amd_iommu.c 52.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45 46 47
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

48 49 50
/*
 * general struct to manage commands send to an IOMMU
 */
51
struct iommu_cmd {
52 53 54
	u32 data[4];
};

55 56
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
57
static struct dma_ops_domain *find_protection_domain(u16 devid);
58 59 60
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
61 62 63
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
64

65 66 67 68
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
#endif

69 70 71 72 73 74
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

75
DECLARE_STATS_COUNTER(compl_wait);
76
DECLARE_STATS_COUNTER(cnt_map_single);
77
DECLARE_STATS_COUNTER(cnt_unmap_single);
78
DECLARE_STATS_COUNTER(cnt_map_sg);
79
DECLARE_STATS_COUNTER(cnt_unmap_sg);
80
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
81
DECLARE_STATS_COUNTER(cnt_free_coherent);
82
DECLARE_STATS_COUNTER(cross_page);
83
DECLARE_STATS_COUNTER(domain_flush_single);
84
DECLARE_STATS_COUNTER(domain_flush_all);
85
DECLARE_STATS_COUNTER(alloced_io_mem);
86
DECLARE_STATS_COUNTER(total_map_requests);
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
112 113

	amd_iommu_stats_add(&compl_wait);
114
	amd_iommu_stats_add(&cnt_map_single);
115
	amd_iommu_stats_add(&cnt_unmap_single);
116
	amd_iommu_stats_add(&cnt_map_sg);
117
	amd_iommu_stats_add(&cnt_unmap_sg);
118
	amd_iommu_stats_add(&cnt_alloc_coherent);
119
	amd_iommu_stats_add(&cnt_free_coherent);
120
	amd_iommu_stats_add(&cross_page);
121
	amd_iommu_stats_add(&domain_flush_single);
122
	amd_iommu_stats_add(&domain_flush_all);
123
	amd_iommu_stats_add(&alloced_io_mem);
124
	amd_iommu_stats_add(&total_map_requests);
125 126 127 128
}

#endif

129
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
130 131
static int iommu_has_npcache(struct amd_iommu *iommu)
{
132
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
133 134
}

135 136 137 138 139 140
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

141 142 143 144 145 146 147 148 149
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

150 151 152 153 154 155 156 157 158
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
176
		dump_dte_entry(devid);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
198
		dump_command(address);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

241 242
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
243 244
	struct amd_iommu *iommu;

245
	for_each_iommu(iommu)
246 247 248
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
249 250
}

251 252 253 254 255 256 257 258 259 260
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
261
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
262 263 264 265 266
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
267
	target = iommu->cmd_buf + tail;
268 269 270 271 272 273 274 275 276 277
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

278 279 280 281
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
282
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
283 284 285 286 287 288
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
289
	if (!ret)
290
		iommu->need_sync = true;
291 292 293 294 295
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

296 297 298 299 300 301 302 303 304 305
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

306 307
	INC_STATS_COUNTER(compl_wait);

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

338 339 340 341 342 343 344
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
345 346
static int iommu_completion_wait(struct amd_iommu *iommu)
{
347 348
	int ret = 0;
	unsigned long flags;
349

350 351
	spin_lock_irqsave(&iommu->lock, flags);

352 353 354
	if (!iommu->need_sync)
		goto out;

355
	ret = __iommu_completion_wait(iommu);
356

357
	iommu->need_sync = false;
358 359

	if (ret)
360
		goto out;
361

362
	__iommu_wait_for_completion(iommu);
363

364 365
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
366 367 368 369

	return 0;
}

370 371 372
/*
 * Command send function for invalidating a device table entry
 */
373 374
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
375
	struct iommu_cmd cmd;
376
	int ret;
377 378 379 380 381 382 383

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

384 385 386
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
387 388
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

404 405 406
/*
 * Generic command send function for invalidaing TLB entries
 */
407 408 409
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
410
	struct iommu_cmd cmd;
411
	int ret;
412

413
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
414

415 416 417
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
418 419
}

420 421 422 423 424
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
425 426 427
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
428
	int s = 0;
429
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
430 431 432

	address &= PAGE_MASK;

433 434 435 436 437 438 439
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
440 441
	}

442 443
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

444 445
	return 0;
}
446

447 448 449 450 451
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

452 453
	INC_STATS_COUNTER(domain_flush_single);

454 455 456
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

457 458 459 460 461 462 463 464 465 466
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
{
       u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

       INC_STATS_COUNTER(domain_flush_single);

       iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
}

467
/*
468
 * This function flushes one domain on one IOMMU
469
 */
470
static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
471 472
{
	struct iommu_cmd cmd;
473
	unsigned long flags;
474

475 476 477
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

478 479 480 481 482
	spin_lock_irqsave(&iommu->lock, flags);
	__iommu_queue_command(iommu, &cmd);
	__iommu_completion_wait(iommu);
	__iommu_wait_for_completion(iommu);
	spin_unlock_irqrestore(&iommu->lock, flags);
483 484
}

485
static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
486 487 488 489 490 491
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
492
		flush_domain_on_iommu(iommu, i);
493
	}
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

}

/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	struct amd_iommu *iommu;

	INC_STATS_COUNTER(domain_flush_all);

	for_each_iommu(iommu)
		flush_domain_on_iommu(iommu, domid);
}

void amd_iommu_flush_all_domains(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		flush_all_domains_on_iommu(iommu);
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
void amd_iommu_flush_all_devices(void)
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] == NULL)
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
551 552 553 554
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
555
{
556
	u64 __pte, *pte;
557 558

	bus_addr  = PAGE_ALIGN(bus_addr);
559
	phys_addr = PAGE_ALIGN(phys_addr);
560 561 562 563 564

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

565
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}

603 604 605 606
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
607 608 609 610 611 612 613 614 615 616 617 618 619 620
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

621 622 623 624 625 626
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

643 644 645 646
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
647 648 649 650 651 652 653 654
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
655
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
656 657 658 659 660 661 662
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
663
			__set_bit(addr >> PAGE_SHIFT,
664
				  dma_dom->aperture[0]->bitmap);
665 666 667 668 669
	}

	return 0;
}

670 671 672
/*
 * Inits the unity mappings required for a specific device
 */
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

690 691 692 693 694 695 696 697 698
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
699

700
/*
701
 * The address allocator core functions.
702 703 704
 *
 * called with domain->lock held
 */
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64* fetch_pte(struct protection_domain *domain,
		      unsigned long address)
{
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

732 733 734 735 736
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
737 738
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
739 740 741
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
742
	int i;
743

744 745 746 747
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

807 808 809 810 811 812 813 814 815 816 817
	return 0;

out_free:
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

818 819 820 821 822 823 824
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
825
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
826 827 828 829 830 831
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

832 833
	next_bit >>= PAGE_SHIFT;

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
852
			dom->next_address = address + (pages << PAGE_SHIFT);
853 854 855 856 857 858 859 860 861
			break;
		}

		next_bit = 0;
	}

	return address;
}

862 863
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
864
					     unsigned int pages,
865 866
					     unsigned long align_mask,
					     u64 dma_mask)
867 868 869
{
	unsigned long address;

870 871 872 873
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
874

875
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
876
				     dma_mask, dom->next_address);
877

878
	if (address == -1) {
879
		dom->next_address = 0;
880 881
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
882 883
		dom->need_flush = true;
	}
884

885
	if (unlikely(address == -1))
886 887 888 889 890 891 892
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

893 894 895 896 897
/*
 * The address free function.
 *
 * called with domain->lock held
 */
898 899 900 901
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
902 903
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
904

905 906
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

907 908 909 910
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
911

912
	if (address >= dom->next_address)
913
		dom->need_flush = true;
914 915

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
916

917 918
	iommu_area_free(range->bitmap, address, pages);

919 920
}

921 922 923 924 925 926 927 928 929 930
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

948 949 950 951 952 953 954 955 956 957
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

958 959 960 961
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
962 963 964 965
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
966
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
967 968 969 970

	if (start_page + pages > last_page)
		pages = last_page - start_page;

971 972 973 974 975
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
976 977
}

978
static void free_pagetable(struct protection_domain *domain)
979 980 981 982
{
	int i, j;
	u64 *p1, *p2, *p3;

983
	p1 = domain->pt_root;
984 985 986 987 988 989 990 991 992

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
993
		for (j = 0; j < 512; ++j) {
994 995 996 997 998 999 1000 1001 1002 1003
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1004 1005

	domain->pt_root = NULL;
1006 1007
}

1008 1009 1010 1011
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1012 1013
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1014 1015
	int i;

1016 1017 1018
	if (!dom)
		return;

1019
	free_pagetable(&dom->domain);
1020

1021 1022 1023 1024 1025 1026
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1027 1028 1029 1030

	kfree(dom);
}

1031 1032 1033 1034 1035
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1036
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1051
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1052 1053 1054 1055
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1056
	dma_dom->need_flush = false;
1057
	dma_dom->target_dev = 0xffff;
1058

1059
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1060 1061
		goto free_dma_dom;

1062
	/*
1063 1064
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1065
	 */
1066
	dma_dom->aperture[0]->bitmap[0] = 1;
1067
	dma_dom->next_address = 0;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1087 1088 1089 1090
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1103 1104 1105 1106
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1107 1108 1109
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
1110 1111 1112 1113
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

1114 1115
	domain->dev_cnt += 1;

1116 1117 1118
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1119 1120

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1121 1122
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1123 1124 1125 1126 1127
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1128 1129 1130 1131 1132
       /*
        * We might boot into a crash-kernel here. The crashed kernel
        * left the caches in the IOMMU dirty. So we have to flush
        * here to evict all dirty stuff.
        */
1133
	iommu_queue_inv_dev_entry(iommu, devid);
1134
	iommu_flush_tlb_pde(iommu, domain->id);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1183
	unsigned long flags;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1201
	case BUS_NOTIFY_UNBOUND_DRIVER:
1202 1203 1204
		if (!domain)
			goto out;
		detach_device(domain, devid);
1205 1206 1207 1208 1209 1210
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1211
		dma_domain = dma_ops_domain_alloc(iommu);
1212 1213 1214 1215 1216 1217 1218 1219
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1232
static struct notifier_block device_nb = {
1233 1234
	.notifier_call = device_change_notifier,
};
1235

1236 1237 1238 1239 1240 1241
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1280 1281 1282 1283 1284 1285 1286
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1287 1288 1289 1290 1291 1292 1293 1294 1295
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1296 1297 1298 1299 1300 1301
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1302 1303

	pcidev = to_pci_dev(dev);
1304
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1305

1306
	/* device not translated by any IOMMU in the system? */
1307
	if (_bdf > amd_iommu_last_bdf)
1308 1309 1310 1311 1312 1313 1314 1315 1316
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1317 1318 1319
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1320
		*domain = &dma_dom->domain;
1321
		attach_device(*iommu, *domain, *bdf);
1322 1323
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1324 1325
	}

1326
	if (domain_for_device(_bdf) == NULL)
1327
		attach_device(*iommu, *domain, _bdf);
1328

1329 1330 1331
	return 1;
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
/*
 * If the pte_page is not yet allocated this function is called
 */
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);

	if (pte_page)
		*pte_page = pte;

	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1375
	struct aperture_range *aperture;
1376 1377
	u64 *pte, *pte_page;

1378 1379 1380 1381 1382
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1383 1384
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1385 1386 1387
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
		pte += IOMMU_PTE_L0_INDEX(address);
1388 1389 1390 1391

	return pte;
}

1392 1393 1394 1395
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1408
	pte  = dma_ops_get_pte(dom, address);
1409 1410
	if (!pte)
		return bad_dma_address;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1428 1429 1430
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1431 1432 1433 1434
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1435
	struct aperture_range *aperture;
1436 1437 1438 1439 1440
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1441 1442 1443 1444 1445 1446 1447
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1448 1449 1450 1451 1452 1453 1454 1455

	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1456 1457
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1458 1459
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1460 1461
 * Must be called with the domain lock held.
 */
1462 1463 1464 1465 1466
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1467
			       int dir,
1468 1469
			       bool align,
			       u64 dma_mask)
1470 1471
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1472
	dma_addr_t address, start, ret;
1473
	unsigned int pages;
1474
	unsigned long align_mask = 0;
1475 1476
	int i;

1477
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1478 1479
	paddr &= PAGE_MASK;

1480 1481
	INC_STATS_COUNTER(total_map_requests);

1482 1483 1484
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1485 1486 1487
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1488
retry:
1489 1490
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1508 1509 1510

	start = address;
	for (i = 0; i < pages; ++i) {
1511 1512 1513 1514
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1515 1516 1517 1518 1519
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1520 1521
	ADD_STATS_COUNTER(alloced_io_mem, size);

1522
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1523 1524 1525
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1526 1527
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1528 1529
out:
	return address;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1541 1542
}

1543 1544 1545 1546
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1547 1548 1549 1550 1551 1552 1553 1554 1555
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1556 1557
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1558 1559
		return;

1560
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1561 1562 1563 1564 1565 1566 1567 1568
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1569 1570
	SUB_STATS_COUNTER(alloced_io_mem, size);

1571
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1572

1573
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1574
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1575 1576
		dma_dom->need_flush = false;
	}
1577 1578
}

1579 1580 1581
/*
 * The exported map_single function for dma_ops.
 */
1582 1583 1584 1585
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1586 1587 1588 1589 1590 1591
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1592
	u64 dma_mask;
1593
	phys_addr_t paddr = page_to_phys(page) + offset;
1594

1595 1596
	INC_STATS_COUNTER(cnt_map_single);

1597 1598 1599
	if (!check_device(dev))
		return bad_dma_address;

1600
	dma_mask = *dev->dma_mask;
1601 1602 1603 1604

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1605
		/* device not handled by any AMD IOMMU */
1606 1607
		return (dma_addr_t)paddr;

1608 1609 1610
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1611
	spin_lock_irqsave(&domain->lock, flags);
1612 1613
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1614 1615 1616
	if (addr == bad_dma_address)
		goto out;

1617
	iommu_completion_wait(iommu);
1618 1619 1620 1621 1622 1623 1624

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1625 1626 1627
/*
 * The exported unmap_single function for dma_ops.
 */
1628 1629
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1630 1631 1632 1633 1634 1635
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1636 1637
	INC_STATS_COUNTER(cnt_unmap_single);

1638 1639
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1640
		/* device not handled by any AMD IOMMU */
1641 1642
		return;

1643 1644 1645
	if (!dma_ops_domain(domain))
		return;

1646 1647 1648 1649
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1650
	iommu_completion_wait(iommu);
1651 1652 1653 1654

	spin_unlock_irqrestore(&domain->lock, flags);
}

1655 1656 1657 1658
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1673 1674 1675 1676
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1677
static int map_sg(struct device *dev, struct scatterlist *sglist,
1678 1679
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1680 1681 1682 1683 1684 1685 1686 1687 1688
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1689
	u64 dma_mask;
1690

1691 1692
	INC_STATS_COUNTER(cnt_map_sg);

1693 1694 1695
	if (!check_device(dev))
		return 0;

1696
	dma_mask = *dev->dma_mask;
1697 1698 1699 1700 1701 1702

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1703 1704 1705
	if (!dma_ops_domain(domain))
		return 0;

1706 1707 1708 1709 1710 1711
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1712 1713
					      paddr, s->length, dir, false,
					      dma_mask);
1714 1715 1716 1717 1718 1719 1720 1721

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1722
	iommu_completion_wait(iommu);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1741 1742 1743 1744
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1745
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1746 1747
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1748 1749 1750 1751 1752 1753 1754 1755
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1756 1757
	INC_STATS_COUNTER(cnt_unmap_sg);

1758 1759
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1760 1761
		return;

1762 1763 1764
	if (!dma_ops_domain(domain))
		return;

1765 1766 1767 1768 1769 1770 1771 1772
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1773
	iommu_completion_wait(iommu);
1774 1775 1776 1777

	spin_unlock_irqrestore(&domain->lock, flags);
}

1778 1779 1780
/*
 * The exported alloc_coherent function for dma_ops.
 */
1781 1782 1783 1784 1785 1786 1787 1788 1789
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1790
	u64 dma_mask = dev->coherent_dma_mask;
1791

1792 1793
	INC_STATS_COUNTER(cnt_alloc_coherent);

1794 1795
	if (!check_device(dev))
		return NULL;
1796

1797 1798
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1799

1800
	flag |= __GFP_ZERO;
1801 1802
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1803
		return NULL;
1804 1805 1806 1807 1808 1809 1810 1811

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1812 1813 1814
	if (!dma_ops_domain(domain))
		goto out_free;

1815 1816 1817
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1818 1819 1820
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1821
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1822

J
Jiri Slaby 已提交
1823 1824
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1825
		goto out_free;
J
Jiri Slaby 已提交
1826
	}
1827

1828
	iommu_completion_wait(iommu);
1829 1830 1831 1832

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1833 1834 1835 1836 1837 1838

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1839 1840
}

1841 1842 1843
/*
 * The exported free_coherent function for dma_ops.
 */
1844 1845 1846 1847 1848 1849 1850 1851
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1852 1853
	INC_STATS_COUNTER(cnt_free_coherent);

1854 1855 1856
	if (!check_device(dev))
		return;

1857 1858 1859 1860 1861
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1862 1863 1864
	if (!dma_ops_domain(domain))
		goto free_mem;

1865 1866 1867 1868
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1869
	iommu_completion_wait(iommu);
1870 1871 1872 1873 1874 1875 1876

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1901
/*
1902 1903
 * The function for pre-allocating protection domains.
 *
1904 1905 1906 1907
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1908
static void prealloc_protection_domains(void)
1909 1910 1911 1912 1913 1914 1915
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1916
		devid = calc_devid(dev->bus->number, dev->devfn);
1917
		if (devid > amd_iommu_last_bdf)
1918 1919 1920 1921 1922 1923 1924
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1925
		dma_dom = dma_ops_domain_alloc(iommu);
1926 1927 1928
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1929 1930 1931
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1932 1933 1934
	}
}

1935
static struct dma_map_ops amd_iommu_dma_ops = {
1936 1937
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1938 1939
	.map_page = map_page,
	.unmap_page = unmap_page,
1940 1941
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1942
	.dma_supported = amd_iommu_dma_supported,
1943 1944
};

1945 1946 1947
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1948 1949 1950 1951 1952
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1953 1954 1955 1956 1957
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1958
	for_each_iommu(iommu) {
1959
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1960 1961
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1962
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1963 1964 1965 1966 1967
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1968 1969 1970 1971
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1972 1973 1974 1975 1976 1977
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1978
#ifdef CONFIG_GART_IOMMU
1979 1980
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1981
#endif
1982

1983
	/* Make the driver finally visible to the drivers */
1984 1985
	dma_ops = &amd_iommu_dma_ops;

1986 1987
	register_iommu(&amd_iommu_ops);

1988 1989
	bus_register_notifier(&pci_bus_type, &device_nb);

1990 1991
	amd_iommu_stats_init();

1992 1993 1994 1995
	return 0;

free_domains:

1996
	for_each_iommu(iommu) {
1997 1998 1999 2000 2001 2002
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2128
		detach_device(old_domain, devid);
2129 2130 2131 2132 2133 2134 2135 2136

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2214 2215 2216 2217 2218 2219
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2220 2221 2222 2223 2224 2225 2226 2227
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2228
	.domain_has_cap = amd_iommu_domain_has_cap,
2229 2230
};