translate-all.c 59.1 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21 22 23 24
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#endif
B
bellard 已提交
25 26 27 28 29 30 31
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>

#include "config.h"
B
bellard 已提交
32

33
#include "qemu-common.h"
B
bellard 已提交
34
#define NO_CPU_IO_DEFS
B
bellard 已提交
35
#include "cpu.h"
36
#include "trace.h"
37
#include "disas/disas.h"
B
bellard 已提交
38
#include "tcg.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/time.h>
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
56 57
#else
#include "exec/address-spaces.h"
58 59
#endif

60
#include "exec/cputlb.h"
61
#include "exec/tb-hash.h"
62
#include "translate-all.h"
63
#include "qemu/bitmap.h"
64
#include "qemu/timer.h"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
84
    unsigned long *code_bitmap;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

102 103 104 105
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

106 107
/* The bits remaining after N lower levels of page tables.  */
#define V_L1_BITS_REM \
108
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109 110

#if V_L1_BITS_REM < 4
111
#define V_L1_BITS  (V_L1_BITS_REM + V_L2_BITS)
112 113 114 115 116 117 118 119 120 121 122
#else
#define V_L1_BITS  V_L1_BITS_REM
#endif

#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)

#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)

uintptr_t qemu_host_page_size;
uintptr_t qemu_host_page_mask;

123
/* The bottom level has pointers to PageDesc */
124 125
static void *l1_map[V_L1_SIZE];

B
bellard 已提交
126 127
/* code generation context */
TCGContext tcg_ctx;
B
bellard 已提交
128

K
KONRAD Frederic 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(!have_tb_lock);
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(have_tb_lock);
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

162 163
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2);
B
Blue Swirl 已提交
164
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
165

B
bellard 已提交
166 167 168 169 170
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
226
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
245 246 247 248 249 250 251 252

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
253 254 255 256 257
    }

    return p - block;
}

258
/* The cpu state corresponding to 'searched_pc' is restored.  */
259
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
260
                                     uintptr_t searched_pc)
B
bellard 已提交
261
{
262 263
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
264
    CPUArchState *env = cpu->env_ptr;
265 266
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
267
#ifdef CONFIG_PROFILER
268
    int64_t ti = profile_getclock();
B
bellard 已提交
269 270
#endif

271 272 273
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
274

275 276 277 278 279 280 281 282 283 284 285 286
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
287

288
 found:
289
    if (tb->cflags & CF_USE_ICOUNT) {
290
        assert(use_icount);
P
pbrook 已提交
291
        /* Reset the cycle counter to the start of the block.  */
292
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
293
        /* Clear the IO flag.  */
294
        cpu->can_do_io = 0;
P
pbrook 已提交
295
    }
296 297
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
298 299

#ifdef CONFIG_PROFILER
300 301
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
302
#endif
B
bellard 已提交
303 304
    return 0;
}
305

306
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
307 308 309 310 311
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
312
        cpu_restore_state_from_tb(cpu, tb, retaddr);
313 314 315 316 317 318
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            cpu->current_tb = NULL;
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
319 320 321 322 323
        return true;
    }
    return false;
}

324
void page_size_init(void)
325 326 327 328
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
329
    qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
330 331 332 333 334 335 336
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = ~(qemu_host_page_size - 1);
337
}
338

339 340 341
static void page_init(void)
{
    page_size_init();
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

408 409 410
/* If alloc=1:
 * Called with mmap_lock held for user-mode emulation.
 */
411 412 413 414 415 416 417 418 419 420
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));

    /* Level 2..N-1.  */
421
    for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
422
        void **p = atomic_rcu_read(lp);
423 424 425 426 427

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
428
            p = g_new0(void *, V_L2_SIZE);
429
            atomic_rcu_set(lp, p);
430 431
        }

432
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
433 434
    }

435
    pd = atomic_rcu_read(lp);
436 437 438 439
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
440
        pd = g_new0(PageDesc, V_L2_SIZE);
441
        atomic_rcu_set(lp, pd);
442 443
    }

