translate-all.c 62.0 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21
#ifdef _WIN32
#include <windows.h>
#endif
P
Peter Maydell 已提交
22
#include "qemu/osdep.h"
B
bellard 已提交
23

B
bellard 已提交
24

25
#include "qemu-common.h"
B
bellard 已提交
26
#define NO_CPU_IO_DEFS
B
bellard 已提交
27
#include "cpu.h"
28
#include "trace.h"
29
#include "disas/disas.h"
30
#include "exec/exec-all.h"
B
bellard 已提交
31
#include "tcg.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
48 49
#else
#include "exec/address-spaces.h"
50 51
#endif

52
#include "exec/cputlb.h"
53
#include "exec/tb-hash.h"
54
#include "translate-all.h"
55
#include "qemu/bitmap.h"
56
#include "qemu/timer.h"
57
#include "exec/log.h"
58

59 60
/* #define DEBUG_TB_INVALIDATE */
/* #define DEBUG_TB_FLUSH */
61
/* make various TB consistency checks */
62
/* #define DEBUG_TB_CHECK */
63 64 65 66 67 68 69 70 71 72 73

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
74
#ifdef CONFIG_SOFTMMU
75 76 77
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
78
    unsigned long *code_bitmap;
79
#else
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

96 97 98 99
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

100
uintptr_t qemu_host_page_size;
101
intptr_t qemu_host_page_mask;
102

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * L1 Mapping properties
 */
static int v_l1_size;
static int v_l1_shift;
static int v_l2_levels;

/* The bottom level has pointers to PageDesc, and is indexed by
 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
 */
#define V_L1_MIN_BITS 4
#define V_L1_MAX_BITS (V_L2_BITS + 3)
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)

static void *l1_map[V_L1_MAX_SIZE];
118

B
bellard 已提交
119 120
/* code generation context */
TCGContext tcg_ctx;
R
Richard Henderson 已提交
121
bool parallel_cpus;
B
bellard 已提交
122

K
KONRAD Frederic 已提交
123 124 125 126 127
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static void page_table_config_init(void)
{
    uint32_t v_l1_bits;

    assert(TARGET_PAGE_BITS);
    /* The bits remaining after N lower levels of page tables.  */
    v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
    if (v_l1_bits < V_L1_MIN_BITS) {
        v_l1_bits += V_L2_BITS;
    }

    v_l1_size = 1 << v_l1_bits;
    v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
    v_l2_levels = v_l1_shift / V_L2_BITS - 1;

    assert(v_l1_bits <= V_L1_MAX_BITS);
    assert(v_l1_shift % V_L2_BITS == 0);
    assert(v_l2_levels >= 0);
}

K
KONRAD Frederic 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(!have_tb_lock);
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(have_tb_lock);
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

B
Blue Swirl 已提交
176
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
177

B
bellard 已提交
178 179 180 181 182
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
238
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
257 258 259 260 261 262 263 264

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
265 266 267 268 269
    }

    return p - block;
}

270
/* The cpu state corresponding to 'searched_pc' is restored.  */
271
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
272
                                     uintptr_t searched_pc)
B
bellard 已提交
273
{
274 275
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
276
    CPUArchState *env = cpu->env_ptr;
277 278
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
279
#ifdef CONFIG_PROFILER
280
    int64_t ti = profile_getclock();
B
bellard 已提交
281 282
#endif

R
Richard Henderson 已提交
283 284
    searched_pc -= GETPC_ADJ;

285 286 287
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
288

289 290 291 292 293 294 295 296 297 298 299 300
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
301

302
 found:
303
    if (tb->cflags & CF_USE_ICOUNT) {
304
        assert(use_icount);
P
pbrook 已提交
305
        /* Reset the cycle counter to the start of the block.  */
306
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
307
        /* Clear the IO flag.  */
308
        cpu->can_do_io = 0;
P
pbrook 已提交
309
    }
310 311
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
312 313

#ifdef CONFIG_PROFILER
314 315
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
316
#endif
B
bellard 已提交
317 318
    return 0;
}
319

320
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
321 322 323 324 325
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
326
        cpu_restore_state_from_tb(cpu, tb, retaddr);
327 328 329 330 331
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
332 333 334 335 336
        return true;
    }
    return false;
}

337
void page_size_init(void)
338 339 340 341
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
342
    qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
343 344 345 346 347 348
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
349
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
350
}
351

352 353 354
static void page_init(void)
{
    page_size_init();
355 356
    page_table_config_init();

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

423 424 425
/* If alloc=1:
 * Called with mmap_lock held for user-mode emulation.
 */
426 427 428 429 430 431 432
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
433
    lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
434 435

    /* Level 2..N-1.  */
436
    for (i = v_l2_levels; i > 0; i--) {
437
        void **p = atomic_rcu_read(lp);
438 439 440 441 442

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
443
            p = g_new0(void *, V_L2_SIZE);
444
            atomic_rcu_set(lp, p);
445 446
        }

447
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
448 449
    }

450
    pd = atomic_rcu_read(lp);
451 452 453 454
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
455
        pd = g_new0(PageDesc, V_L2_SIZE);
456
        atomic_rcu_set(lp, pd);
457 458
    }

459
    return pd + (index & (V_L2_SIZE - 1));
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
486 487
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
488 489
#elif defined(__powerpc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
490 491
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
492 493 494 495 496
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
497 498 499 500
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
    return tb_size;
}

534 535 536 537 538
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
539
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
540 541 542 543 544 545 546
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
547
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
548 549 550 551 552 553 554 555 556 557 558 559 560
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

561 562 563 564
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

606 607
static inline void *alloc_code_gen_buffer(void)
{
608
    void *buf = static_code_gen_buffer;
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

625
#ifdef __mips__
626 627 628
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
629 630
    }
#endif
631 632 633 634 635

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

636
    return buf;
637
}
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
656 657 658 659
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
660
    size_t size = tcg_ctx.code_gen_buffer_size;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
676 677
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
678 679 680 681 682
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
683
# elif defined(__mips__)
684
#  if _MIPS_SIM == _ABI64
685 686 687 688
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
689 690
# endif

691 692
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
693 694 695 696 697
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
698
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
699
        /* Try again, with the original still mapped, to avoid re-acquiring
700
           that 256mb crossing.  This time don't specify an address.  */
701 702 703 704 705 706
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
        switch (buf2 != MAP_FAILED) {
        case 1:
            if (!cross_256mb(buf2, size)) {
707
                /* Success!  Use the new buffer.  */
708
                munmap(buf, size + qemu_real_host_page_size);
709
                break;
710 711
            }
            /* Failure.  Work with what we had.  */
712
            munmap(buf2, size + qemu_real_host_page_size);
713 714 715 716 717 718 719 720 721 722 723 724
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
725
        }
726
        buf = buf2;
727 728 729
    }
#endif

730 731 732
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
733

734 735
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
736

737 738
    return buf;
}
739
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
740 741 742

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
743 744 745
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
746 747 748 749
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

750 751 752 753 754 755 756
    /* Estimate a good size for the number of TBs we can support.  We
       still haven't deducted the prologue from the buffer size here,
       but that's minimal and won't affect the estimate much.  */
    tcg_ctx.code_gen_max_blocks
        = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);

K
KONRAD Frederic 已提交
757
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
758 759
}

760 761 762 763 764 765 766
static void tb_htable_init(void)
{
    unsigned int mode = QHT_MODE_AUTO_RESIZE;

    qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
}

767 768 769 770 771 772 773
/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    page_init();
774
    tb_htable_init();
775
    code_gen_alloc(tb_size);
776
#if defined(CONFIG_SOFTMMU)
777 778 779 780 781 782 783 784
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
785
    return tcg_ctx.code_gen_buffer != NULL;
786 787 788 789 790 791 792 793
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

794
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
795 796
        return NULL;
    }
797
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
798 799
    tb->pc = pc;
    tb->cflags = 0;
800
    tb->invalid = false;
801 802 803 804 805 806 807 808
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
809 810
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
811
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
812
        tcg_ctx.tb_ctx.nb_tbs--;
813 814 815 816 817
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
818
#ifdef CONFIG_SOFTMMU
819 820
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
821
    p->code_write_count = 0;
822
#endif
823 824 825 826 827 828 829 830 831 832 833 834 835
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

836
        for (i = 0; i < V_L2_SIZE; ++i) {
837 838 839 840 841 842
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

843
        for (i = 0; i < V_L2_SIZE; ++i) {
844 845 846 847 848 849 850
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
851
    int i, l1_sz = v_l1_size;
852

853 854
    for (i = 0; i < l1_sz; i++) {
        page_flush_tb_1(v_l2_levels, l1_map + i);
855 856 857 858
    }
}

/* flush all the translation blocks */
859
static void do_tb_flush(CPUState *cpu, void *data)
860
{
861 862 863 864 865 866 867 868 869
    unsigned tb_flush_req = (unsigned) (uintptr_t) data;

    tb_lock();

    /* If it's already been done on request of another CPU,
     * just retry.
     */
    if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
        goto done;
870
    }
871

872
#if defined(DEBUG_TB_FLUSH)
873
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
874
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
875
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
876
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
877
           tcg_ctx.tb_ctx.nb_tbs : 0);
878
#endif
E
Evgeny Voevodin 已提交
879 880
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
881
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
882 883
    }

A
Andreas Färber 已提交
884
    CPU_FOREACH(cpu) {
885 886 887 888 889
        int i;

        for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
            atomic_set(&cpu->tb_jmp_cache[i], NULL);
        }
890 891
    }

892
    tcg_ctx.tb_ctx.nb_tbs = 0;
893
    qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
894 895
    page_flush_tb();

E
Evgeny Voevodin 已提交
896
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
897 898
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
899 900 901 902 903 904 905 906 907 908 909 910 911
    atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
                  tcg_ctx.tb_ctx.tb_flush_count + 1);

done:
    tb_unlock();
}

void tb_flush(CPUState *cpu)
{
    if (tcg_enabled()) {
        uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
        async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
    }
912 913 914 915
}

#ifdef DEBUG_TB_CHECK

916 917
static void
do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
918
{
919 920 921 922 923 924 925 926
    TranslationBlock *tb = p;
    target_ulong addr = *(target_ulong *)userp;

    if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
        printf("ERROR invalidate: address=" TARGET_FMT_lx
               " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
    }
}
927

928 929
static void tb_invalidate_check(target_ulong address)
{
930
    address &= TARGET_PAGE_MASK;
931 932 933 934 935 936 937 938 939 940 941 942 943 944
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
}

static void
do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
{
    TranslationBlock *tb = p;
    int flags1, flags2;

    flags1 = page_get_flags(tb->pc);
    flags2 = page_get_flags(tb->pc + tb->size - 1);
    if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
        printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
               (long)tb->pc, tb->size, flags1, flags2);
945 946 947 948 949 950
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
951
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
}

#endif

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

973 974
/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
975
{
976 977
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
978 979
    unsigned int n1;

980
    ptb = &tb->jmp_list_next[n];
981
    if (*ptb) {
982 983
        /* find tb(n) in circular list */
        for (;;) {
984 985 986
            ntb = *ptb;
            n1 = ntb & 3;
            tb1 = (TranslationBlock *)(ntb & ~3);
987 988 989 990
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
991
                ptb = &tb1->jmp_list_first;
992
            } else {
993
                ptb = &tb1->jmp_list_next[n1];
994 995 996
            }
        }
        /* now we can suppress tb(n) from the list */
997
        *ptb = tb->jmp_list_next[n];
998

999
        tb->jmp_list_next[n] = (uintptr_t)NULL;
1000 1001 1002 1003 1004 1005 1006
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
1007 1008
    uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
    tb_set_jmp_target(tb, n, addr);
1009 1010
}

1011 1012 1013
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *tb)
{
S
Sergey Fedorov 已提交
1014 1015
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1016 1017
    unsigned int n1;

S
Sergey Fedorov 已提交
1018
    ptb = &tb->jmp_list_first;
1019
    for (;;) {
S
Sergey Fedorov 已提交
1020 1021 1022
        ntb = *ptb;
        n1 = ntb & 3;
        tb1 = (TranslationBlock *)(ntb & ~3);
1023 1024 1025
        if (n1 == 2) {
            break;
        }
S
Sergey Fedorov 已提交
1026 1027 1028
        tb_reset_jump(tb1, n1);
        *ptb = tb1->jmp_list_next[n1];
        tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1029 1030 1031
    }
}

1032
/* invalidate one TB */
1033 1034
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
1035
    CPUState *cpu;
1036
    PageDesc *p;
1037
    uint32_t h;
1038 1039
    tb_page_addr_t phys_pc;

1040 1041
    atomic_set(&tb->invalid, true);

1042 1043
    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1044
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1045
    qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
1061
    CPU_FOREACH(cpu) {
1062 1063
        if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
            atomic_set(&cpu->tb_jmp_cache[h], NULL);
1064 1065 1066 1067
        }
    }

    /* suppress this TB from the two jump lists */
1068 1069
    tb_remove_from_jmp_list(tb, 0);
    tb_remove_from_jmp_list(tb, 1);
1070 1071

    /* suppress any remaining jumps to this TB */
1072
    tb_jmp_unlink(tb);
1073

1074
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1075 1076
}

1077
#ifdef CONFIG_SOFTMMU
1078 1079 1080 1081 1082
static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1083
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1102
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1103 1104 1105
        tb = tb->page_next[n];
    }
}
1106
#endif
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
 * (-1) to indicate that only one page contains the TB.
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
1174
    uint32_t h;
1175 1176 1177 1178 1179 1180 1181 1182 1183

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

1184 1185 1186 1187
    /* add in the hash table */
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
    qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);

1188 1189 1190 1191 1192
#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

1193
/* Called with mmap_lock held for user mode emulation.  */
1194
TranslationBlock *tb_gen_code(CPUState *cpu,
1195
                              target_ulong pc, target_ulong cs_base,
1196
                              uint32_t flags, int cflags)
1197
{
1198
    CPUArchState *env = cpu->env_ptr;
1199 1200 1201
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1202
    tcg_insn_unit *gen_code_buf;
1203
    int gen_code_size, search_size;
1204 1205 1206
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1207 1208

    phys_pc = get_page_addr_code(env, pc);
1209
    if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1210 1211
        cflags |= CF_USE_ICOUNT;
    }
1212

1213
    tb = tb_alloc(pc);
1214 1215
    if (unlikely(!tb)) {
 buffer_overflow:
1216
        /* flush must be done */
1217
        tb_flush(cpu);
1218 1219
        mmap_unlock();
        cpu_loop_exit(cpu);
1220
    }
1221 1222 1223

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1224 1225 1226
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1227 1228 1229 1230 1231 1232 1233 1234 1235

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

1236
    tcg_ctx.cpu = ENV_GET_CPU(env);
1237
    gen_intermediate_code(env, tb);
1238
    tcg_ctx.cpu = NULL;
1239 1240 1241 1242

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
1243 1244 1245
    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
    tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1246
#ifdef USE_DIRECT_JUMP
1247 1248
    tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
    tcg_ctx.tb_jmp_target_addr = NULL;
1249
#else
1250 1251
    tcg_ctx.tb_jmp_insn_offset = NULL;
    tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1252 1253 1254 1255 1256 1257 1258 1259
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

1260 1261 1262 1263 1264
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1265
    gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1266 1267 1268
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1269
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1270 1271 1272
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1273 1274 1275 1276 1277

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1278
    tcg_ctx.search_out_len += search_size;
1279 1280 1281
#endif

#ifdef DEBUG_DISAS
1282 1283
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
        qemu_log_in_addr_range(tb->pc)) {
1284 1285 1286 1287 1288 1289 1290
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
    }
#endif

1291 1292 1293
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    /* init jump list */
    assert(((uintptr_t)tb & 3) == 0);
    tb->jmp_list_first = (uintptr_t)tb | 2;
    tb->jmp_list_next[0] = (uintptr_t)NULL;
    tb->jmp_list_next[1] = (uintptr_t)NULL;

    /* init original jump addresses wich has been set during tcg_gen_code() */
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 0);
    }
    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 1);
    }

1309 1310 1311 1312 1313 1314
    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
1315 1316 1317 1318 1319
    /* As long as consistency of the TB stuff is provided by tb_lock in user
     * mode and is implicit in single-threaded softmmu emulation, no explicit
     * memory barrier is required before tb_link_page() makes the TB visible
     * through the physical hash table and physical page list.
     */
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1330 1331
 *
 * Called with mmap_lock held for user-mode emulation
1332
 */
1333
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1334 1335
{
    while (start < end) {
1336
        tb_invalidate_phys_page_range(start, end, 0);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1348 1349
 *
 * Called with mmap_lock held for user-mode emulation
1350 1351 1352 1353
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
1354
    TranslationBlock *tb, *tb_next;
1355
#if defined(TARGET_HAS_PRECISE_SMC)
1356
    CPUState *cpu = current_cpu;
1357 1358
    CPUArchState *env = NULL;
#endif
1359 1360 1361 1362 1363 1364 1365 1366 1367
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1368
    uint32_t current_flags = 0;
1369 1370 1371 1372 1373 1374
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1375
#if defined(TARGET_HAS_PRECISE_SMC)
1376 1377
    if (cpu != NULL) {
        env = cpu->env_ptr;
1378
    }
1379
#endif
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1404
                if (cpu->mem_io_pc) {
1405
                    /* now we have a real cpu fault */
1406
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1418
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            tb_phys_invalidate(tb, -1);
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1431
        tlb_unprotect_code(start);
1432 1433 1434 1435 1436 1437 1438
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1439
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1440
        cpu_loop_exit_noexc(cpu);
1441 1442 1443 1444
    }
#endif
}

1445
#ifdef CONFIG_SOFTMMU
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1464 1465 1466 1467 1468
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1469
    if (p->code_bitmap) {
1470 1471 1472 1473 1474
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1475 1476 1477 1478 1479 1480 1481 1482
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}
1483
#else
1484 1485 1486 1487 1488 1489 1490
/* Called with mmap_lock held. If pc is not 0 then it indicates the
 * host PC of the faulting store instruction that caused this invalidate.
 * Returns true if the caller needs to abort execution of the current
 * TB (because it was modified by this store and the guest CPU has
 * precise-SMC semantics).
 */
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1491 1492 1493 1494 1495 1496
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1497 1498
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1499 1500 1501
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1502
    uint32_t current_flags = 0;
1503 1504 1505 1506 1507
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
1508
        return false;
1509 1510 1511 1512 1513 1514
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1515 1516
    if (cpu != NULL) {
        env = cpu->env_ptr;
1517
    }
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1532
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1546
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1547
        return true;
1548 1549
    }
#endif
1550
    return false;
1551 1552 1553 1554 1555
}
#endif

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1556
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1557 1558 1559 1560 1561
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1562
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1563 1564
        return NULL;
    }
E
Evgeny Voevodin 已提交
1565 1566
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1567 1568 1569 1570
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1571
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1572 1573
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1574
        tb = &tcg_ctx.tb_ctx.tbs[m];
1575 1576 1577 1578 1579 1580 1581 1582 1583
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1584
    return &tcg_ctx.tb_ctx.tbs[m_max];
1585 1586
}

1587
#if !defined(CONFIG_USER_ONLY)
1588
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1589 1590
{
    ram_addr_t ram_addr;
1591
    MemoryRegion *mr;
1592
    hwaddr l = 1;
1593

1594
    rcu_read_lock();
1595
    mr = address_space_translate(as, addr, &addr, &l, false);
1596 1597
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1598
        rcu_read_unlock();
1599 1600
        return;
    }
1601
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1602
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1603
    rcu_read_unlock();
1604
}
1605
#endif /* !defined(CONFIG_USER_ONLY) */
1606

1607
void tb_check_watchpoint(CPUState *cpu)
1608 1609 1610
{
    TranslationBlock *tb;

1611
    tb = tb_find_pc(cpu->mem_io_pc);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
1622
        uint32_t flags;
1623 1624 1625 1626

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1627 1628 1629 1630 1631 1632
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1633
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1634
{
1635
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1636
    CPUArchState *env = cpu->env_ptr;
1637
#endif
1638 1639 1640
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
1641
    uint32_t flags;
1642 1643 1644

    tb = tb_find_pc(retaddr);
    if (!tb) {
1645
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1646 1647
                  (void *)retaddr);
    }
1648
    n = cpu->icount_decr.u16.low + tb->icount;
1649
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1650 1651
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1652
    n = n - cpu->icount_decr.u16.low;
1653 1654 1655 1656 1657 1658 1659 1660
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1661
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1662
        cpu->icount_decr.u16.low++;
1663 1664 1665 1666 1667 1668
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1669
        cpu->icount_decr.u16.low++;
1670 1671 1672 1673 1674
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1675
        cpu_abort(cpu, "TB too big during recompile");
1676 1677 1678 1679 1680 1681 1682
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1683 1684 1685 1686 1687 1688 1689 1690
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1691 1692
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1693
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1694 1695 1696 1697 1698
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1699
    cpu_loop_exit_noexc(cpu);
1700 1701
}

1702
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1703 1704 1705 1706 1707 1708
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1709
    memset(&cpu->tb_jmp_cache[i], 0,
1710 1711 1712
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1713
    memset(&cpu->tb_jmp_cache[i], 0,
1714 1715 1716
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
                                 struct qht_stats hst)
{
    uint32_t hgram_opts;
    size_t hgram_bins;
    char *hgram;

    if (!hst.head_buckets) {
        return;
    }
    cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
                hst.used_head_buckets, hst.head_buckets,
                (double)hst.used_head_buckets / hst.head_buckets * 100);

    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
        hgram_opts |= QDIST_PR_NODECIMAL;
    }
    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
    cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
                qdist_avg(&hst.occupancy) * 100, hgram);
    g_free(hgram);

    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
    if (hgram_bins > 10) {
        hgram_bins = 10;
    } else {
        hgram_bins = 0;
        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
    }
    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
    cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
                qdist_avg(&hst.chain), hgram);
    g_free(hgram);
}

1755 1756 1757 1758 1759
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;
1760
    struct qht_stats hst;
1761 1762 1763 1764 1765 1766

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1767 1768
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1769 1770 1771 1772 1773 1774 1775
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
1776
        if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1777
            direct_jmp_count++;
1778
            if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1779 1780 1781 1782 1783 1784 1785
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1786
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1787
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1788
    cpu_fprintf(f, "TB count            %d/%d\n",
1789
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1790
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1791 1792 1793
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1794
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1795 1796 1797 1798 1799 1800 1801 1802 1803
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1804 1805
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1806 1807
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1808
                direct_jmp2_count,
1809 1810
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1811 1812

    qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1813
    print_qht_statistics(f, cpu_fprintf, hst);
1814 1815
    qht_statistics_destroy(&hst);

1816
    cpu_fprintf(f, "\nStatistics:\n");
1817 1818
    cpu_fprintf(f, "TB flush count      %u\n",
            atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1819 1820
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1821 1822 1823 1824
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1825 1826 1827 1828 1829
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1830 1831
#else /* CONFIG_USER_ONLY */

1832
void cpu_interrupt(CPUState *cpu, int mask)
1833
{
1834
    cpu->interrupt_request |= mask;
1835
    cpu->tcg_exit_req = 1;
1836 1837 1838 1839 1840 1841 1842 1843 1844
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1845
    target_ulong start;
1846 1847 1848 1849
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1850
                                   target_ulong end, int new_prot)
1851
{
1852
    if (data->start != -1u) {
1853 1854 1855 1856 1857 1858
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1859
    data->start = (new_prot ? end : -1u);
1860 1861 1862 1863 1864 1865
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1866
                                 target_ulong base, int level, void **lp)
1867
{
1868
    target_ulong pa;
1869 1870 1871 1872 1873 1874 1875 1876 1877
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1878
        for (i = 0; i < V_L2_SIZE; ++i) {
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1892
        for (i = 0; i < V_L2_SIZE; ++i) {
1893
            pa = base | ((target_ulong)i <<
1894
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
1908
    uintptr_t i, l1_sz = v_l1_size;
1909 1910 1911

    data.fn = fn;
    data.priv = priv;
1912
    data.start = -1u;
1913 1914
    data.prot = 0;

1915 1916 1917
    for (i = 0; i < l1_sz; i++) {
        target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
        int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
1918 1919 1920 1921 1922 1923 1924 1925
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1926 1927
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1928 1929 1930
{
    FILE *f = (FILE *)priv;

1931 1932
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1944
    const int length = sizeof(target_ulong) * 2;
1945 1946
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1972
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1993
            tb_invalidate_phys_page(addr, 0);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2009
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
2045
                if (!page_unprotect(addr, 0)) {
2046 2047 2048 2049 2050 2051 2052 2053 2054
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
2055 2056 2057 2058 2059 2060
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 * and 2 if it was handled but the caller must cause the TB to be
 * immediately exited. (We can only return 2 if the 'pc' argument is
 * non-zero.)
 */
int page_unprotect(target_ulong address, uintptr_t pc)
2061 2062
{
    unsigned int prot;
2063
    bool current_tb_invalidated;
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
2085
        current_tb_invalidated = false;
2086 2087 2088 2089 2090 2091 2092
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
2093
            current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2094 2095 2096 2097 2098 2099 2100 2101
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
2102 2103
        /* If current TB was invalidated return to main loop */
        return current_tb_invalidated ? 2 : 1;
2104 2105 2106 2107 2108
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */