 760 761 762
{
	int i, j;
	u64 *p1, *p2, *p3;

763
	p1 = domain->pt_root;
764 765 766 767 768 769 770 771 772

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
773
		for (j = 0; j < 512; ++j) {
774 775 776 777 778 779 780 781 782 783
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
784 785

	domain->pt_root = NULL;
786 787
}

788 789 790 791
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
792 793 794 795 796
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

797
	free_pagetable(&dom->domain);
798 799 800 801 802 803 804 805

	kfree(dom->pte_pages);

	kfree(dom->bitmap);

	kfree(dom);
}

806 807 808 809 810
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
						   unsigned order)
{
	struct dma_ops_domain *dma_dom;
	unsigned i, num_pte_pages;
	u64 *l2_pde;
	u64 address;

	/*
	 * Currently the DMA aperture must be between 32 MB and 1GB in size
	 */
	if ((order < 25) || (order > 30))
		return NULL;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
836
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
	dma_dom->aperture_size = (1ULL << order);
	dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
				  GFP_KERNEL);
	if (!dma_dom->bitmap)
		goto free_dma_dom;
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
	dma_dom->bitmap[0] = 1;
	dma_dom->next_bit = 0;

852
	dma_dom->need_flush = false;
853
	dma_dom->target_dev = 0xffff;
854

855
	/* Intialize the exclusion range if necessary */
856 857 858
	if (iommu->exclusion_start &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
859 860 861
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
862 863 864
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

865 866 867 868 869
	/*
	 * At the last step, build the page tables so we don't need to
	 * allocate page table pages in the dma_ops mapping/unmapping
	 * path.
	 */
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
	dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
			GFP_KERNEL);
	if (!dma_dom->pte_pages)
		goto free_dma_dom;

	l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
	if (l2_pde == NULL)
		goto free_dma_dom;

	dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));

	for (i = 0; i < num_pte_pages; ++i) {
		dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!dma_dom->pte_pages[i])
			goto free_dma_dom;
		address = virt_to_phys(dma_dom->pte_pages[i]);
		l2_pde[i] = IOMMU_L1_PDE(address);
	}

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

898 899 900 901 902 903 904 905 906
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

907 908 909 910
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
911 912 913 914 915 916 917 918 919 920 921 922
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

923 924 925 926
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
927 928 929
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
930 931 932 933
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

934 935
	domain->dev_cnt += 1;

936 937 938
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
939 940

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
941 942
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
943 944 945 946 947 948 949 950
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
987 988 989 990 991 992 993 994 995 996

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
997 998
	int order = amd_iommu_aperture_order;
	unsigned long flags;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
	case BUS_NOTIFY_BOUND_DRIVER:
		if (domain)
			goto out;
		dma_domain = find_protection_domain(devid);
		if (!dma_domain)
			dma_domain = iommu->default_dom;
		attach_device(iommu, &dma_domain->domain, devid);
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
		       "device %s\n", dma_domain->domain.id, dev_name(dev));
		break;
	case BUS_NOTIFY_UNBIND_DRIVER:
		if (!domain)
			goto out;
		detach_device(domain, devid);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
		dma_domain = dma_ops_domain_alloc(iommu, order);
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

struct notifier_block device_nb = {
	.notifier_call = device_change_notifier,
};
1060

1061 1062 1063 1064 1065 1066
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1105 1106 1107 1108 1109 1110 1111
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1112 1113 1114 1115 1116 1117 1118 1119 1120
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1121 1122 1123 1124 1125 1126
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1127 1128

	pcidev = to_pci_dev(dev);
1129
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1130

1131
	/* device not translated by any IOMMU in the system? */
1132
	if (_bdf > amd_iommu_last_bdf)
1133 1134 1135 1136 1137 1138 1139 1140 1141
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1142 1143 1144
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1145
		*domain = &dma_dom->domain;
1146
		attach_device(*iommu, *domain, *bdf);
1147
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1148
				"device %s\n", (*domain)->id, dev_name(dev));
1149 1150
	}

1151
	if (domain_for_device(_bdf) == NULL)
1152
		attach_device(*iommu, *domain, _bdf);
1153

1154 1155 1156
	return 1;
}

1157 1158 1159 1160
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1192 1193 1194
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1195 1196 1197 1198 1199 1200 1201 1202 1203
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1204
	WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
1205 1206 1207 1208 1209 1210 1211 1212 1213

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1214 1215
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1216 1217
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1218 1219
 * Must be called with the domain lock held.
 */
1220 1221 1222 1223 1224
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1225
			       int dir,
1226 1227
			       bool align,
			       u64 dma_mask)
1228 1229 1230 1231
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
	dma_addr_t address, start;
	unsigned int pages;
1232
	unsigned long align_mask = 0;
1233 1234
	int i;

1235
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1236 1237
	paddr &= PAGE_MASK;

1238 1239
	INC_STATS_COUNTER(total_map_requests);

1240 1241 1242
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1243 1244 1245
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1246 1247
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	if (unlikely(address == bad_dma_address))
		goto out;

	start = address;
	for (i = 0; i < pages; ++i) {
		dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1259 1260
	ADD_STATS_COUNTER(alloced_io_mem, size);

1261
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1262 1263 1264
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1265 1266
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1267 1268 1269 1270
out:
	return address;
}

1271 1272 1273 1274
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1275 1276 1277 1278 1279 1280 1281 1282 1283
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1284 1285
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1286 1287
		return;

1288
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1289 1290 1291 1292 1293 1294 1295 1296
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1297 1298
	SUB_STATS_COUNTER(alloced_io_mem, size);

1299
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1300

1301
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1302
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1303 1304
		dma_dom->need_flush = false;
	}
1305 1306
}

1307 1308 1309
/*
 * The exported map_single function for dma_ops.
 */
1310 1311 1312 1313
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1314 1315 1316 1317 1318 1319
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1320
	u64 dma_mask;
1321
	phys_addr_t paddr = page_to_phys(page) + offset;
1322

1323 1324
	INC_STATS_COUNTER(cnt_map_single);

1325 1326 1327
	if (!check_device(dev))
		return bad_dma_address;

1328
	dma_mask = *dev->dma_mask;
1329 1330 1331 1332

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1333
		/* device not handled by any AMD IOMMU */
1334 1335
		return (dma_addr_t)paddr;

1336 1337 1338
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1339
	spin_lock_irqsave(&domain->lock, flags);
1340 1341
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1342 1343 1344
	if (addr == bad_dma_address)
		goto out;

1345
	iommu_completion_wait(iommu);
1346 1347 1348 1349 1350 1351 1352

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1353 1354 1355
/*
 * The exported unmap_single function for dma_ops.
 */
1356 1357
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1358 1359 1360 1361 1362 1363
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1364 1365
	INC_STATS_COUNTER(cnt_unmap_single);

1366 1367
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1368
		/* device not handled by any AMD IOMMU */
1369 1370
		return;

1371 1372 1373
	if (!dma_ops_domain(domain))
		return;

1374 1375 1376 1377
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1378
	iommu_completion_wait(iommu);
1379 1380 1381 1382

	spin_unlock_irqrestore(&domain->lock, flags);
}

1383 1384 1385 1386
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1401 1402 1403 1404
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1405
static int map_sg(struct device *dev, struct scatterlist *sglist,
1406 1407
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1408 1409 1410 1411 1412 1413 1414 1415 1416
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1417
	u64 dma_mask;
1418

1419 1420
	INC_STATS_COUNTER(cnt_map_sg);

1421 1422 1423
	if (!check_device(dev))
		return 0;

1424
	dma_mask = *dev->dma_mask;
1425 1426 1427 1428 1429 1430

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1431 1432 1433
	if (!dma_ops_domain(domain))
		return 0;

1434 1435 1436 1437 1438 1439
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1440 1441
					      paddr, s->length, dir, false,
					      dma_mask);
1442 1443 1444 1445 1446 1447 1448 1449

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1450
	iommu_completion_wait(iommu);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1469 1470 1471 1472
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1473
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1474 1475
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1476 1477 1478 1479 1480 1481 1482 1483
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1484 1485
	INC_STATS_COUNTER(cnt_unmap_sg);

1486 1487
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1488 1489
		return;

1490 1491 1492
	if (!dma_ops_domain(domain))
		return;

1493 1494 1495 1496 1497 1498 1499 1500
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1501
	iommu_completion_wait(iommu);
1502 1503 1504 1505

	spin_unlock_irqrestore(&domain->lock, flags);
}

1506 1507 1508
/*
 * The exported alloc_coherent function for dma_ops.
 */
1509 1510 1511 1512 1513 1514 1515 1516 1517
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1518
	u64 dma_mask = dev->coherent_dma_mask;
1519

1520 1521
	INC_STATS_COUNTER(cnt_alloc_coherent);

1522 1523
	if (!check_device(dev))
		return NULL;
1524

1525 1526
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1527

1528
	flag |= __GFP_ZERO;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1540 1541 1542
	if (!dma_ops_domain(domain))
		goto out_free;

1543 1544 1545
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1546 1547 1548
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1549
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1550

1551 1552
	if (*dma_addr == bad_dma_address)
		goto out_free;
1553

1554
	iommu_completion_wait(iommu);
1555 1556 1557 1558

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1559 1560 1561 1562 1563 1564

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1565 1566
}

1567 1568 1569
/*
 * The exported free_coherent function for dma_ops.
 */
1570 1571 1572 1573 1574 1575 1576 1577
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1578 1579
	INC_STATS_COUNTER(cnt_free_coherent);

1580 1581 1582
	if (!check_device(dev))
		return;

1583 1584 1585 1586 1587
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1588 1589 1590
	if (!dma_ops_domain(domain))
		goto free_mem;

1591 1592 1593 1594
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1595
	iommu_completion_wait(iommu);
1596 1597 1598 1599 1600 1601 1602

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1627
/*
1628 1629
 * The function for pre-allocating protection domains.
 *
1630 1631 1632 1633
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1634
static void prealloc_protection_domains(void)
1635 1636 1637 1638 1639 1640 1641 1642
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1643
		devid = calc_devid(dev->bus->number, dev->devfn);
1644
		if (devid > amd_iommu_last_bdf)
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
		dma_dom = dma_ops_domain_alloc(iommu, order);
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1656 1657 1658
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1659 1660 1661
	}
}

1662
static struct dma_map_ops amd_iommu_dma_ops = {
1663 1664
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1665 1666
	.map_page = map_page,
	.unmap_page = unmap_page,
1667 1668
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1669
	.dma_supported = amd_iommu_dma_supported,
1670 1671
};

1672 1673 1674
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1675 1676 1677 1678 1679 1680
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	int ret;

1681 1682 1683 1684 1685
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1686
	for_each_iommu(iommu) {
1687 1688 1689
		iommu->default_dom = dma_ops_domain_alloc(iommu, order);
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1690
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1691 1692 1693 1694 1695
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1696 1697 1698 1699
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1700 1701 1702 1703 1704 1705
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1706
#ifdef CONFIG_GART_IOMMU
1707 1708
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1709
#endif
1710

1711
	/* Make the driver finally visible to the drivers */
1712 1713
	dma_ops = &amd_iommu_dma_ops;

1714 1715
	register_iommu(&amd_iommu_ops);

1716 1717
	bus_register_notifier(&pci_bus_type, &device_nb);

1718 1719
	amd_iommu_stats_init();

1720 1721 1722 1723
	return 0;

free_domains:

1724
	for_each_iommu(iommu) {
1725 1726 1727 1728 1729 1730
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
		return -EBUSY;

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
1942 1943 1944 1945 1946 1947
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

1948 1949 1950 1951 1952 1953 1954 1955
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
1956
	.domain_has_cap = amd_iommu_domain_has_cap,
1957 1958
};