444
    return pd + (index & (V_L2_SIZE - 1));
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
471 472
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
473 474
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
475 476 477 478 479
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
480 481 482 483
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
E
Evgeny Voevodin 已提交
514
    tcg_ctx.code_gen_buffer_size = tb_size;
515 516 517
    return tb_size;
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

545 546 547 548
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

590 591
static inline void *alloc_code_gen_buffer(void)
{
592
    void *buf = static_code_gen_buffer;
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

609
#ifdef __mips__
610 611 612
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
613 614
    }
#endif
615 616 617 618 619

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

620
    return buf;
621
}
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
640 641 642 643
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
644
    size_t size = tcg_ctx.code_gen_buffer_size;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
660 661
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
662 663 664 665 666
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
667
# elif defined(__mips__)
668
#  if _MIPS_SIM == _ABI64
669 670 671 672
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
673 674
# endif

675 676
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
677 678 679 680 681
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
682
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
683
        /* Try again, with the original still mapped, to avoid re-acquiring
684
           that 256mb crossing.  This time don't specify an address.  */
685 686 687 688 689 690
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
        switch (buf2 != MAP_FAILED) {
        case 1:
            if (!cross_256mb(buf2, size)) {
691
                /* Success!  Use the new buffer.  */
692 693
                munmap(buf, size);
                break;
694 695
            }
            /* Failure.  Work with what we had.  */
696 697 698 699 700 701 702 703 704 705 706 707 708
            munmap(buf2, size);
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
709
        }
710
        buf = buf2;
711 712 713
    }
#endif

714 715 716
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
717

718 719
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
720

721 722
    return buf;
}
723
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
724 725 726

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
727 728 729
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
730 731 732 733
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

734 735 736 737 738 739 740
    /* Estimate a good size for the number of TBs we can support.  We
       still haven't deducted the prologue from the buffer size here,
       but that's minimal and won't affect the estimate much.  */
    tcg_ctx.code_gen_max_blocks
        = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);

K
KONRAD Frederic 已提交
741
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
742 743 744 745 746 747 748 749 750
}

/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    page_init();
751
    code_gen_alloc(tb_size);
752
#if defined(CONFIG_SOFTMMU)
753 754 755 756 757 758 759 760
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
761
    return tcg_ctx.code_gen_buffer != NULL;
762 763 764 765 766 767 768 769
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

770
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
771 772
        return NULL;
    }
773
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
774 775 776 777 778 779 780 781 782 783
    tb->pc = pc;
    tb->cflags = 0;
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
784 785
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
786
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
787
        tcg_ctx.tb_ctx.nb_tbs--;
788 789 790 791 792
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
793 794
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
795 796 797 798 799 800 801 802 803 804 805 806 807 808
    p->code_write_count = 0;
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

809
        for (i = 0; i < V_L2_SIZE; ++i) {
810 811 812 813 814 815
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

816
        for (i = 0; i < V_L2_SIZE; ++i) {
817 818 819 820 821 822 823 824 825 826
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
    int i;

    for (i = 0; i < V_L1_SIZE; i++) {
827
        page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
828 829 830 831 832
    }
}

/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
833
void tb_flush(CPUState *cpu)
834 835 836
{
#if defined(DEBUG_FLUSH)
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
837
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
838
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
839
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
840
           tcg_ctx.tb_ctx.nb_tbs : 0);
841
#endif
E
Evgeny Voevodin 已提交
842 843
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
844
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
845
    }
846
    tcg_ctx.tb_ctx.nb_tbs = 0;
847

A
Andreas Färber 已提交
848
    CPU_FOREACH(cpu) {
849
        memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
850 851
    }

852
    memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
853 854
    page_flush_tb();

E
Evgeny Voevodin 已提交
855
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
856 857
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
858
    tcg_ctx.tb_ctx.tb_flush_count++;
859 860 861 862 863 864 865 866 867 868 869
}

#ifdef DEBUG_TB_CHECK

static void tb_invalidate_check(target_ulong address)
{
    TranslationBlock *tb;
    int i;

    address &= TARGET_PAGE_MASK;
    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
870
        for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=" TARGET_FMT_lx
                       " PC=%08lx size=%04x\n",
                       address, (long)tb->pc, tb->size);
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;

    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
888 889
        for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
                tb = tb->phys_hash_next) {
890 891 892 893 894 895 896 897 898 899 900 901
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
                       (long)tb->pc, tb->size, flags1, flags2);
            }
        }
    }
}

#endif

902
static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
903 904 905 906 907 908
{
    TranslationBlock *tb1;

    for (;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
909
            *ptb = tb1->phys_hash_next;
910 911
            break;
        }
912
        ptb = &tb1->phys_hash_next;
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    }
}

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for (;;) {
            tb1 = *ptb;
            n1 = (uintptr_t)tb1 & 3;
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}

969
/* invalidate one TB */
970 971
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
972
    CPUState *cpu;
973 974 975 976 977 978 979 980
    PageDesc *p;
    unsigned int h, n1;
    tb_page_addr_t phys_pc;
    TranslationBlock *tb1, *tb2;

    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
981
    tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
982 983 984 985 986 987 988 989 990 991 992 993 994

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

995
    tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
996 997 998

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
999
    CPU_FOREACH(cpu) {
1000 1001
        if (cpu->tb_jmp_cache[h] == tb) {
            cpu->tb_jmp_cache[h] = NULL;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        }
    }

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for (;;) {
        n1 = (uintptr_t)tb1 & 3;
        if (n1 == 2) {
            break;
        }
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */

1024
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1025 1026 1027 1028 1029 1030 1031
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1032
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1051
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1052 1053 1054 1055
        tb = tb->page_next[n];
    }
}

1056
/* Called with mmap_lock held for user mode emulation.  */
1057
TranslationBlock *tb_gen_code(CPUState *cpu,
1058 1059 1060
                              target_ulong pc, target_ulong cs_base,
                              int flags, int cflags)
{
1061
    CPUArchState *env = cpu->env_ptr;
1062 1063 1064
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1065
    tcg_insn_unit *gen_code_buf;
1066
    int gen_code_size, search_size;
1067 1068 1069
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1070 1071

    phys_pc = get_page_addr_code(env, pc);
1072 1073 1074
    if (use_icount) {
        cflags |= CF_USE_ICOUNT;
    }
1075

1076
    tb = tb_alloc(pc);
1077 1078
    if (unlikely(!tb)) {
 buffer_overflow:
1079
        /* flush must be done */
1080
        tb_flush(cpu);
1081 1082
        /* cannot fail at this point */
        tb = tb_alloc(pc);
1083
        assert(tb != NULL);
1084
        /* Don't forget to invalidate previous TB info.  */
1085
        tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1086
    }
1087 1088 1089

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1090 1091 1092
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

    gen_intermediate_code(env, tb);

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
    tb->tb_next_offset[0] = 0xffff;
    tb->tb_next_offset[1] = 0xffff;
    tcg_ctx.tb_next_offset = tb->tb_next_offset;
#ifdef USE_DIRECT_JUMP
    tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
    tcg_ctx.tb_next = NULL;
#else
    tcg_ctx.tb_jmp_offset = NULL;
    tcg_ctx.tb_next = tb->tb_next;
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

1124 1125 1126 1127 1128
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1129
    gen_code_size = tcg_gen_code(&tcg_ctx, gen_code_buf);
1130 1131 1132
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1133
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1134 1135 1136
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1137 1138 1139 1140 1141

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1142
    tcg_ctx.search_out_len += search_size;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
#endif

#ifdef DEBUG_DISAS
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
    }
#endif

1154 1155 1156
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1174 1175
 *
 * Called with mmap_lock held for user-mode emulation
1176
 */
1177
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1178 1179
{
    while (start < end) {
1180
        tb_invalidate_phys_page_range(start, end, 0);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1192 1193
 *
 * Called with mmap_lock held for user-mode emulation
1194 1195 1196 1197 1198
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
    TranslationBlock *tb, *tb_next, *saved_tb;
1199
    CPUState *cpu = current_cpu;
1200
#if defined(TARGET_HAS_PRECISE_SMC)
1201 1202
    CPUArchState *env = NULL;
#endif
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1219
#if defined(TARGET_HAS_PRECISE_SMC)
1220 1221
    if (cpu != NULL) {
        env = cpu->env_ptr;
1222
    }
1223
#endif
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1248
                if (cpu->mem_io_pc) {
1249
                    /* now we have a real cpu fault */
1250
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1262
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1263 1264 1265 1266 1267 1268 1269
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
1270 1271 1272
            if (cpu != NULL) {
                saved_tb = cpu->current_tb;
                cpu->current_tb = NULL;
1273 1274
            }
            tb_phys_invalidate(tb, -1);
1275 1276
            if (cpu != NULL) {
                cpu->current_tb = saved_tb;
1277 1278
                if (cpu->interrupt_request && cpu->current_tb) {
                    cpu_interrupt(cpu, cpu->interrupt_request);
1279 1280 1281 1282 1283 1284 1285 1286 1287
                }
            }
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1288
        tlb_unprotect_code(start);
1289 1290 1291 1292 1293 1294 1295
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1296
        cpu->current_tb = NULL;
1297
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1298
        cpu_resume_from_signal(cpu, NULL);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    }
#endif
}

/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1321 1322 1323 1324 1325
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1326
    if (p->code_bitmap) {
1327 1328 1329 1330 1331
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}

#if !defined(CONFIG_SOFTMMU)
1342
/* Called with mmap_lock held.  */
1343
static void tb_invalidate_phys_page(tb_page_addr_t addr,
1344 1345
                                    uintptr_t pc, void *puc,
                                    bool locked)
1346 1347 1348 1349 1350 1351
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1352 1353
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1370 1371
    if (cpu != NULL) {
        env = cpu->env_ptr;
1372
    }
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1387
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1401
        cpu->current_tb = NULL;
1402
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1403 1404 1405
        if (locked) {
            mmap_unlock();
        }
1406
        cpu_resume_from_signal(cpu, puc);
1407 1408 1409 1410 1411
    }
#endif
}
#endif

1412 1413 1414 1415
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
1471
 * (-1) to indicate that only one page contains the TB.
1472 1473
 *
 * Called with mmap_lock held for user-mode emulation.
1474
 */
1475 1476 1477 1478 1479 1480 1481 1482
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
    unsigned int h;
    TranslationBlock **ptb;

    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
1483
    ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    tb->phys_hash_next = *ptb;
    *ptb = tb;

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff) {
        tb_reset_jump(tb, 0);
    }
    if (tb->tb_next_offset[1] != 0xffff) {
        tb_reset_jump(tb, 1);
    }

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1514
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1515 1516 1517 1518 1519
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1520
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1521 1522
        return NULL;
    }
E
Evgeny Voevodin 已提交
1523 1524
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1525 1526 1527 1528
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1529
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1530 1531
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1532
        tb = &tcg_ctx.tb_ctx.tbs[m];
1533 1534 1535 1536 1537 1538 1539 1540 1541
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1542
    return &tcg_ctx.tb_ctx.tbs[m_max];
1543 1544
}

1545
#if !defined(CONFIG_USER_ONLY)
1546
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1547 1548
{
    ram_addr_t ram_addr;
1549
    MemoryRegion *mr;
1550
    hwaddr l = 1;
1551

1552
    rcu_read_lock();
1553
    mr = address_space_translate(as, addr, &addr, &l, false);
1554 1555
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1556
        rcu_read_unlock();
1557 1558
        return;
    }
1559
    ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1560
        + addr;
1561
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1562
    rcu_read_unlock();
1563
}
1564
#endif /* !defined(CONFIG_USER_ONLY) */
1565

1566
void tb_check_watchpoint(CPUState *cpu)
1567 1568 1569
{
    TranslationBlock *tb;

1570
    tb = tb_find_pc(cpu->mem_io_pc);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
        int flags;

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1586 1587 1588 1589 1590 1591
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1592
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1593
{
1594
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1595
    CPUArchState *env = cpu->env_ptr;
1596
#endif
1597 1598 1599 1600 1601 1602 1603
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
    uint64_t flags;

    tb = tb_find_pc(retaddr);
    if (!tb) {
1604
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1605 1606
                  (void *)retaddr);
    }
1607
    n = cpu->icount_decr.u16.low + tb->icount;
1608
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1609 1610
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1611
    n = n - cpu->icount_decr.u16.low;
1612 1613 1614 1615 1616 1617 1618 1619
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1620
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1621
        cpu->icount_decr.u16.low++;
1622 1623 1624 1625 1626 1627
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1628
        cpu->icount_decr.u16.low++;
1629 1630 1631 1632 1633
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1634
        cpu_abort(cpu, "TB too big during recompile");
1635 1636 1637 1638 1639 1640 1641
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1642 1643 1644 1645 1646 1647 1648 1649
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1650 1651
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1652
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1653 1654 1655 1656 1657
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1658
    cpu_resume_from_signal(cpu, NULL);
1659 1660
}

1661
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1662 1663 1664 1665 1666 1667
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1668
    memset(&cpu->tb_jmp_cache[i], 0,
1669 1670 1671
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1672
    memset(&cpu->tb_jmp_cache[i], 0,
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1687 1688
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1706
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1707
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1708
    cpu_fprintf(f, "TB count            %d/%d\n",
1709
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1710
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1711 1712 1713
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1714
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1715 1716 1717 1718 1719 1720 1721 1722 1723
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1724 1725
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1726 1727
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1728
                direct_jmp2_count,
1729 1730
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1731
    cpu_fprintf(f, "\nStatistics:\n");
1732 1733 1734
    cpu_fprintf(f, "TB flush count      %d\n", tcg_ctx.tb_ctx.tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1735 1736 1737 1738
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1739 1740 1741 1742 1743
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1744 1745
#else /* CONFIG_USER_ONLY */

1746
void cpu_interrupt(CPUState *cpu, int mask)
1747
{
1748
    cpu->interrupt_request |= mask;
1749
    cpu->tcg_exit_req = 1;
1750 1751 1752 1753 1754 1755 1756 1757 1758
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1759
    target_ulong start;
1760 1761 1762 1763
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1764
                                   target_ulong end, int new_prot)
1765
{
1766
    if (data->start != -1u) {
1767 1768 1769 1770 1771 1772
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1773
    data->start = (new_prot ? end : -1u);
1774 1775 1776 1777 1778 1779
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1780
                                 target_ulong base, int level, void **lp)
1781
{
1782
    target_ulong pa;
1783 1784 1785 1786 1787 1788 1789 1790 1791
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1792
        for (i = 0; i < V_L2_SIZE; ++i) {
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1806
        for (i = 0; i < V_L2_SIZE; ++i) {
1807
            pa = base | ((target_ulong)i <<
1808
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    uintptr_t i;

    data.fn = fn;
    data.priv = priv;
1826
    data.start = -1u;
1827 1828 1829
    data.prot = 0;

    for (i = 0; i < V_L1_SIZE; i++) {
1830
        int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1831
                                       V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1832 1833 1834 1835 1836 1837 1838 1839
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1840 1841
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1842 1843 1844
{
    FILE *f = (FILE *)priv;

1845 1846
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1858
    const int length = sizeof(target_ulong) * 2;
1859 1860
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1886
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1907
            tb_invalidate_phys_page(addr, 0, NULL, false);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1923
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0, NULL)) {
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was successfully handled. */
int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
    unsigned int prot;
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
2001
            tb_invalidate_phys_page(addr, pc, puc, true);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
        return 1;
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */