translate-all.c 64.7 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21
#ifdef _WIN32
#include <windows.h>
#endif
P
Peter Maydell 已提交
22
#include "qemu/osdep.h"
B
bellard 已提交
23

B
bellard 已提交
24

25
#include "qemu-common.h"
B
bellard 已提交
26
#define NO_CPU_IO_DEFS
B
bellard 已提交
27
#include "cpu.h"
28
#include "trace-root.h"
29
#include "disas/disas.h"
30
#include "exec/exec-all.h"
B
bellard 已提交
31
#include "tcg.h"
32 33
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
34
#include "exec/exec-all.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
49 50
#else
#include "exec/address-spaces.h"
51 52
#endif

53
#include "exec/cputlb.h"
54
#include "exec/tb-hash.h"
55
#include "translate-all.h"
56
#include "qemu/bitmap.h"
57
#include "qemu/timer.h"
58
#include "qemu/main-loop.h"
59
#include "exec/log.h"
60

61 62
/* #define DEBUG_TB_INVALIDATE */
/* #define DEBUG_TB_FLUSH */
63
/* make various TB consistency checks */
64
/* #define DEBUG_TB_CHECK */
65 66 67 68 69 70

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

71 72 73 74 75 76 77 78 79
/* Access to the various translations structures need to be serialised via locks
 * for consistency. This is automatic for SoftMMU based system
 * emulation due to its single threaded nature. In user-mode emulation
 * access to the memory related structures are protected with the
 * mmap_lock.
 */
#ifdef CONFIG_SOFTMMU
#define assert_memory_lock() do { /* nothing */ } while (0)
#else
80
#define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
81 82
#endif

83 84 85 86 87
#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
88
#ifdef CONFIG_SOFTMMU
89 90 91
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
92
    unsigned long *code_bitmap;
93
#else
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

110 111 112 113
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

114
uintptr_t qemu_host_page_size;
115
intptr_t qemu_host_page_mask;
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/*
 * L1 Mapping properties
 */
static int v_l1_size;
static int v_l1_shift;
static int v_l2_levels;

/* The bottom level has pointers to PageDesc, and is indexed by
 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
 */
#define V_L1_MIN_BITS 4
#define V_L1_MAX_BITS (V_L2_BITS + 3)
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)

static void *l1_map[V_L1_MAX_SIZE];
132

B
bellard 已提交
133 134
/* code generation context */
TCGContext tcg_ctx;
R
Richard Henderson 已提交
135
bool parallel_cpus;
B
bellard 已提交
136

K
KONRAD Frederic 已提交
137 138 139 140 141
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static void page_table_config_init(void)
{
    uint32_t v_l1_bits;

    assert(TARGET_PAGE_BITS);
    /* The bits remaining after N lower levels of page tables.  */
    v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
    if (v_l1_bits < V_L1_MIN_BITS) {
        v_l1_bits += V_L2_BITS;
    }

    v_l1_size = 1 << v_l1_bits;
    v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
    v_l2_levels = v_l1_shift / V_L2_BITS - 1;

    assert(v_l1_bits <= V_L1_MAX_BITS);
    assert(v_l1_shift % V_L2_BITS == 0);
    assert(v_l2_levels >= 0);
}

162 163 164 165 166 167 168 169
#ifdef CONFIG_USER_ONLY
#define assert_tb_locked() tcg_debug_assert(have_tb_lock)
#define assert_tb_unlocked() tcg_debug_assert(!have_tb_lock)
#else
#define assert_tb_locked()  do { /* nothing */ } while (0)
#define assert_tb_unlocked()  do { /* nothing */ } while (0)
#endif

K
KONRAD Frederic 已提交
170 171 172
void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
173
    assert_tb_unlocked();
K
KONRAD Frederic 已提交
174 175 176 177 178 179 180 181
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
182
    assert_tb_locked();
K
KONRAD Frederic 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

