translate-all.c 63.1 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21
#ifdef _WIN32
#include <windows.h>
#endif
P
Peter Maydell 已提交
22
#include "qemu/osdep.h"
B
bellard 已提交
23

B
bellard 已提交
24

25
#include "qemu-common.h"
B
bellard 已提交
26
#define NO_CPU_IO_DEFS
B
bellard 已提交
27
#include "cpu.h"
28
#include "trace.h"
29
#include "disas/disas.h"
30
#include "exec/exec-all.h"
B
bellard 已提交
31
#include "tcg.h"
32 33
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
34
#include "exec/exec-all.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
49 50
#else
#include "exec/address-spaces.h"
51 52
#endif

53
#include "exec/cputlb.h"
54
#include "exec/tb-hash.h"
55
#include "translate-all.h"
56
#include "qemu/bitmap.h"
57
#include "qemu/timer.h"
58
#include "exec/log.h"
59

60 61
/* #define DEBUG_TB_INVALIDATE */
/* #define DEBUG_TB_FLUSH */
62
/* #define DEBUG_LOCKING */
63
/* make various TB consistency checks */
64
/* #define DEBUG_TB_CHECK */
65 66 67 68 69 70

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* Access to the various translations structures need to be serialised via locks
 * for consistency. This is automatic for SoftMMU based system
 * emulation due to its single threaded nature. In user-mode emulation
 * access to the memory related structures are protected with the
 * mmap_lock.
 */
#ifdef DEBUG_LOCKING
#define DEBUG_MEM_LOCKS 1
#else
#define DEBUG_MEM_LOCKS 0
#endif

#ifdef CONFIG_SOFTMMU
#define assert_memory_lock() do { /* nothing */ } while (0)
#else
#define assert_memory_lock() do {               \
        if (DEBUG_MEM_LOCKS) {                  \
            g_assert(have_mmap_lock());         \
        }                                       \
    } while (0)
#endif

93 94 95 96 97
#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
98
#ifdef CONFIG_SOFTMMU
99 100 101
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
102
    unsigned long *code_bitmap;
103
#else
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

120 121 122 123
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

124
uintptr_t qemu_host_page_size;
125
intptr_t qemu_host_page_mask;
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/*
 * L1 Mapping properties
 */
static int v_l1_size;
static int v_l1_shift;
static int v_l2_levels;

/* The bottom level has pointers to PageDesc, and is indexed by
 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
 */
#define V_L1_MIN_BITS 4
#define V_L1_MAX_BITS (V_L2_BITS + 3)
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)

static void *l1_map[V_L1_MAX_SIZE];
142

B
bellard 已提交
143 144
/* code generation context */
TCGContext tcg_ctx;
R
Richard Henderson 已提交
145
bool parallel_cpus;
B
bellard 已提交
146

K
KONRAD Frederic 已提交
147 148 149 150 151
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static void page_table_config_init(void)
{
    uint32_t v_l1_bits;

    assert(TARGET_PAGE_BITS);
    /* The bits remaining after N lower levels of page tables.  */
    v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
    if (v_l1_bits < V_L1_MIN_BITS) {
        v_l1_bits += V_L2_BITS;
    }

    v_l1_size = 1 << v_l1_bits;
    v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
    v_l2_levels = v_l1_shift / V_L2_BITS - 1;

    assert(v_l1_bits <= V_L1_MAX_BITS);
    assert(v_l1_shift % V_L2_BITS == 0);
    assert(v_l2_levels >= 0);
}

K
KONRAD Frederic 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(!have_tb_lock);
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(have_tb_lock);
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#ifdef DEBUG_LOCKING
#define DEBUG_TB_LOCKS 1
#else
#define DEBUG_TB_LOCKS 0
#endif

#ifdef CONFIG_SOFTMMU
#define assert_tb_lock() do { /* nothing */ } while (0)
#else
#define assert_tb_lock() do {               \
        if (DEBUG_TB_LOCKS) {               \
            g_assert(have_tb_lock);         \
        }                                   \
    } while (0)
#endif


B
Blue Swirl 已提交
217
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
218

B
bellard 已提交
219 220 221 222 223
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
279
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
298 299 300 301 302 303 304 305

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
306 307 308 309 310
    }

    return p - block;
}

311
/* The cpu state corresponding to 'searched_pc' is restored.  */
312
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
313
                                     uintptr_t searched_pc)
B
bellard 已提交
314
{
315 316
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
317
    CPUArchState *env = cpu->env_ptr;
318 319
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
320
#ifdef CONFIG_PROFILER
321
    int64_t ti = profile_getclock();
B
bellard 已提交
322 323
#endif

R
Richard Henderson 已提交
324 325
    searched_pc -= GETPC_ADJ;

326 327 328
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
329

330 331 332 333 334 335 336 337 338 339 340 341
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
342

343
 found:
344
    if (tb->cflags & CF_USE_ICOUNT) {
345
        assert(use_icount);
P
pbrook 已提交
346
        /* Reset the cycle counter to the start of the block.  */
347
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
348
        /* Clear the IO flag.  */
349
        cpu->can_do_io = 0;
P
pbrook 已提交
350
    }
351 352
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
353 354

#ifdef CONFIG_PROFILER
355 356
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
357
#endif
B
bellard 已提交
358 359
    return 0;
}
360

361
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
362 363 364 365 366
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
367
        cpu_restore_state_from_tb(cpu, tb, retaddr);
368 369 370 371 372
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
373 374 375 376 377
        return true;
    }
    return false;
}

378
void page_size_init(void)
379 380 381 382
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
383
    qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
384 385 386 387 388 389
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
390
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
391
}
392

393 394 395
static void page_init(void)
{
    page_size_init();
396 397
    page_table_config_init();

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

464 465 466
/* If alloc=1:
 * Called with mmap_lock held for user-mode emulation.
 */
467 468 469 470 471 472 473
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
474
    lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
475 476

    /* Level 2..N-1.  */
477
    for (i = v_l2_levels; i > 0; i--) {
478
        void **p = atomic_rcu_read(lp);
479 480 481 482 483

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
484
            p = g_new0(void *, V_L2_SIZE);
485
            atomic_rcu_set(lp, p);
486 487
        }

488
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
489 490
    }

491
    pd = atomic_rcu_read(lp);
492 493 494 495
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
496
        pd = g_new0(PageDesc, V_L2_SIZE);
497
        atomic_rcu_set(lp, pd);
498 499
    }

500
    return pd + (index & (V_L2_SIZE - 1));
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
527 528
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
529 530
#elif defined(__powerpc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
531 532
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
533 534 535 536 537
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
538 539 540 541
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
    return tb_size;
}

575 576 577 578 579
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
580
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
581 582 583 584 585 586 587
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
588
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
589 590 591 592 593 594 595 596 597 598 599 600 601
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

602 603 604 605
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

647 648
static inline void *alloc_code_gen_buffer(void)
{
649
    void *buf = static_code_gen_buffer;
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

666
#ifdef __mips__
667 668 669
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
670 671
    }
#endif
672 673 674 675 676

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

677
    return buf;
678
}
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
697 698 699 700
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
701
    size_t size = tcg_ctx.code_gen_buffer_size;
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
717 718
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
719 720 721 722 723
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
724
# elif defined(__mips__)
725
#  if _MIPS_SIM == _ABI64
726 727 728 729
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
730 731
# endif

732 733
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
734 735 736 737 738
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
739
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
740
        /* Try again, with the original still mapped, to avoid re-acquiring
741
           that 256mb crossing.  This time don't specify an address.  */
742 743 744 745 746 747
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
        switch (buf2 != MAP_FAILED) {
        case 1:
            if (!cross_256mb(buf2, size)) {
748
                /* Success!  Use the new buffer.  */
749
                munmap(buf, size + qemu_real_host_page_size);
750
                break;
751 752
            }
            /* Failure.  Work with what we had.  */
753
            munmap(buf2, size + qemu_real_host_page_size);
754 755 756 757 758 759 760 761 762 763 764 765
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
766
        }
767
        buf = buf2;
768 769 770
    }
#endif

771 772 773
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
774

775 776
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
777

778 779
    return buf;
}
780
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
781 782 783

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
784 785 786
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
787 788 789 790
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

791 792 793 794 795 796 797
    /* Estimate a good size for the number of TBs we can support.  We
       still haven't deducted the prologue from the buffer size here,
       but that's minimal and won't affect the estimate much.  */
    tcg_ctx.code_gen_max_blocks
        = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);

K
KONRAD Frederic 已提交
798
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
799 800
}

801 802 803 804 805 806 807
static void tb_htable_init(void)
{
    unsigned int mode = QHT_MODE_AUTO_RESIZE;

    qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
}

808 809 810 811 812 813 814
/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    page_init();
815
    tb_htable_init();
816
    code_gen_alloc(tb_size);
817
#if defined(CONFIG_SOFTMMU)
818 819 820 821 822 823 824 825
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
826
    return tcg_ctx.code_gen_buffer != NULL;
827 828 829 830 831 832 833 834
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

835
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
836 837
        return NULL;
    }
838
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
839 840
    tb->pc = pc;
    tb->cflags = 0;
841
    tb->invalid = false;
842 843 844 845 846 847 848 849
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
850 851
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
852
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
853
        tcg_ctx.tb_ctx.nb_tbs--;
854 855 856 857 858
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
859
#ifdef CONFIG_SOFTMMU
860 861
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
862
    p->code_write_count = 0;
863
#endif
864 865 866 867 868 869 870 871 872 873 874 875 876
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

877
        for (i = 0; i < V_L2_SIZE; ++i) {
878 879 880 881 882 883
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

884
        for (i = 0; i < V_L2_SIZE; ++i) {
885 886 887 888 889 890 891
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
892
    int i, l1_sz = v_l1_size;
893

894 895
    for (i = 0; i < l1_sz; i++) {
        page_flush_tb_1(v_l2_levels, l1_map + i);
896 897 898 899
    }
}

/* flush all the translation blocks */
900
static void do_tb_flush(CPUState *cpu, void *data)
901
{
902 903 904 905 906 907 908 909 910
    unsigned tb_flush_req = (unsigned) (uintptr_t) data;

    tb_lock();

    /* If it's already been done on request of another CPU,
     * just retry.
     */
    if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
        goto done;
911
    }
912

913
#if defined(DEBUG_TB_FLUSH)
914
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
915
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
916
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
917
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
918
           tcg_ctx.tb_ctx.nb_tbs : 0);
919
#endif
E
Evgeny Voevodin 已提交
920 921
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
922
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
923 924
    }

A
Andreas Färber 已提交
925
    CPU_FOREACH(cpu) {
926 927 928 929 930
        int i;

        for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
            atomic_set(&cpu->tb_jmp_cache[i], NULL);
        }
931 932
    }

933
    tcg_ctx.tb_ctx.nb_tbs = 0;
934
    qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
935 936
    page_flush_tb();

E
Evgeny Voevodin 已提交
937
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
938 939
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
940 941 942 943 944 945 946 947 948 949 950 951 952
    atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
                  tcg_ctx.tb_ctx.tb_flush_count + 1);

done:
    tb_unlock();
}

void tb_flush(CPUState *cpu)
{
    if (tcg_enabled()) {
        uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
        async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
    }
953 954 955 956
}

#ifdef DEBUG_TB_CHECK

957 958
static void
do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
959
{
960 961 962 963 964 965 966 967
    TranslationBlock *tb = p;
    target_ulong addr = *(target_ulong *)userp;

    if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
        printf("ERROR invalidate: address=" TARGET_FMT_lx
               " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
    }
}
968

969 970
static void tb_invalidate_check(target_ulong address)
{
971
    address &= TARGET_PAGE_MASK;
972 973 974 975 976 977 978 979 980 981 982 983 984 985
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
}

static void
do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
{
    TranslationBlock *tb = p;
    int flags1, flags2;

    flags1 = page_get_flags(tb->pc);
    flags2 = page_get_flags(tb->pc + tb->size - 1);
    if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
        printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
               (long)tb->pc, tb->size, flags1, flags2);
986 987 988 989 990 991
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
992
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
}

#endif

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

1014 1015
/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1016
{
1017 1018
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1019 1020
    unsigned int n1;

1021
    ptb = &tb->jmp_list_next[n];
1022
    if (*ptb) {
1023 1024
        /* find tb(n) in circular list */
        for (;;) {
1025 1026 1027
            ntb = *ptb;
            n1 = ntb & 3;
            tb1 = (TranslationBlock *)(ntb & ~3);
1028 1029 1030 1031
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
1032
                ptb = &tb1->jmp_list_first;
1033
            } else {
1034
                ptb = &tb1->jmp_list_next[n1];
1035 1036 1037
            }
        }
        /* now we can suppress tb(n) from the list */
1038
        *ptb = tb->jmp_list_next[n];
1039

1040
        tb->jmp_list_next[n] = (uintptr_t)NULL;
1041 1042 1043 1044 1045 1046 1047
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
1048 1049
    uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
    tb_set_jmp_target(tb, n, addr);
1050 1051
}

1052 1053 1054
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *tb)
{
S
Sergey Fedorov 已提交
1055 1056
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1057 1058
    unsigned int n1;

S
Sergey Fedorov 已提交
1059
    ptb = &tb->jmp_list_first;
1060
    for (;;) {
S
Sergey Fedorov 已提交
1061 1062 1063
        ntb = *ptb;
        n1 = ntb & 3;
        tb1 = (TranslationBlock *)(ntb & ~3);
1064 1065 1066
        if (n1 == 2) {
            break;
        }
S
Sergey Fedorov 已提交
1067 1068 1069
        tb_reset_jump(tb1, n1);
        *ptb = tb1->jmp_list_next[n1];
        tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1070 1071 1072
    }
}

1073
/* invalidate one TB */
1074 1075
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
1076
    CPUState *cpu;
1077
    PageDesc *p;
1078
    uint32_t h;
1079 1080
    tb_page_addr_t phys_pc;

1081 1082
    atomic_set(&tb->invalid, true);

1083 1084
    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1085
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1086
    qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
1102
    CPU_FOREACH(cpu) {
1103 1104
        if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
            atomic_set(&cpu->tb_jmp_cache[h], NULL);
1105 1106 1107 1108
        }
    }

    /* suppress this TB from the two jump lists */
1109 1110
    tb_remove_from_jmp_list(tb, 0);
    tb_remove_from_jmp_list(tb, 1);
1111 1112

    /* suppress any remaining jumps to this TB */
1113
    tb_jmp_unlink(tb);
1114

1115
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1116 1117
}

1118
#ifdef CONFIG_SOFTMMU
1119 1120 1121 1122 1123
static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1124
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1143
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1144 1145 1146
        tb = tb->page_next[n];
    }
}
1147
#endif
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
 * (-1) to indicate that only one page contains the TB.
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
1215
    uint32_t h;
1216 1217 1218 1219 1220 1221 1222 1223 1224

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

1225 1226 1227 1228
    /* add in the hash table */
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
    qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);

1229 1230 1231 1232 1233
#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

1234
/* Called with mmap_lock held for user mode emulation.  */
1235
TranslationBlock *tb_gen_code(CPUState *cpu,
1236
                              target_ulong pc, target_ulong cs_base,
1237
                              uint32_t flags, int cflags)
1238
{
1239
    CPUArchState *env = cpu->env_ptr;
1240 1241 1242
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1243
    tcg_insn_unit *gen_code_buf;
1244
    int gen_code_size, search_size;
1245 1246 1247
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1248 1249

    phys_pc = get_page_addr_code(env, pc);
1250
    if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1251 1252
        cflags |= CF_USE_ICOUNT;
    }
1253

1254
    tb = tb_alloc(pc);
1255 1256
    if (unlikely(!tb)) {
 buffer_overflow:
1257
        /* flush must be done */
1258
        tb_flush(cpu);
1259 1260
        mmap_unlock();
        cpu_loop_exit(cpu);
1261
    }
1262 1263 1264

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1265 1266 1267
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1268 1269 1270 1271 1272 1273 1274 1275 1276

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

1277
    tcg_ctx.cpu = ENV_GET_CPU(env);
1278
    gen_intermediate_code(env, tb);
1279
    tcg_ctx.cpu = NULL;
1280 1281 1282 1283

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
1284 1285 1286
    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
    tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1287
#ifdef USE_DIRECT_JUMP
1288 1289
    tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
    tcg_ctx.tb_jmp_target_addr = NULL;
1290
#else
1291 1292
    tcg_ctx.tb_jmp_insn_offset = NULL;
    tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1293 1294 1295 1296 1297 1298 1299 1300
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

1301 1302 1303 1304 1305
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1306
    gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1307 1308 1309
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1310
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1311 1312 1313
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1314 1315 1316 1317 1318

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1319
    tcg_ctx.search_out_len += search_size;
1320 1321 1322
#endif

#ifdef DEBUG_DISAS
1323 1324
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
        qemu_log_in_addr_range(tb->pc)) {
1325 1326 1327 1328 1329 1330 1331
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
    }
#endif

1332 1333 1334
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    /* init jump list */
    assert(((uintptr_t)tb & 3) == 0);
    tb->jmp_list_first = (uintptr_t)tb | 2;
    tb->jmp_list_next[0] = (uintptr_t)NULL;
    tb->jmp_list_next[1] = (uintptr_t)NULL;

    /* init original jump addresses wich has been set during tcg_gen_code() */
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 0);
    }
    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 1);
    }

1350 1351 1352 1353 1354 1355
    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
1356 1357 1358 1359 1360
    /* As long as consistency of the TB stuff is provided by tb_lock in user
     * mode and is implicit in single-threaded softmmu emulation, no explicit
     * memory barrier is required before tb_link_page() makes the TB visible
     * through the physical hash table and physical page list.
     */
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1371 1372
 *
 * Called with mmap_lock held for user-mode emulation
1373
 */
1374
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1375 1376
{
    while (start < end) {
1377
        tb_invalidate_phys_page_range(start, end, 0);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1389 1390
 *
 * Called with mmap_lock held for user-mode emulation
1391 1392 1393 1394
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
1395
    TranslationBlock *tb, *tb_next;
1396
#if defined(TARGET_HAS_PRECISE_SMC)
1397
    CPUState *cpu = current_cpu;
1398 1399
    CPUArchState *env = NULL;
#endif
1400 1401 1402 1403 1404 1405 1406 1407 1408
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1409
    uint32_t current_flags = 0;
1410 1411 1412 1413 1414 1415
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1416
#if defined(TARGET_HAS_PRECISE_SMC)
1417 1418
    if (cpu != NULL) {
        env = cpu->env_ptr;
1419
    }
1420
#endif
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1445
                if (cpu->mem_io_pc) {
1446
                    /* now we have a real cpu fault */
1447
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1459
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            tb_phys_invalidate(tb, -1);
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1472
        tlb_unprotect_code(start);
1473 1474 1475 1476 1477 1478 1479
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1480
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1481
        cpu_loop_exit_noexc(cpu);
1482 1483 1484 1485
    }
#endif
}

1486
#ifdef CONFIG_SOFTMMU
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1505 1506 1507 1508 1509
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1510
    if (p->code_bitmap) {
1511 1512 1513 1514 1515
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1516 1517 1518 1519 1520 1521 1522 1523
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}
1524
#else
1525 1526 1527 1528 1529 1530 1531
/* Called with mmap_lock held. If pc is not 0 then it indicates the
 * host PC of the faulting store instruction that caused this invalidate.
 * Returns true if the caller needs to abort execution of the current
 * TB (because it was modified by this store and the guest CPU has
 * precise-SMC semantics).
 */
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1532 1533 1534 1535 1536 1537
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1538 1539
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1540 1541 1542
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1543
    uint32_t current_flags = 0;
1544 1545 1546 1547 1548
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
1549
        return false;
1550 1551 1552 1553 1554 1555
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1556 1557
    if (cpu != NULL) {
        env = cpu->env_ptr;
1558
    }
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1573
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1587
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1588
        return true;
1589 1590
    }
#endif
1591
    return false;
1592 1593 1594 1595 1596
}
#endif

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1597
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1598 1599 1600 1601 1602
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1603
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1604 1605
        return NULL;
    }
E
Evgeny Voevodin 已提交
1606 1607
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1608 1609 1610 1611
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1612
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1613 1614
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1615
        tb = &tcg_ctx.tb_ctx.tbs[m];
1616 1617 1618 1619 1620 1621 1622 1623 1624
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1625
    return &tcg_ctx.tb_ctx.tbs[m_max];
1626 1627
}

1628
#if !defined(CONFIG_USER_ONLY)
1629
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1630 1631
{
    ram_addr_t ram_addr;
1632
    MemoryRegion *mr;
1633
    hwaddr l = 1;
1634

1635
    rcu_read_lock();
1636
    mr = address_space_translate(as, addr, &addr, &l, false);
1637 1638
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1639
        rcu_read_unlock();
1640 1641
        return;
    }
1642
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1643
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1644
    rcu_read_unlock();
1645
}
1646
#endif /* !defined(CONFIG_USER_ONLY) */
1647

1648
void tb_check_watchpoint(CPUState *cpu)
1649 1650 1651
{
    TranslationBlock *tb;

1652
    tb = tb_find_pc(cpu->mem_io_pc);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
1663
        uint32_t flags;
1664 1665 1666 1667

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1668 1669 1670 1671 1672 1673
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1674
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1675
{
1676
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1677
    CPUArchState *env = cpu->env_ptr;
1678
#endif
1679 1680 1681
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
1682
    uint32_t flags;
1683 1684 1685

    tb = tb_find_pc(retaddr);
    if (!tb) {
1686
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1687 1688
                  (void *)retaddr);
    }
1689
    n = cpu->icount_decr.u16.low + tb->icount;
1690
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1691 1692
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1693
    n = n - cpu->icount_decr.u16.low;
1694 1695 1696 1697 1698 1699 1700 1701
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1702
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1703
        cpu->icount_decr.u16.low++;
1704 1705 1706 1707 1708 1709
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1710
        cpu->icount_decr.u16.low++;
1711 1712 1713 1714 1715
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1716
        cpu_abort(cpu, "TB too big during recompile");
1717 1718 1719 1720 1721 1722 1723
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1724 1725 1726 1727 1728 1729 1730 1731
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1732 1733
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1734
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1735 1736 1737 1738 1739
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1740
    cpu_loop_exit_noexc(cpu);
1741 1742
}

1743
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1744 1745 1746 1747 1748 1749
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1750
    memset(&cpu->tb_jmp_cache[i], 0,
1751 1752 1753
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1754
    memset(&cpu->tb_jmp_cache[i], 0,
1755 1756 1757
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
                                 struct qht_stats hst)
{
    uint32_t hgram_opts;
    size_t hgram_bins;
    char *hgram;

    if (!hst.head_buckets) {
        return;
    }
    cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
                hst.used_head_buckets, hst.head_buckets,
                (double)hst.used_head_buckets / hst.head_buckets * 100);

    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
        hgram_opts |= QDIST_PR_NODECIMAL;
    }
    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
    cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
                qdist_avg(&hst.occupancy) * 100, hgram);
    g_free(hgram);

    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
    if (hgram_bins > 10) {
        hgram_bins = 10;
    } else {
        hgram_bins = 0;
        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
    }
    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
    cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
                qdist_avg(&hst.chain), hgram);
    g_free(hgram);
}

1796 1797 1798 1799 1800
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;
1801
    struct qht_stats hst;
1802 1803 1804 1805 1806 1807

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1808 1809
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1810 1811 1812 1813 1814 1815 1816
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
1817
        if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1818
            direct_jmp_count++;
1819
            if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1820 1821 1822 1823 1824 1825 1826
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1827
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1828
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1829
    cpu_fprintf(f, "TB count            %d/%d\n",
1830
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1831
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1832 1833 1834
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1835
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1836 1837 1838 1839 1840 1841 1842 1843 1844
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1845 1846
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1847 1848
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1849
                direct_jmp2_count,
1850 1851
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1852 1853

    qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1854
    print_qht_statistics(f, cpu_fprintf, hst);
1855 1856
    qht_statistics_destroy(&hst);

1857
    cpu_fprintf(f, "\nStatistics:\n");
1858 1859
    cpu_fprintf(f, "TB flush count      %u\n",
            atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1860 1861
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1862 1863 1864 1865
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1866 1867 1868 1869 1870
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1871 1872
#else /* CONFIG_USER_ONLY */

1873
void cpu_interrupt(CPUState *cpu, int mask)
1874
{
1875
    cpu->interrupt_request |= mask;
1876
    cpu->tcg_exit_req = 1;
1877 1878 1879 1880 1881 1882 1883 1884 1885
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1886
    target_ulong start;
1887 1888 1889 1890
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1891
                                   target_ulong end, int new_prot)
1892
{
1893
    if (data->start != -1u) {
1894 1895 1896 1897 1898 1899
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1900
    data->start = (new_prot ? end : -1u);
1901 1902 1903 1904 1905 1906
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1907
                                 target_ulong base, int level, void **lp)
1908
{
1909
    target_ulong pa;
1910 1911 1912 1913 1914 1915 1916 1917 1918
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1919
        for (i = 0; i < V_L2_SIZE; ++i) {
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1933
        for (i = 0; i < V_L2_SIZE; ++i) {
1934
            pa = base | ((target_ulong)i <<
1935
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
1949
    uintptr_t i, l1_sz = v_l1_size;
1950 1951 1952

    data.fn = fn;
    data.priv = priv;
1953
    data.start = -1u;
1954 1955
    data.prot = 0;

1956 1957 1958
    for (i = 0; i < l1_sz; i++) {
        target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
        int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
1959 1960 1961 1962 1963 1964 1965 1966
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1967 1968
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1969 1970 1971
{
    FILE *f = (FILE *)priv;

1972 1973
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1985
    const int length = sizeof(target_ulong) * 2;
1986 1987
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2013
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
2034
            tb_invalidate_phys_page(addr, 0);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2050
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
2086
                if (!page_unprotect(addr, 0)) {
2087 2088 2089 2090 2091 2092 2093 2094 2095
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
2096 2097 2098 2099 2100 2101
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 * and 2 if it was handled but the caller must cause the TB to be
 * immediately exited. (We can only return 2 if the 'pc' argument is
 * non-zero.)
 */
int page_unprotect(target_ulong address, uintptr_t pc)
2102 2103
{
    unsigned int prot;
2104
    bool current_tb_invalidated;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
2126
        current_tb_invalidated = false;
2127 2128 2129 2130 2131 2132 2133
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
2134
            current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2135 2136 2137 2138 2139 2140 2141 2142
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
2143 2144
        /* If current TB was invalidated return to main loop */
        return current_tb_invalidated ? 2 : 1;
2145 2146 2147 2148 2149
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */