blk-throttle.c 67.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

21 22 23
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
24
#define MAX_THROTL_SLICE (HZ)
25
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
26 27
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
28 29
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
30 31 32 33 34 35 36
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
37

38 39
#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)

T
Tejun Heo 已提交
40
static struct blkcg_policy blkcg_policy_throtl;
41

42 43 44
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

74
struct throtl_service_queue {
75 76
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

77 78 79 80
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
81
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
82 83 84 85 86 87
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
88 89 90 91
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
92
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
93 94
};

95 96
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
97
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
98 99
};

100 101
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

102
enum {
S
Shaohua Li 已提交
103
	LIMIT_LOW,
104 105 106 107
	LIMIT_MAX,
	LIMIT_CNT,
};

108
struct throtl_grp {
109 110 111
	/* must be the first member */
	struct blkg_policy_data pd;

112
	/* active throtl group service_queue member */
113 114
	struct rb_node rb_node;

115 116 117
	/* throtl_data this group belongs to */
	struct throtl_data *td;

118 119 120
	/* this group's service queue */
	struct throtl_service_queue service_queue;

121 122 123 124 125 126 127 128 129 130 131
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

132 133 134 135 136 137 138 139 140
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

141 142 143
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
144
	/* internally used bytes per second rate limits */
145
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
146 147
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
148

S
Shaohua Li 已提交
149
	/* internally used IOPS limits */
150
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
151 152
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
153

154 155
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
156 157
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
158

S
Shaohua Li 已提交
159 160 161 162 163 164 165
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

166
	unsigned long latency_target; /* us */
167
	unsigned long latency_target_conf; /* us */
168 169 170
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
171 172 173 174 175

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
176
	unsigned long idletime_threshold_conf; /* us */
177 178 179 180

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
181 182
};

183 184 185 186 187 188 189 190 191 192 193 194 195
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

196 197 198
struct throtl_data
{
	/* service tree for active throtl groups */
199
	struct throtl_service_queue service_queue;
200 201 202 203 204 205

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

206 207
	unsigned int throtl_slice;

208
	/* Work for dispatching throttled bios */
209
	struct work_struct dispatch_work;
210 211
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
212 213 214

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
215 216

	unsigned int scale;
217 218 219 220 221

	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets;
	unsigned long last_calculate_time;
222
	unsigned long filtered_latency;
223 224

	bool track_bio_latency;
225 226
};

227 228
static void throtl_pending_timer_fn(unsigned long arg);

229 230 231 232 233
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
234
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
235
{
236
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
237 238
}

T
Tejun Heo 已提交
239
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
240
{
241
	return pd_to_blkg(&tg->pd);
242 243
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
263
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
264 265 266 267 268 269 270 271 272 273 274 275
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

294 295
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
296
	struct blkcg_gq *blkg = tg_to_blkg(tg);
297
	struct throtl_data *td;
298 299 300 301
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
302 303 304

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
305 306 307 308 309 310 311 312
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
313 314 315 316 317 318 319 320

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
321
	return ret;
322 323 324 325
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
326
	struct blkcg_gq *blkg = tg_to_blkg(tg);
327
	struct throtl_data *td;
328 329 330 331
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
332

333 334
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
335 336 337 338 339 340 341 342
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
343 344 345 346 347 348 349 350 351 352

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
353
	return ret;
354 355
}

356 357 358
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

359 360 361 362 363 364 365 366 367 368 369 370 371 372
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
373 374
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
375 376
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
377
									\
378 379 380 381 382
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
383
} while (0)
384

385 386 387 388 389 390 391 392
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

476
/* init a service_queue, assumes the caller zeroed it */
477
static void throtl_service_queue_init(struct throtl_service_queue *sq)
478
{
479 480
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
481
	sq->pending_tree = RB_ROOT;
482 483 484 485
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

486 487
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
488
	struct throtl_grp *tg;
T
Tejun Heo 已提交
489
	int rw;
490 491 492

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
493
		return NULL;
494

495 496 497 498 499 500 501 502
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
503 504 505 506
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
507 508 509 510 511
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
512

513
	tg->latency_target = DFL_LATENCY_TARGET;
514
	tg->latency_target_conf = DFL_LATENCY_TARGET;
515 516
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
517

518
	return &tg->pd;
519 520
}

521
static void throtl_pd_init(struct blkg_policy_data *pd)
522
{
523 524
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
525
	struct throtl_data *td = blkg->q->td;
526
	struct throtl_service_queue *sq = &tg->service_queue;
527

528
	/*
529
	 * If on the default hierarchy, we switch to properly hierarchical
530 531 532 533 534
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
535
	 * If not on the default hierarchy, the broken flat hierarchy
536 537 538 539 540
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
541
	sq->parent_sq = &td->service_queue;
542
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
543
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
544
	tg->td = td;
545 546
}

547 548 549 550 551 552 553 554
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
555
	struct throtl_data *td = tg->td;
556 557 558 559
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
560 561 562
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
563 564
}

565
static void throtl_pd_online(struct blkg_policy_data *pd)
566
{
567
	struct throtl_grp *tg = pd_to_tg(pd);
568 569 570 571
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
572
	tg_update_has_rules(tg);
573 574
}

S
Shaohua Li 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

594
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
595 596 597 598 599 600 601 602 603 604 605
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

606 607
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
608 609
}

610 611
static void throtl_pd_free(struct blkg_policy_data *pd)
{
612 613
	struct throtl_grp *tg = pd_to_tg(pd);

614
	del_timer_sync(&tg->service_queue.pending_timer);
615
	kfree(tg);
616 617
}

618 619
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
620 621
{
	/* Service tree is empty */
622
	if (!parent_sq->nr_pending)
623 624
		return NULL;

625 626
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
627

628 629
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
630 631 632 633 634 635 636 637 638 639

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

640 641
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
642
{
643 644 645 646
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
647 648
}

649
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
650 651 652
{
	struct throtl_grp *tg;

653
	tg = throtl_rb_first(parent_sq);
654 655 656
	if (!tg)
		return;

657
	parent_sq->first_pending_disptime = tg->disptime;
658 659
}

660
static void tg_service_queue_add(struct throtl_grp *tg)
661
{
662
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
663
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
682
		parent_sq->first_pending = &tg->rb_node;
683 684

	rb_link_node(&tg->rb_node, parent, node);
685
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
686 687
}

688
static void __throtl_enqueue_tg(struct throtl_grp *tg)
689
{
690
	tg_service_queue_add(tg);
691
	tg->flags |= THROTL_TG_PENDING;
692
	tg->service_queue.parent_sq->nr_pending++;
693 694
}

695
static void throtl_enqueue_tg(struct throtl_grp *tg)
696
{
697
	if (!(tg->flags & THROTL_TG_PENDING))
698
		__throtl_enqueue_tg(tg);
699 700
}

701
static void __throtl_dequeue_tg(struct throtl_grp *tg)
702
{
703
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
704
	tg->flags &= ~THROTL_TG_PENDING;
705 706
}

707
static void throtl_dequeue_tg(struct throtl_grp *tg)
708
{
709
	if (tg->flags & THROTL_TG_PENDING)
710
		__throtl_dequeue_tg(tg);
711 712
}

713
/* Call with queue lock held */
714 715
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
716
{
717
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
718 719 720 721 722 723 724 725 726 727

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
728 729 730
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
731 732
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
753
{
754
	/* any pending children left? */
755
	if (!sq->nr_pending)
756
		return true;
757

758
	update_min_dispatch_time(sq);
759

760
	/* is the next dispatch time in the future? */
761
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
762
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
763
		return true;
764 765
	}

766 767
	/* tell the caller to continue dispatching */
	return false;
768 769
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

785
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
786 787 788 789 790 791
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

792
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
793 794
{
	tg->bytes_disp[rw] = 0;
795
	tg->io_disp[rw] = 0;
796
	tg->slice_start[rw] = jiffies;
797
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
798 799 800 801
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
802 803
}

804 805
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
806
{
807
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
808 809
}

810 811
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
812
{
813
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
814 815 816 817
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
818 819 820
}

/* Determine if previously allocated or extended slice is complete or not */
821
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
822 823
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
824
		return false;
825 826 827 828 829

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
830
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
831
{
832 833
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
834 835 836 837 838 839 840 841

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
842
	if (throtl_slice_used(tg, rw))
843 844
		return;

845 846 847 848 849 850 851 852
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

853
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
854

855 856
	time_elapsed = jiffies - tg->slice_start[rw];

857
	nr_slices = time_elapsed / tg->td->throtl_slice;
858 859 860

	if (!nr_slices)
		return;
861
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
862 863
	do_div(tmp, HZ);
	bytes_trim = tmp;
864

865 866
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
867

868
	if (!bytes_trim && !io_trim)
869 870 871 872 873 874 875
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

876 877 878 879 880
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

881
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
882

883 884 885 886
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
887 888
}

889 890
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
891 892
{
	bool rw = bio_data_dir(bio);
893
	unsigned int io_allowed;
894
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
895
	u64 tmp;
896

897
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
898

899 900
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
901
		jiffy_elapsed_rnd = tg->td->throtl_slice;
902

903
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
904

905 906 907 908 909 910 911
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

912
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
913 914 915 916 917 918
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
919 920

	if (tg->io_disp[rw] + 1 <= io_allowed) {
921 922
		if (wait)
			*wait = 0;
923
		return true;
924 925
	}

926
	/* Calc approx time to dispatch */
927
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
928 929 930 931 932 933 934 935 936 937 938

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

939 940
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
941 942
{
	bool rw = bio_data_dir(bio);
943
	u64 bytes_allowed, extra_bytes, tmp;
944
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
945
	unsigned int bio_size = throtl_bio_data_size(bio);
946 947 948 949 950

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
951
		jiffy_elapsed_rnd = tg->td->throtl_slice;
952

953
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
954

955
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
956
	do_div(tmp, HZ);
957
	bytes_allowed = tmp;
958

959
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
960 961
		if (wait)
			*wait = 0;
962
		return true;
963 964 965
	}

	/* Calc approx time to dispatch */
966
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
967
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
968 969 970 971 972 973 974 975 976 977 978

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
979 980 981 982 983 984 985
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
986 987
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
988 989 990 991 992 993 994 995 996 997
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
998
	BUG_ON(tg->service_queue.nr_queued[rw] &&
999
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1000

1001
	/* If tg->bps = -1, then BW is unlimited */
1002 1003
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
1004 1005
		if (wait)
			*wait = 0;
1006
		return true;
1007 1008 1009 1010 1011
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1012 1013 1014
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1015
	 */
1016
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1017
		throtl_start_new_slice(tg, rw);
1018
	else {
1019 1020 1021 1022
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1023 1024
	}

1025 1026
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1038
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1039 1040 1041 1042 1043 1044 1045

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1046
	unsigned int bio_size = throtl_bio_data_size(bio);
1047 1048

	/* Charge the bio to the group */
1049
	tg->bytes_disp[rw] += bio_size;
1050
	tg->io_disp[rw]++;
1051
	tg->last_bytes_disp[rw] += bio_size;
S
Shaohua Li 已提交
1052
	tg->last_io_disp[rw]++;
1053

1054
	/*
1055
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1056 1057 1058 1059
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1060 1061
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1075
{
1076
	struct throtl_service_queue *sq = &tg->service_queue;
1077 1078
	bool rw = bio_data_dir(bio);

1079 1080 1081
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1082 1083 1084 1085 1086 1087 1088 1089 1090
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1091 1092
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1093
	sq->nr_queued[rw]++;
1094
	throtl_enqueue_tg(tg);
1095 1096
}

1097
static void tg_update_disptime(struct throtl_grp *tg)
1098
{
1099
	struct throtl_service_queue *sq = &tg->service_queue;
1100 1101 1102
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1103 1104
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1105
		tg_may_dispatch(tg, bio, &read_wait);
1106

1107 1108
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1109
		tg_may_dispatch(tg, bio, &write_wait);
1110 1111 1112 1113 1114

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1115
	throtl_dequeue_tg(tg);
1116
	tg->disptime = disptime;
1117
	throtl_enqueue_tg(tg);
1118 1119 1120

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1133
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1134
{
1135
	struct throtl_service_queue *sq = &tg->service_queue;
1136 1137
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1138
	struct throtl_grp *tg_to_put = NULL;
1139 1140
	struct bio *bio;

1141 1142 1143 1144 1145 1146 1147
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1148
	sq->nr_queued[rw]--;
1149 1150

	throtl_charge_bio(tg, bio);
1151 1152 1153 1154 1155 1156 1157 1158 1159

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1160
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1161
		start_parent_slice_with_credit(tg, parent_tg, rw);
1162
	} else {
1163 1164
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1165 1166 1167
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1168

1169
	throtl_trim_slice(tg, rw);
1170

1171 1172
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1173 1174
}

1175
static int throtl_dispatch_tg(struct throtl_grp *tg)
1176
{
1177
	struct throtl_service_queue *sq = &tg->service_queue;
1178 1179
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1180
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1181 1182 1183 1184
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1185
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1186
	       tg_may_dispatch(tg, bio, NULL)) {
1187

1188
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1189 1190 1191 1192 1193 1194
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1195
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1196
	       tg_may_dispatch(tg, bio, NULL)) {
1197

1198
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1199 1200 1201 1202 1203 1204 1205 1206 1207
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1208
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1209 1210 1211 1212
{
	unsigned int nr_disp = 0;

	while (1) {
1213 1214
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1215 1216 1217 1218 1219 1220 1221

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1222
		throtl_dequeue_tg(tg);
1223

1224
		nr_disp += throtl_dispatch_tg(tg);
1225

1226
		if (sq->nr_queued[0] || sq->nr_queued[1])
1227
			tg_update_disptime(tg);
1228 1229 1230 1231 1232 1233 1234 1235

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1236 1237
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1238 1239 1240 1241 1242 1243 1244
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1245 1246 1247 1248 1249 1250 1251
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1252
 */
1253 1254 1255
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1256
	struct throtl_grp *tg = sq_to_tg(sq);
1257
	struct throtl_data *td = sq_to_td(sq);
1258
	struct request_queue *q = td->queue;
1259 1260
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1261
	int ret;
1262 1263

	spin_lock_irq(q->queue_lock);
1264 1265 1266
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1267 1268 1269
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1270

1271 1272
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1273 1274
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1275 1276 1277 1278 1279 1280

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1281

1282 1283
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1284

1285 1286 1287 1288
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1289
	}
1290

1291 1292
	if (!dispatched)
		goto out_unlock;
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1310
	spin_unlock_irq(q->queue_lock);
1311
}
1312

1313 1314 1315 1316 1317 1318 1319 1320
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1321
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1335 1336 1337
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1338 1339 1340
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1341
		blk_start_plug(&plug);
1342 1343
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1344
		blk_finish_plug(&plug);
1345 1346 1347
	}
}

1348 1349
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1350
{
1351 1352
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1353

1354
	if (v == U64_MAX)
1355
		return 0;
1356
	return __blkg_prfill_u64(sf, pd, v);
1357 1358
}

1359 1360
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1361
{
1362 1363
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1364

1365
	if (v == UINT_MAX)
1366
		return 0;
1367
	return __blkg_prfill_u64(sf, pd, v);
1368 1369
}

1370
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1371
{
1372 1373
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1374
	return 0;
1375 1376
}

1377
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1378
{
1379 1380
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1381
	return 0;
1382 1383
}

1384
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1385
{
1386
	struct throtl_service_queue *sq = &tg->service_queue;
1387
	struct cgroup_subsys_state *pos_css;
1388
	struct blkcg_gq *blkg;
1389

1390 1391
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1392 1393
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1394

1395 1396 1397 1398 1399 1400 1401
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1402 1403
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1422

1423 1424 1425 1426 1427 1428 1429 1430
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1431 1432
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1433

1434
	if (tg->flags & THROTL_TG_PENDING) {
1435
		tg_update_disptime(tg);
1436
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1437
	}
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1457
		v = U64_MAX;
1458 1459 1460 1461 1462 1463 1464

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1465

1466
	tg_conf_updated(tg, false);
1467 1468
	ret = 0;
out_finish:
1469
	blkg_conf_finish(&ctx);
1470
	return ret ?: nbytes;
1471 1472
}

1473 1474
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1475
{
1476
	return tg_set_conf(of, buf, nbytes, off, true);
1477 1478
}

1479 1480
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1481
{
1482
	return tg_set_conf(of, buf, nbytes, off, false);
1483 1484
}

1485
static struct cftype throtl_legacy_files[] = {
1486 1487
	{
		.name = "throttle.read_bps_device",
1488
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1489
		.seq_show = tg_print_conf_u64,
1490
		.write = tg_set_conf_u64,
1491 1492 1493
	},
	{
		.name = "throttle.write_bps_device",
1494
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1495
		.seq_show = tg_print_conf_u64,
1496
		.write = tg_set_conf_u64,
1497 1498 1499
	},
	{
		.name = "throttle.read_iops_device",
1500
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1501
		.seq_show = tg_print_conf_uint,
1502
		.write = tg_set_conf_uint,
1503 1504 1505
	},
	{
		.name = "throttle.write_iops_device",
1506
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1507
		.seq_show = tg_print_conf_uint,
1508
		.write = tg_set_conf_uint,
1509 1510 1511
	},
	{
		.name = "throttle.io_service_bytes",
1512 1513
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1514 1515 1516
	},
	{
		.name = "throttle.io_serviced",
1517 1518
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1519 1520 1521 1522
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1523
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1524 1525 1526 1527 1528
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1529 1530
	u64 bps_dft;
	unsigned int iops_dft;
1531
	char idle_time[26] = "";
1532
	char latency_time[26] = "";
1533 1534 1535

	if (!dname)
		return 0;
1536

S
Shaohua Li 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1548
	    tg->iops_conf[WRITE][off] == iops_dft &&
1549
	    (off != LIMIT_LOW ||
1550
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1551
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1552 1553
		return 0;

1554
	if (tg->bps_conf[READ][off] != U64_MAX)
1555
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1556
			tg->bps_conf[READ][off]);
1557
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1558
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1559
			tg->bps_conf[WRITE][off]);
1560
	if (tg->iops_conf[READ][off] != UINT_MAX)
1561
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1562
			tg->iops_conf[READ][off]);
1563
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1564
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1565
			tg->iops_conf[WRITE][off]);
1566
	if (off == LIMIT_LOW) {
1567
		if (tg->idletime_threshold_conf == ULONG_MAX)
1568 1569 1570
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1571
				tg->idletime_threshold_conf);
1572

1573
		if (tg->latency_target_conf == ULONG_MAX)
1574 1575 1576
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1577
				" latency=%lu", tg->latency_target_conf);
1578
	}
1579

1580 1581 1582
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1583 1584 1585
	return 0;
}

S
Shaohua Li 已提交
1586
static int tg_print_limit(struct seq_file *sf, void *v)
1587
{
S
Shaohua Li 已提交
1588
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1589 1590 1591 1592
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1593
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1594 1595 1596 1597 1598 1599
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1600
	unsigned long idle_time;
1601
	unsigned long latency_time;
1602
	int ret;
S
Shaohua Li 已提交
1603
	int index = of_cft(of)->private;
1604 1605 1606 1607 1608 1609 1610

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1611 1612 1613 1614
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1615

1616 1617
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1618 1619 1620
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1621
		u64 val = U64_MAX;
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1649 1650
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1651 1652
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1653 1654 1655 1656
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1657 1658 1659 1660
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1661

S
Shaohua Li 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1691 1692
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1693
	}
1694 1695 1696 1697 1698 1699 1700

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1701 1702
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1703 1704 1705 1706 1707 1708 1709
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1719 1720 1721
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1722 1723 1724
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1725 1726 1727 1728
	},
	{ }	/* terminate */
};

1729
static void throtl_shutdown_wq(struct request_queue *q)
1730 1731 1732
{
	struct throtl_data *td = q->td;

1733
	cancel_work_sync(&td->dispatch_work);
1734 1735
}

T
Tejun Heo 已提交
1736
static struct blkcg_policy blkcg_policy_throtl = {
1737
	.dfl_cftypes		= throtl_files,
1738
	.legacy_cftypes		= throtl_legacy_files,
1739

1740
	.pd_alloc_fn		= throtl_pd_alloc,
1741
	.pd_init_fn		= throtl_pd_init,
1742
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1743
	.pd_offline_fn		= throtl_pd_offline,
1744
	.pd_free_fn		= throtl_pd_free,
1745 1746
};

S
Shaohua Li 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1786 1787 1788 1789 1790
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1791
	 *   configure a too big threshold) or 4 times of idletime threshold
1792
	 * - average think time is more than threshold
1793
	 * - IO latency is largely below threshold
1794
	 */
1795
	unsigned long time;
1796
	bool ret;
1797

1798 1799 1800 1801 1802 1803
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1804
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1805 1806 1807 1808 1809
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1810 1811
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1831 1832

	if (time_after_eq(jiffies,
1833 1834
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1835
		return true;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1860
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1861 1862
		return false;

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1900 1901 1902 1903 1904
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1905
	throtl_log(&td->service_queue, "upgrade to max");
1906
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1907
	td->low_upgrade_time = jiffies;
1908
	td->scale = 0;
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1924 1925
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1926 1927
	td->scale /= 2;

1928
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1929 1930 1931 1932 1933
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1947 1948
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1949 1950 1951
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1980
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1981 1982 1983 1984 1985
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1986 1987
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
	int i, cpu;
	unsigned long last_latency = 0;
	unsigned long latency;

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		struct latency_bucket *tmp = &td->tmp_buckets[i];

		for_each_possible_cpu(cpu) {
			struct latency_bucket *bucket;

			/* this isn't race free, but ok in practice */
			bucket = per_cpu_ptr(td->latency_buckets, cpu);
			tmp->total_latency += bucket[i].total_latency;
			tmp->samples += bucket[i].samples;
			bucket[i].total_latency = 0;
			bucket[i].samples = 0;
		}

		if (tmp->samples >= 32) {
			int samples = tmp->samples;

			latency = tmp->total_latency;

			tmp->total_latency = 0;
			tmp->samples = 0;
			latency /= samples;
			if (latency == 0)
				continue;
			avg_latency[i].latency = latency;
		}
	}

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		if (!avg_latency[i].latency) {
			if (td->avg_buckets[i].latency < last_latency)
				td->avg_buckets[i].latency = last_latency;
			continue;
		}

		if (!td->avg_buckets[i].valid)
			latency = avg_latency[i].latency;
		else
			latency = (td->avg_buckets[i].latency * 7 +
				avg_latency[i].latency) >> 3;

		td->avg_buckets[i].latency = max(latency, last_latency);
		td->avg_buckets[i].valid = true;
		last_latency = td->avg_buckets[i].latency;
	}
2102 2103 2104 2105 2106

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
			"Latency bucket %d: latency=%ld, valid=%d", i,
			td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2107 2108 2109 2110 2111 2112 2113
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	int ret;

	ret = bio_associate_current(bio);
	if (ret == 0 || ret == -EBUSY)
		bio->bi_cg_private = tg;
	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
#else
	bio_associate_current(bio);
#endif
}

2128 2129
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2130
{
2131
	struct throtl_qnode *qn = NULL;
2132
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2133
	struct throtl_service_queue *sq;
2134
	bool rw = bio_data_dir(bio);
2135
	bool throttled = false;
2136
	struct throtl_data *td = tg->td;
2137

2138 2139
	WARN_ON_ONCE(!rcu_read_lock_held());

2140
	/* see throtl_charge_bio() */
2141
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2142
		goto out;
2143 2144

	spin_lock_irq(q->queue_lock);
2145

2146 2147
	throtl_update_latency_buckets(td);

2148
	if (unlikely(blk_queue_bypass(q)))
2149
		goto out_unlock;
2150

2151
	blk_throtl_assoc_bio(tg, bio);
2152 2153
	blk_throtl_update_idletime(tg);

2154 2155
	sq = &tg->service_queue;

2156
again:
2157
	while (true) {
S
Shaohua Li 已提交
2158 2159 2160
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2161
		throtl_upgrade_check(tg);
2162 2163 2164
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2165

2166
		/* if above limits, break to queue */
2167
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2168
			tg->last_low_overflow_time[rw] = jiffies;
2169 2170
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2171 2172
				goto again;
			}
2173
			break;
2174
		}
2175 2176

		/* within limits, let's charge and dispatch directly */
2177
		throtl_charge_bio(tg, bio);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2190
		throtl_trim_slice(tg, rw);
2191 2192 2193 2194 2195 2196

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2197
		qn = &tg->qnode_on_parent[rw];
2198 2199 2200 2201
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2202 2203
	}

2204
	/* out-of-limit, queue to @tg */
2205 2206
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2207 2208 2209
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2210
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2211

S
Shaohua Li 已提交
2212 2213
	tg->last_low_overflow_time[rw] = jiffies;

2214
	td->nr_queued[rw]++;
2215
	throtl_add_bio_tg(bio, qn, tg);
2216
	throttled = true;
2217

2218 2219 2220 2221 2222 2223
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2224
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2225
		tg_update_disptime(tg);
2226
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2227 2228
	}

2229
out_unlock:
2230
	spin_unlock_irq(q->queue_lock);
2231
out:
2232 2233 2234 2235 2236 2237
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
2238
		bio_clear_flag(bio, BIO_THROTTLED);
2239 2240 2241 2242 2243

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
		bio->bi_issue_stat.stat |= SKIP_LATENCY;
#endif
2244
	return throttled;
2245 2246
}

2247
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

	latency = get_cpu_ptr(td->latency_buckets);
	latency[index].total_latency += time;
	latency[index].samples++;
	put_cpu_ptr(td->latency_buckets);
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
		req_op(rq), time_ns >> 10);
}

2275 2276 2277
void blk_throtl_bio_endio(struct bio *bio)
{
	struct throtl_grp *tg;
2278 2279 2280 2281
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2282 2283 2284 2285 2286 2287

	tg = bio->bi_cg_private;
	if (!tg)
		return;
	bio->bi_cg_private = NULL;

2288 2289 2290 2291 2292
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2293 2294 2295 2296
	if (!start_time || finish_time <= start_time)
		return;

	lat = finish_time - start_time;
2297
	/* this is only for bio based driver */
2298
	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2299 2300
		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
			bio_op(bio), lat);
2301

2302
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
		int bucket;
		unsigned int threshold;

		bucket = request_bucket_index(
			blk_stat_size(&bio->bi_issue_stat));
		threshold = tg->td->avg_buckets[bucket].latency +
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2323
	}
2324 2325 2326
}
#endif

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2342
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2343
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2344
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2345 2346 2347 2348
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2359
	struct blkcg_gq *blkg;
2360
	struct cgroup_subsys_state *pos_css;
2361
	struct bio *bio;
2362
	int rw;
2363

2364
	queue_lockdep_assert_held(q);
2365
	rcu_read_lock();
2366

2367 2368 2369 2370 2371 2372
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2373
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2374
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2375

2376 2377 2378 2379
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2380 2381
	spin_unlock_irq(q->queue_lock);

2382
	/* all bios now should be in td->service_queue, issue them */
2383
	for (rw = READ; rw <= WRITE; rw++)
2384 2385
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2386
			generic_make_request(bio);
2387 2388 2389 2390

	spin_lock_irq(q->queue_lock);
}

2391 2392 2393
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2394
	int ret;
2395 2396 2397 2398

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2399 2400 2401 2402 2403 2404
	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
		LATENCY_BUCKET_SIZE, __alignof__(u64));
	if (!td->latency_buckets) {
		kfree(td);
		return -ENOMEM;
	}
2405

2406
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2407
	throtl_service_queue_init(&td->service_queue);
2408

2409
	q->td = td;
2410
	td->queue = q;
V
Vivek Goyal 已提交
2411

2412
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2413
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2414 2415
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2416

2417
	/* activate policy */
T
Tejun Heo 已提交
2418
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2419 2420
	if (ret) {
		free_percpu(td->latency_buckets);
2421
		kfree(td);
2422
	}
2423
	return ret;
2424 2425 2426 2427
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2428
	BUG_ON(!q->td);
2429
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2430
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2431
	free_percpu(q->td->latency_buckets);
2432
	kfree(q->td);
2433 2434
}

2435 2436 2437
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2438
	int i;
2439 2440 2441 2442

	td = q->td;
	BUG_ON(!td);

2443
	if (blk_queue_nonrot(q)) {
2444
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2445 2446
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2447
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2448 2449 2450 2451
		td->filtered_latency = LATENCY_FILTERED_HD;
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
			td->avg_buckets[i].latency = DFL_HD_BASELINE_LATENCY;
	}
2452 2453 2454 2455
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2456

2457 2458 2459
	td->track_bio_latency = !q->mq_ops && !q->request_fn;
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2460 2461
}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2488 2489
static int __init throtl_init(void)
{
2490 2491 2492 2493
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2494
	return blkcg_policy_register(&blkcg_policy_throtl);
2495 2496 2497
}

module_init(throtl_init);