B
Blue Swirl 已提交
198
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
199

B
bellard 已提交
200 201 202 203 204
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
260
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
279 280 281 282 283 284 285 286

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
287 288 289 290 291
    }

    return p - block;
}

292 293 294
/* The cpu state corresponding to 'searched_pc' is restored.
 * Called with tb_lock held.
 */
295
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
296
                                     uintptr_t searched_pc)
B
bellard 已提交
297
{
298 299
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
300
    CPUArchState *env = cpu->env_ptr;
301 302
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
303
#ifdef CONFIG_PROFILER
304
    int64_t ti = profile_getclock();
B
bellard 已提交
305 306
#endif

R
Richard Henderson 已提交
307 308
    searched_pc -= GETPC_ADJ;

309 310 311
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
312

313 314 315 316 317 318 319 320 321 322 323 324
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
325

326
 found:
327
    if (tb->cflags & CF_USE_ICOUNT) {
328
        assert(use_icount);
P
pbrook 已提交
329
        /* Reset the cycle counter to the start of the block.  */
330
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
331
        /* Clear the IO flag.  */
332
        cpu->can_do_io = 0;
P
pbrook 已提交
333
    }
334 335
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
336 337

#ifdef CONFIG_PROFILER
338 339
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
340
#endif
B
bellard 已提交
341 342
    return 0;
}
343

344
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
345 346
{
    TranslationBlock *tb;
347
    bool r = false;
B
Blue Swirl 已提交
348

349
    tb_lock();
B
Blue Swirl 已提交
350 351
    tb = tb_find_pc(retaddr);
    if (tb) {
352
        cpu_restore_state_from_tb(cpu, tb, retaddr);
353 354 355 356 357
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
358
        r = true;
B
Blue Swirl 已提交
359
    }
360 361 362
    tb_unlock();

    return r;
B
Blue Swirl 已提交
363 364
}

365
void page_size_init(void)
366 367 368 369
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
370
    qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
371 372 373 374 375 376
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
377
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
378
}
379

380 381 382
static void page_init(void)
{
    page_size_init();
383 384
    page_table_config_init();

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

451
/* If alloc=1:
452
 * Called with tb_lock held for system emulation.
453 454
 * Called with mmap_lock held for user-mode emulation.
 */
455 456 457 458 459 460
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

461 462 463 464
    if (alloc) {
        assert_memory_lock();
    }

465
    /* Level 1.  Always allocated.  */
466
    lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
467 468

    /* Level 2..N-1.  */
469
    for (i = v_l2_levels; i > 0; i--) {
470
        void **p = atomic_rcu_read(lp);
471 472 473 474 475

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
476
            p = g_new0(void *, V_L2_SIZE);
477
            atomic_rcu_set(lp, p);
478 479
        }

480
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
481 482
    }

483
    pd = atomic_rcu_read(lp);
484 485 486 487
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
488
        pd = g_new0(PageDesc, V_L2_SIZE);
489
        atomic_rcu_set(lp, pd);
490 491
    }

492
    return pd + (index & (V_L2_SIZE - 1));
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
519 520
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
521 522
#elif defined(__powerpc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
523 524
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
525 526 527 528 529
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
530 531 532 533
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
    return tb_size;
}

567 568 569 570 571
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
572
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
573 574 575 576 577 578 579
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
580
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
581 582 583 584 585 586 587 588 589 590 591 592 593
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

594 595 596 597
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

639 640
static inline void *alloc_code_gen_buffer(void)
{
641
    void *buf = static_code_gen_buffer;
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

658
#ifdef __mips__
659 660 661
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
662 663
    }
#endif
664 665 666 667 668

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

669
    return buf;
670
}
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
689 690 691 692
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
693
    size_t size = tcg_ctx.code_gen_buffer_size;
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
709 710
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
711 712 713 714 715
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
716
# elif defined(__mips__)
717
#  if _MIPS_SIM == _ABI64
718 719 720 721
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
722 723
# endif

724 725
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
726 727 728 729 730
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
731
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
732
        /* Try again, with the original still mapped, to avoid re-acquiring
733
           that 256mb crossing.  This time don't specify an address.  */
734 735 736
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
737
        switch ((int)(buf2 != MAP_FAILED)) {
738 739
        case 1:
            if (!cross_256mb(buf2, size)) {
740
                /* Success!  Use the new buffer.  */
741
                munmap(buf, size + qemu_real_host_page_size);
742
                break;
743 744
            }
            /* Failure.  Work with what we had.  */
745
            munmap(buf2, size + qemu_real_host_page_size);
746 747 748 749 750 751 752 753 754 755 756 757
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
758
        }
759
        buf = buf2;
760 761 762
    }
#endif

763 764 765
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
766

767 768
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
769

770 771
    return buf;
}
772
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
773 774 775

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
776 777 778
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
779 780 781 782
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

783 784 785 786 787 788 789
    /* Estimate a good size for the number of TBs we can support.  We
       still haven't deducted the prologue from the buffer size here,
       but that's minimal and won't affect the estimate much.  */
    tcg_ctx.code_gen_max_blocks
        = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);

K
KONRAD Frederic 已提交
790
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
791 792
}

793 794 795 796 797 798 799
static void tb_htable_init(void)
{
    unsigned int mode = QHT_MODE_AUTO_RESIZE;

    qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
}

800 801 802 803 804 805 806
/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    page_init();
807
    tb_htable_init();
808
    code_gen_alloc(tb_size);
809
#if defined(CONFIG_SOFTMMU)
810 811 812 813 814 815 816 817
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
818
    return tcg_ctx.code_gen_buffer != NULL;
819 820
}

821 822 823 824 825 826
/*
 * Allocate a new translation block. Flush the translation buffer if
 * too many translation blocks or too much generated code.
 *
 * Called with tb_lock held.
 */
827 828 829 830
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

831
    assert_tb_locked();
832

833
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
834 835
        return NULL;
    }
836
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
837 838
    tb->pc = pc;
    tb->cflags = 0;
839
    tb->invalid = false;
840 841 842
    return tb;
}

843
/* Called with tb_lock held.  */
844 845
void tb_free(TranslationBlock *tb)
{
846
    assert_tb_locked();
847

848 849 850
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
851 852
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
853
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
854
        tcg_ctx.tb_ctx.nb_tbs--;
855 856 857 858 859
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
860
#ifdef CONFIG_SOFTMMU
861 862
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
863
    p->code_write_count = 0;
864
#endif
865 866 867 868 869 870 871 872 873 874 875 876 877
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

878
        for (i = 0; i < V_L2_SIZE; ++i) {
879 880 881 882 883 884
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

885
        for (i = 0; i < V_L2_SIZE; ++i) {
886 887 888 889 890 891 892
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
893
    int i, l1_sz = v_l1_size;
894

895 896
    for (i = 0; i < l1_sz; i++) {
        page_flush_tb_1(v_l2_levels, l1_map + i);
897 898 899 900
    }
}

/* flush all the translation blocks */
901
static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
902
{
903 904
    tb_lock();

905
    /* If it is already been done on request of another CPU,
906 907
     * just retry.
     */
908
    if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
909
        goto done;
910
    }
911

912
#if defined(DEBUG_TB_FLUSH)
913
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
914
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
915
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
916
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
917
           tcg_ctx.tb_ctx.nb_tbs : 0);
918
#endif
E
Evgeny Voevodin 已提交
919 920
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
921
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
922 923
    }

A
Andreas Färber 已提交
924
    CPU_FOREACH(cpu) {
925 926 927 928 929
        int i;

        for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
            atomic_set(&cpu->tb_jmp_cache[i], NULL);
        }
930 931
    }

932
    tcg_ctx.tb_ctx.nb_tbs = 0;
933
    qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
934 935
    page_flush_tb();

E
Evgeny Voevodin 已提交
936
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
937 938
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
939 940 941 942 943 944 945 946 947 948
    atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
                  tcg_ctx.tb_ctx.tb_flush_count + 1);

done:
    tb_unlock();
}

void tb_flush(CPUState *cpu)
{
    if (tcg_enabled()) {
949 950 951
        unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
        async_safe_run_on_cpu(cpu, do_tb_flush,
                              RUN_ON_CPU_HOST_INT(tb_flush_count));
952
    }
953 954 955 956
}

#ifdef DEBUG_TB_CHECK

957 958
static void
do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
959
{
960 961 962 963 964 965 966 967
    TranslationBlock *tb = p;
    target_ulong addr = *(target_ulong *)userp;

    if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
        printf("ERROR invalidate: address=" TARGET_FMT_lx
               " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
    }
}
968

969 970 971 972
/* verify that all the pages have correct rights for code
 *
 * Called with tb_lock held.
 */
973 974
static void tb_invalidate_check(target_ulong address)
{
975
    address &= TARGET_PAGE_MASK;
976 977 978 979 980 981 982 983 984 985 986 987 988 989
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
}

static void
do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
{
    TranslationBlock *tb = p;
    int flags1, flags2;

    flags1 = page_get_flags(tb->pc);
    flags2 = page_get_flags(tb->pc + tb->size - 1);
    if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
        printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
               (long)tb->pc, tb->size, flags1, flags2);
990 991 992 993 994 995
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
996
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
}

#endif

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

1018 1019
/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1020
{
1021 1022
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1023 1024
    unsigned int n1;

1025
    ptb = &tb->jmp_list_next[n];
1026
    if (*ptb) {
1027 1028
        /* find tb(n) in circular list */
        for (;;) {
1029 1030 1031
            ntb = *ptb;
            n1 = ntb & 3;
            tb1 = (TranslationBlock *)(ntb & ~3);
1032 1033 1034 1035
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
1036
                ptb = &tb1->jmp_list_first;
1037
            } else {
1038
                ptb = &tb1->jmp_list_next[n1];
1039 1040 1041
            }
        }
        /* now we can suppress tb(n) from the list */
1042
        *ptb = tb->jmp_list_next[n];
1043

1044
        tb->jmp_list_next[n] = (uintptr_t)NULL;
1045 1046 1047 1048 1049 1050 1051
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
1052 1053
    uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
    tb_set_jmp_target(tb, n, addr);
1054 1055
}

1056 1057 1058
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *tb)
{
S
Sergey Fedorov 已提交
1059 1060
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1061 1062
    unsigned int n1;

S
Sergey Fedorov 已提交
1063
    ptb = &tb->jmp_list_first;
1064
    for (;;) {
S
Sergey Fedorov 已提交
1065 1066 1067
        ntb = *ptb;
        n1 = ntb & 3;
        tb1 = (TranslationBlock *)(ntb & ~3);
1068 1069 1070
        if (n1 == 2) {
            break;
        }
S
Sergey Fedorov 已提交
1071 1072 1073
        tb_reset_jump(tb1, n1);
        *ptb = tb1->jmp_list_next[n1];
        tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1074 1075 1076
    }
}

1077 1078 1079 1080
/* invalidate one TB
 *
 * Called with tb_lock held.
 */
1081 1082
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
1083
    CPUState *cpu;
1084
    PageDesc *p;
1085
    uint32_t h;
1086 1087
    tb_page_addr_t phys_pc;

1088
    assert_tb_locked();
1089

1090 1091
    atomic_set(&tb->invalid, true);

1092 1093
    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1094
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1095
    qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
1111
    CPU_FOREACH(cpu) {
1112 1113
        if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
            atomic_set(&cpu->tb_jmp_cache[h], NULL);
1114 1115 1116 1117
        }
    }

    /* suppress this TB from the two jump lists */
1118 1119
    tb_remove_from_jmp_list(tb, 0);
    tb_remove_from_jmp_list(tb, 1);
1120 1121

    /* suppress any remaining jumps to this TB */
1122
    tb_jmp_unlink(tb);
1123

1124
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1125 1126
}

1127
#ifdef CONFIG_SOFTMMU
1128 1129 1130 1131 1132
static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1133
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
1147
             }
1148 1149 1150 1151
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1152
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1153 1154 1155
        tb = tb->page_next[n];
    }
}
1156
#endif
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

1170 1171
    assert_memory_lock();

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
 * (-1) to indicate that only one page contains the TB.
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
1226
    uint32_t h;
1227

1228 1229
    assert_memory_lock();

1230 1231 1232 1233 1234 1235 1236 1237
    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

1238 1239 1240 1241
    /* add in the hash table */
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
    qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);

1242 1243 1244 1245 1246
#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

1247
/* Called with mmap_lock held for user mode emulation.  */
1248
TranslationBlock *tb_gen_code(CPUState *cpu,
1249
                              target_ulong pc, target_ulong cs_base,
1250
                              uint32_t flags, int cflags)
1251
{
1252
    CPUArchState *env = cpu->env_ptr;
1253 1254 1255
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1256
    tcg_insn_unit *gen_code_buf;
1257
    int gen_code_size, search_size;
1258 1259 1260
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1261
    assert_memory_lock();
1262 1263

    phys_pc = get_page_addr_code(env, pc);
1264
    if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1265 1266
        cflags |= CF_USE_ICOUNT;
    }
1267

1268
    tb = tb_alloc(pc);
1269 1270
    if (unlikely(!tb)) {
 buffer_overflow:
1271
        /* flush must be done */
1272
        tb_flush(cpu);
1273
        mmap_unlock();
P
Pavel Dovgalyuk 已提交
1274 1275
        /* Make the execution loop process the flush as soon as possible.  */
        cpu->exception_index = EXCP_INTERRUPT;
1276
        cpu_loop_exit(cpu);
1277
    }
1278 1279 1280

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1281 1282 1283
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1284 1285 1286 1287 1288 1289 1290 1291 1292

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

1293
    tcg_ctx.cpu = ENV_GET_CPU(env);
1294
    gen_intermediate_code(env, tb);
1295
    tcg_ctx.cpu = NULL;
1296 1297 1298 1299

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
1300 1301 1302
    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
    tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1303
#ifdef USE_DIRECT_JUMP
1304 1305
    tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
    tcg_ctx.tb_jmp_target_addr = NULL;
1306
#else
1307 1308
    tcg_ctx.tb_jmp_insn_offset = NULL;
    tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1309 1310 1311 1312 1313 1314 1315 1316
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

1317 1318 1319 1320 1321
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1322
    gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1323 1324 1325
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1326
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1327 1328 1329
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1330 1331 1332 1333 1334

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1335
    tcg_ctx.search_out_len += search_size;
1336 1337 1338
#endif

#ifdef DEBUG_DISAS
1339 1340
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
        qemu_log_in_addr_range(tb->pc)) {
1341
        qemu_log_lock();
1342 1343 1344 1345
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
1346
        qemu_log_unlock();
1347 1348 1349
    }
#endif

1350 1351 1352
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    /* init jump list */
    assert(((uintptr_t)tb & 3) == 0);
    tb->jmp_list_first = (uintptr_t)tb | 2;
    tb->jmp_list_next[0] = (uintptr_t)NULL;
    tb->jmp_list_next[1] = (uintptr_t)NULL;

    /* init original jump addresses wich has been set during tcg_gen_code() */
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 0);
    }
    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 1);
    }

1368 1369 1370 1371 1372 1373
    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
1374 1375 1376 1377 1378
    /* As long as consistency of the TB stuff is provided by tb_lock in user
     * mode and is implicit in single-threaded softmmu emulation, no explicit
     * memory barrier is required before tb_link_page() makes the TB visible
     * through the physical hash table and physical page list.
     */
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1389
 *
1390 1391
 * Called with mmap_lock held for user-mode emulation, grabs tb_lock
 * Called with tb_lock held for system-mode emulation
1392
 */
1393
static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
1394 1395
{
    while (start < end) {
1396
        tb_invalidate_phys_page_range(start, end, 0);
1397 1398 1399 1400 1401
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

1402 1403 1404
#ifdef CONFIG_SOFTMMU
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
1405
    assert_tb_locked();
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    tb_invalidate_phys_range_1(start, end);
}
#else
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
    assert_memory_lock();
    tb_lock();
    tb_invalidate_phys_range_1(start, end);
    tb_unlock();
}
#endif
1417 1418 1419 1420 1421 1422
/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1423
 *
1424 1425
 * Called with tb_lock/mmap_lock held for user-mode emulation
 * Called with tb_lock held for system-mode emulation
1426 1427 1428 1429
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
1430
    TranslationBlock *tb, *tb_next;
1431
#if defined(TARGET_HAS_PRECISE_SMC)
1432
    CPUState *cpu = current_cpu;
1433 1434
    CPUArchState *env = NULL;
#endif
1435 1436 1437 1438 1439 1440 1441 1442 1443
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1444
    uint32_t current_flags = 0;
1445 1446
#endif /* TARGET_HAS_PRECISE_SMC */

1447
    assert_memory_lock();
1448
    assert_tb_locked();
1449

1450 1451 1452 1453
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1454
#if defined(TARGET_HAS_PRECISE_SMC)
1455 1456
    if (cpu != NULL) {
        env = cpu->env_ptr;
1457
    }
1458
#endif
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1483
                if (cpu->mem_io_pc) {
1484
                    /* now we have a real cpu fault */
1485
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1497
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            tb_phys_invalidate(tb, -1);
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1510
        tlb_unprotect_code(start);
1511 1512 1513 1514 1515 1516 1517
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1518
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1519
        cpu_loop_exit_noexc(cpu);
1520 1521 1522 1523
    }
#endif
}

1524
#ifdef CONFIG_SOFTMMU
1525 1526
/* len must be <= 8 and start must be a multiple of len.
 * Called via softmmu_template.h when code areas are written to with
1527
 * iothread mutex not held.
1528
 */
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
1542 1543
    assert_memory_lock();

1544 1545 1546 1547
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1548 1549
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1550 1551 1552
        /* build code bitmap.  FIXME: writes should be protected by
         * tb_lock, reads by tb_lock or RCU.
         */
1553 1554
        build_page_bitmap(p);
    }
1555
    if (p->code_bitmap) {
1556 1557 1558 1559 1560
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1561 1562 1563 1564 1565 1566 1567 1568
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}
1569
#else
1570 1571 1572 1573 1574 1575 1576
/* Called with mmap_lock held. If pc is not 0 then it indicates the
 * host PC of the faulting store instruction that caused this invalidate.
 * Returns true if the caller needs to abort execution of the current
 * TB (because it was modified by this store and the guest CPU has
 * precise-SMC semantics).
 */
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1577 1578 1579 1580 1581 1582
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1583 1584
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1585 1586 1587
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1588
    uint32_t current_flags = 0;
1589 1590
#endif

1591 1592
    assert_memory_lock();

1593 1594 1595
    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
1596
        return false;
1597
    }
1598 1599

    tb_lock();
1600 1601 1602 1603 1604
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1605 1606
    if (cpu != NULL) {
        env = cpu->env_ptr;
1607
    }
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1622
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1636
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1637 1638
        /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
         * back into the cpu_exec loop. */
1639
        return true;
1640 1641
    }
#endif
1642 1643
    tb_unlock();

1644
    return false;
1645 1646 1647 1648 1649
}
#endif

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1650
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1651 1652 1653 1654 1655
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1656
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1657 1658
        return NULL;
    }
E
Evgeny Voevodin 已提交
1659 1660
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1661 1662 1663 1664
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1665
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1666 1667
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1668
        tb = &tcg_ctx.tb_ctx.tbs[m];
1669 1670 1671 1672 1673 1674 1675 1676 1677
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1678
    return &tcg_ctx.tb_ctx.tbs[m_max];
1679 1680
}

1681
#if !defined(CONFIG_USER_ONLY)
1682
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1683 1684
{
    ram_addr_t ram_addr;
1685
    MemoryRegion *mr;
1686
    hwaddr l = 1;
1687

1688
    rcu_read_lock();
1689
    mr = address_space_translate(as, addr, &addr, &l, false);
1690 1691
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1692
        rcu_read_unlock();
1693 1694
        return;
    }
1695
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1696
    tb_lock();
1697
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1698
    tb_unlock();
1699
    rcu_read_unlock();
1700
}
1701
#endif /* !defined(CONFIG_USER_ONLY) */
1702

1703
/* Called with tb_lock held.  */
1704
void tb_check_watchpoint(CPUState *cpu)
1705 1706 1707
{
    TranslationBlock *tb;

1708
    tb = tb_find_pc(cpu->mem_io_pc);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
1719
        uint32_t flags;
1720 1721 1722 1723

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1724 1725 1726 1727 1728
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
1729 1730 1731 1732
 * must be at the end of the TB.
 *
 * Called by softmmu_template.h, with iothread mutex not held.
 */
1733
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1734
{
1735
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1736
    CPUArchState *env = cpu->env_ptr;
1737
#endif
1738 1739 1740
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
1741
    uint32_t flags;
1742

1743
    tb_lock();
1744 1745
    tb = tb_find_pc(retaddr);
    if (!tb) {
1746
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1747 1748
                  (void *)retaddr);
    }
1749
    n = cpu->icount_decr.u16.low + tb->icount;
1750
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1751 1752
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1753
    n = n - cpu->icount_decr.u16.low;
1754 1755 1756 1757 1758 1759 1760 1761
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1762
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1763
        cpu->icount_decr.u16.low++;
1764 1765 1766 1767 1768 1769
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1770
        cpu->icount_decr.u16.low++;
1771 1772 1773 1774 1775
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1776
        cpu_abort(cpu, "TB too big during recompile");
1777 1778 1779 1780 1781 1782 1783
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1784 1785 1786 1787 1788 1789 1790 1791
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1792 1793
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1794
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1795

1796
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1797 1798 1799 1800 1801 1802 1803 1804
     * the first in the TB) then we end up generating a whole new TB and
     *  repeating the fault, which is horribly inefficient.
     *  Better would be to execute just this insn uncached, or generate a
     *  second new TB.
     *
     * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
     * tb_lock gets reset.
     */
1805
    cpu_loop_exit_noexc(cpu);
1806 1807
}

1808
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1809 1810 1811 1812 1813 1814
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1815
    memset(&cpu->tb_jmp_cache[i], 0,
1816 1817 1818
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1819
    memset(&cpu->tb_jmp_cache[i], 0,
1820 1821 1822
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
                                 struct qht_stats hst)
{
    uint32_t hgram_opts;
    size_t hgram_bins;
    char *hgram;

    if (!hst.head_buckets) {
        return;
    }
    cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
                hst.used_head_buckets, hst.head_buckets,
                (double)hst.used_head_buckets / hst.head_buckets * 100);

    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
        hgram_opts |= QDIST_PR_NODECIMAL;
    }
    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
    cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
                qdist_avg(&hst.occupancy) * 100, hgram);
    g_free(hgram);

    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
    if (hgram_bins > 10) {
        hgram_bins = 10;
    } else {
        hgram_bins = 0;
        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
    }
    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
    cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
                qdist_avg(&hst.chain), hgram);
    g_free(hgram);
}

1861 1862 1863 1864 1865
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;
1866
    struct qht_stats hst;
1867

1868 1869
    tb_lock();

1870 1871 1872 1873 1874
    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1875 1876
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1877 1878 1879 1880 1881 1882 1883
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
1884
        if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1885
            direct_jmp_count++;
1886
            if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1887 1888 1889 1890 1891 1892 1893
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1894
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1895
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1896
    cpu_fprintf(f, "TB count            %d/%d\n",
1897
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1898
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1899 1900 1901
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1902
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1903 1904 1905 1906 1907 1908 1909 1910 1911
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1912 1913
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1914 1915
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1916
                direct_jmp2_count,
1917 1918
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1919 1920

    qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1921
    print_qht_statistics(f, cpu_fprintf, hst);
1922 1923
    qht_statistics_destroy(&hst);

1924
    cpu_fprintf(f, "\nStatistics:\n");
1925 1926
    cpu_fprintf(f, "TB flush count      %u\n",
            atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1927 1928
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1929 1930
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
1931 1932

    tb_unlock();
1933 1934
}

1935 1936 1937 1938 1939
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1940 1941
#else /* CONFIG_USER_ONLY */

1942
void cpu_interrupt(CPUState *cpu, int mask)
1943
{
1944
    g_assert(qemu_mutex_iothread_locked());
1945
    cpu->interrupt_request |= mask;
1946
    cpu->tcg_exit_req = 1;
1947 1948 1949 1950 1951 1952 1953 1954 1955
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1956
    target_ulong start;
1957 1958 1959 1960
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1961
                                   target_ulong end, int new_prot)
1962
{
1963
    if (data->start != -1u) {
1964 1965 1966 1967 1968 1969
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1970
    data->start = (new_prot ? end : -1u);
1971 1972 1973 1974 1975 1976
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1977
                                 target_ulong base, int level, void **lp)
1978
{
1979
    target_ulong pa;
1980 1981 1982 1983 1984 1985 1986 1987 1988
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1989
        for (i = 0; i < V_L2_SIZE; ++i) {
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

2003
        for (i = 0; i < V_L2_SIZE; ++i) {
2004
            pa = base | ((target_ulong)i <<
2005
                (TARGET_PAGE_BITS + V_L2_BITS * level));
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
2019
    uintptr_t i, l1_sz = v_l1_size;
2020 2021 2022

    data.fn = fn;
    data.priv = priv;
2023
    data.start = -1u;
2024 2025
    data.prot = 0;

2026 2027 2028
    for (i = 0; i < l1_sz; i++) {
        target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
        int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2029 2030 2031 2032 2033 2034 2035 2036
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

2037 2038
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
2039 2040 2041
{
    FILE *f = (FILE *)priv;

2042 2043
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
2055
    const int length = sizeof(target_ulong) * 2;
2056 2057
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2083
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2084 2085
#endif
    assert(start < end);
2086
    assert_memory_lock();
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
2105
            tb_invalidate_phys_page(addr, 0);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2121
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
2157
                if (!page_unprotect(addr, 0)) {
2158 2159 2160 2161 2162 2163 2164 2165 2166
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
2167 2168 2169 2170 2171 2172
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 * and 2 if it was handled but the caller must cause the TB to be
 * immediately exited. (We can only return 2 if the 'pc' argument is
 * non-zero.)
 */
int page_unprotect(target_ulong address, uintptr_t pc)
2173 2174
{
    unsigned int prot;
2175
    bool current_tb_invalidated;
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
2197
        current_tb_invalidated = false;
2198 2199 2200 2201 2202 2203 2204
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
2205
            current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2206 2207 2208 2209 2210 2211 2212 2213
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
2214 2215
        /* If current TB was invalidated return to main loop */
        return current_tb_invalidated ? 2 : 1;
2216 2217 2218 2219 2220
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */