translate-all.c 59.0 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21 22 23
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/mman.h>
#endif
P
Peter Maydell 已提交
24
#include "qemu/osdep.h"
B
bellard 已提交
25

B
bellard 已提交
26

27
#include "qemu-common.h"
B
bellard 已提交
28
#define NO_CPU_IO_DEFS
B
bellard 已提交
29
#include "cpu.h"
30
#include "trace.h"
31
#include "disas/disas.h"
B
bellard 已提交
32
#include "tcg.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
49 50
#else
#include "exec/address-spaces.h"
51 52
#endif

53
#include "exec/cputlb.h"
54
#include "exec/tb-hash.h"
55
#include "translate-all.h"
56
#include "qemu/bitmap.h"
57
#include "qemu/timer.h"
58
#include "exec/log.h"
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
78
    unsigned long *code_bitmap;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

96 97 98 99
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

100 101
/* The bits remaining after N lower levels of page tables.  */
#define V_L1_BITS_REM \
102
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
103 104

#if V_L1_BITS_REM < 4
105
#define V_L1_BITS  (V_L1_BITS_REM + V_L2_BITS)
106 107 108 109 110 111 112 113 114
#else
#define V_L1_BITS  V_L1_BITS_REM
#endif

#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)

#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)

uintptr_t qemu_host_page_size;
115
intptr_t qemu_host_page_mask;
116

117
/* The bottom level has pointers to PageDesc */
118 119
static void *l1_map[V_L1_SIZE];

B
bellard 已提交
120 121
/* code generation context */
TCGContext tcg_ctx;
B
bellard 已提交
122

K
KONRAD Frederic 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(!have_tb_lock);
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(have_tb_lock);
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

156 157
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2);
B
Blue Swirl 已提交
158
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
159

B
bellard 已提交
160 161 162 163 164
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
220
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
239 240 241 242 243 244 245 246

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
247 248 249 250 251
    }

    return p - block;
}

252
/* The cpu state corresponding to 'searched_pc' is restored.  */
253
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
254
                                     uintptr_t searched_pc)
B
bellard 已提交
255
{
256 257
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
258
    CPUArchState *env = cpu->env_ptr;
259 260
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
261
#ifdef CONFIG_PROFILER
262
    int64_t ti = profile_getclock();
B
bellard 已提交
263 264
#endif

265 266 267
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
268

269 270 271 272 273 274 275 276 277 278 279 280
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
281

282
 found:
283
    if (tb->cflags & CF_USE_ICOUNT) {
284
        assert(use_icount);
P
pbrook 已提交
285
        /* Reset the cycle counter to the start of the block.  */
286
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
287
        /* Clear the IO flag.  */
288
        cpu->can_do_io = 0;
P
pbrook 已提交
289
    }
290 291
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
292 293

#ifdef CONFIG_PROFILER
294 295
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
296
#endif
B
bellard 已提交
297 298
    return 0;
}
299

300
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
301 302 303 304 305
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
306
        cpu_restore_state_from_tb(cpu, tb, retaddr);
307 308 309 310 311 312
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            cpu->current_tb = NULL;
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
313 314 315 316 317
        return true;
    }
    return false;
}

318
void page_size_init(void)
319 320 321 322
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
323
    qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
324 325 326 327 328 329
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
330
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
331
}
332

333 334 335
static void page_init(void)
{
    page_size_init();
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

402 403 404
/* If alloc=1:
 * Called with mmap_lock held for user-mode emulation.
 */
405 406 407 408 409 410 411 412 413 414
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));

    /* Level 2..N-1.  */
415
    for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
416
        void **p = atomic_rcu_read(lp);
417 418 419 420 421

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
422
            p = g_new0(void *, V_L2_SIZE);
423
            atomic_rcu_set(lp, p);
424 425
        }

426
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
427 428
    }

429
    pd = atomic_rcu_read(lp);
430 431 432 433
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
434
        pd = g_new0(PageDesc, V_L2_SIZE);
435
        atomic_rcu_set(lp, pd);
436 437
    }

438
    return pd + (index & (V_L2_SIZE - 1));
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
465 466
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
467 468
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
469 470 471 472 473
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
474 475 476 477
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
E
Evgeny Voevodin 已提交
508
    tcg_ctx.code_gen_buffer_size = tb_size;
509 510 511
    return tb_size;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

539 540 541 542
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

584 585
static inline void *alloc_code_gen_buffer(void)
{
586
    void *buf = static_code_gen_buffer;
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

603
#ifdef __mips__
604 605 606
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
607 608
    }
#endif
609 610 611 612 613

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

614
    return buf;
615
}
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
634 635 636 637
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
638
    size_t size = tcg_ctx.code_gen_buffer_size;
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
654 655
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
656 657 658 659 660
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
661
# elif defined(__mips__)
662
#  if _MIPS_SIM == _ABI64
663 664 665 666
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
667 668
# endif

669 670
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
671 672 673 674 675
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
676
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
677
        /* Try again, with the original still mapped, to avoid re-acquiring
678
           that 256mb crossing.  This time don't specify an address.  */
679 680 681 682 683 684
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
        switch (buf2 != MAP_FAILED) {
        case 1:
            if (!cross_256mb(buf2, size)) {
685
                /* Success!  Use the new buffer.  */
686 687
                munmap(buf, size);
                break;
688 689
            }
            /* Failure.  Work with what we had.  */
690 691 692 693 694 695 696 697 698 699 700 701 702
            munmap(buf2, size);
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
703
        }
704
        buf = buf2;
705 706 707
    }
#endif

708 709 710
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
711

712 713
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
714

715 716
    return buf;
}
717
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
718 719 720

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
721 722 723
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
724 725 726 727
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

728 729 730 731 732 733 734
    /* Estimate a good size for the number of TBs we can support.  We
       still haven't deducted the prologue from the buffer size here,
       but that's minimal and won't affect the estimate much.  */
    tcg_ctx.code_gen_max_blocks
        = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);

K
KONRAD Frederic 已提交
735
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
736 737 738 739 740 741 742 743 744
}

/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    page_init();
745
    code_gen_alloc(tb_size);
746
#if defined(CONFIG_SOFTMMU)
747 748 749 750 751 752 753 754
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
755
    return tcg_ctx.code_gen_buffer != NULL;
756 757 758 759 760 761 762 763
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

764
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
765 766
        return NULL;
    }
767
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
768 769 770 771 772 773 774 775 776 777
    tb->pc = pc;
    tb->cflags = 0;
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
778 779
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
780
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
781
        tcg_ctx.tb_ctx.nb_tbs--;
782 783 784 785 786
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
787 788
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
789 790 791 792 793 794 795 796 797 798 799 800 801 802
    p->code_write_count = 0;
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

803
        for (i = 0; i < V_L2_SIZE; ++i) {
804 805 806 807 808 809
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

810
        for (i = 0; i < V_L2_SIZE; ++i) {
811 812 813 814 815 816 817 818 819 820
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
    int i;

    for (i = 0; i < V_L1_SIZE; i++) {
821
        page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
822 823 824 825 826
    }
}

/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
827
void tb_flush(CPUState *cpu)
828 829 830
{
#if defined(DEBUG_FLUSH)
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
831
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
832
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
833
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
834
           tcg_ctx.tb_ctx.nb_tbs : 0);
835
#endif
E
Evgeny Voevodin 已提交
836 837
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
838
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
839
    }
840
    tcg_ctx.tb_ctx.nb_tbs = 0;
841

A
Andreas Färber 已提交
842
    CPU_FOREACH(cpu) {
843
        memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
844 845
    }

846
    memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
847 848
    page_flush_tb();

E
Evgeny Voevodin 已提交
849
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
850 851
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
852
    tcg_ctx.tb_ctx.tb_flush_count++;
853 854 855 856 857 858 859 860 861 862 863
}

#ifdef DEBUG_TB_CHECK

static void tb_invalidate_check(target_ulong address)
{
    TranslationBlock *tb;
    int i;

    address &= TARGET_PAGE_MASK;
    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
864
        for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=" TARGET_FMT_lx
                       " PC=%08lx size=%04x\n",
                       address, (long)tb->pc, tb->size);
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;

    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
882 883
        for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
                tb = tb->phys_hash_next) {
884 885 886 887 888 889 890 891 892 893 894 895
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
                       (long)tb->pc, tb->size, flags1, flags2);
            }
        }
    }
}

#endif

896
static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
897 898 899 900 901 902
{
    TranslationBlock *tb1;

    for (;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
903
            *ptb = tb1->phys_hash_next;
904 905
            break;
        }
906
        ptb = &tb1->phys_hash_next;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    }
}

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for (;;) {
            tb1 = *ptb;
            n1 = (uintptr_t)tb1 & 3;
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}

963
/* invalidate one TB */
964 965
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
966
    CPUState *cpu;
967 968 969 970 971 972 973 974
    PageDesc *p;
    unsigned int h, n1;
    tb_page_addr_t phys_pc;
    TranslationBlock *tb1, *tb2;

    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
975
    tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
976 977 978 979 980 981 982 983 984 985 986 987 988

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

989
    tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
990 991 992

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
993
    CPU_FOREACH(cpu) {
994 995
        if (cpu->tb_jmp_cache[h] == tb) {
            cpu->tb_jmp_cache[h] = NULL;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        }
    }

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for (;;) {
        n1 = (uintptr_t)tb1 & 3;
        if (n1 == 2) {
            break;
        }
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */

1018
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1019 1020 1021 1022 1023 1024 1025
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1026
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1045
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1046 1047 1048 1049
        tb = tb->page_next[n];
    }
}

1050
/* Called with mmap_lock held for user mode emulation.  */
1051
TranslationBlock *tb_gen_code(CPUState *cpu,
1052 1053 1054
                              target_ulong pc, target_ulong cs_base,
                              int flags, int cflags)
{
1055
    CPUArchState *env = cpu->env_ptr;
1056 1057 1058
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1059
    tcg_insn_unit *gen_code_buf;
1060
    int gen_code_size, search_size;
1061 1062 1063
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1064 1065

    phys_pc = get_page_addr_code(env, pc);
1066
    if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1067 1068
        cflags |= CF_USE_ICOUNT;
    }
1069

1070
    tb = tb_alloc(pc);
1071 1072
    if (unlikely(!tb)) {
 buffer_overflow:
1073
        /* flush must be done */
1074
        tb_flush(cpu);
1075 1076
        /* cannot fail at this point */
        tb = tb_alloc(pc);
1077
        assert(tb != NULL);
1078
        /* Don't forget to invalidate previous TB info.  */
1079
        tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1080
    }
1081 1082 1083

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1084 1085 1086
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

    gen_intermediate_code(env, tb);

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
    tb->tb_next_offset[0] = 0xffff;
    tb->tb_next_offset[1] = 0xffff;
    tcg_ctx.tb_next_offset = tb->tb_next_offset;
#ifdef USE_DIRECT_JUMP
    tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
    tcg_ctx.tb_next = NULL;
#else
    tcg_ctx.tb_jmp_offset = NULL;
    tcg_ctx.tb_next = tb->tb_next;
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

1118 1119 1120 1121 1122
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1123
    gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1124 1125 1126
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1127
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1128 1129 1130
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1131 1132 1133 1134 1135

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1136
    tcg_ctx.search_out_len += search_size;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
#endif

#ifdef DEBUG_DISAS
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
    }
#endif

1148 1149 1150
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1168 1169
 *
 * Called with mmap_lock held for user-mode emulation
1170
 */
1171
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1172 1173
{
    while (start < end) {
1174
        tb_invalidate_phys_page_range(start, end, 0);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1186 1187
 *
 * Called with mmap_lock held for user-mode emulation
1188 1189 1190 1191 1192
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
    TranslationBlock *tb, *tb_next, *saved_tb;
1193
    CPUState *cpu = current_cpu;
1194
#if defined(TARGET_HAS_PRECISE_SMC)
1195 1196
    CPUArchState *env = NULL;
#endif
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1213
#if defined(TARGET_HAS_PRECISE_SMC)
1214 1215
    if (cpu != NULL) {
        env = cpu->env_ptr;
1216
    }
1217
#endif
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1242
                if (cpu->mem_io_pc) {
1243
                    /* now we have a real cpu fault */
1244
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1256
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1257 1258 1259 1260 1261 1262 1263
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
1264 1265 1266
            if (cpu != NULL) {
                saved_tb = cpu->current_tb;
                cpu->current_tb = NULL;
1267 1268
            }
            tb_phys_invalidate(tb, -1);
1269 1270
            if (cpu != NULL) {
                cpu->current_tb = saved_tb;
1271 1272
                if (cpu->interrupt_request && cpu->current_tb) {
                    cpu_interrupt(cpu, cpu->interrupt_request);
1273 1274 1275 1276 1277 1278 1279 1280 1281
                }
            }
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1282
        tlb_unprotect_code(start);
1283 1284 1285 1286 1287 1288 1289
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1290
        cpu->current_tb = NULL;
1291
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1292
        cpu_resume_from_signal(cpu, NULL);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    }
#endif
}

/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1315 1316 1317 1318 1319
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1320
    if (p->code_bitmap) {
1321 1322 1323 1324 1325
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}

#if !defined(CONFIG_SOFTMMU)
1336
/* Called with mmap_lock held.  */
1337
static void tb_invalidate_phys_page(tb_page_addr_t addr,
1338 1339
                                    uintptr_t pc, void *puc,
                                    bool locked)
1340 1341 1342 1343 1344 1345
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1346 1347
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1364 1365
    if (cpu != NULL) {
        env = cpu->env_ptr;
1366
    }
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1381
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1395
        cpu->current_tb = NULL;
1396
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1397 1398 1399
        if (locked) {
            mmap_unlock();
        }
1400
        cpu_resume_from_signal(cpu, puc);
1401 1402 1403 1404 1405
    }
#endif
}
#endif

1406 1407 1408 1409
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
1465
 * (-1) to indicate that only one page contains the TB.
1466 1467
 *
 * Called with mmap_lock held for user-mode emulation.
1468
 */
1469 1470 1471 1472 1473 1474 1475 1476
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
    unsigned int h;
    TranslationBlock **ptb;

    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
1477
    ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    tb->phys_hash_next = *ptb;
    *ptb = tb;

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff) {
        tb_reset_jump(tb, 0);
    }
    if (tb->tb_next_offset[1] != 0xffff) {
        tb_reset_jump(tb, 1);
    }

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1508
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1509 1510 1511 1512 1513
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1514
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1515 1516
        return NULL;
    }
E
Evgeny Voevodin 已提交
1517 1518
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1519 1520 1521 1522
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1523
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1524 1525
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1526
        tb = &tcg_ctx.tb_ctx.tbs[m];
1527 1528 1529 1530 1531 1532 1533 1534 1535
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1536
    return &tcg_ctx.tb_ctx.tbs[m_max];
1537 1538
}

1539
#if !defined(CONFIG_USER_ONLY)
1540
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1541 1542
{
    ram_addr_t ram_addr;
1543
    MemoryRegion *mr;
1544
    hwaddr l = 1;
1545

1546
    rcu_read_lock();
1547
    mr = address_space_translate(as, addr, &addr, &l, false);
1548 1549
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1550
        rcu_read_unlock();
1551 1552
        return;
    }
1553
    ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1554
        + addr;
1555
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1556
    rcu_read_unlock();
1557
}
1558
#endif /* !defined(CONFIG_USER_ONLY) */
1559

1560
void tb_check_watchpoint(CPUState *cpu)
1561 1562 1563
{
    TranslationBlock *tb;

1564
    tb = tb_find_pc(cpu->mem_io_pc);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
        int flags;

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1580 1581 1582 1583 1584 1585
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1586
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1587
{
1588
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1589
    CPUArchState *env = cpu->env_ptr;
1590
#endif
1591 1592 1593 1594 1595 1596 1597
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
    uint64_t flags;

    tb = tb_find_pc(retaddr);
    if (!tb) {
1598
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1599 1600
                  (void *)retaddr);
    }
1601
    n = cpu->icount_decr.u16.low + tb->icount;
1602
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1603 1604
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1605
    n = n - cpu->icount_decr.u16.low;
1606 1607 1608 1609 1610 1611 1612 1613
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1614
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1615
        cpu->icount_decr.u16.low++;
1616 1617 1618 1619 1620 1621
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1622
        cpu->icount_decr.u16.low++;
1623 1624 1625 1626 1627
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1628
        cpu_abort(cpu, "TB too big during recompile");
1629 1630 1631 1632 1633 1634 1635
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1636 1637 1638 1639 1640 1641 1642 1643
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1644 1645
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1646
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1647 1648 1649 1650 1651
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1652
    cpu_resume_from_signal(cpu, NULL);
1653 1654
}

1655
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1656 1657 1658 1659 1660 1661
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1662
    memset(&cpu->tb_jmp_cache[i], 0,
1663 1664 1665
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1666
    memset(&cpu->tb_jmp_cache[i], 0,
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1681 1682
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1700
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1701
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1702
    cpu_fprintf(f, "TB count            %d/%d\n",
1703
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1704
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1705 1706 1707
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1708
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1709 1710 1711 1712 1713 1714 1715 1716 1717
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1718 1719
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1720 1721
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1722
                direct_jmp2_count,
1723 1724
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1725
    cpu_fprintf(f, "\nStatistics:\n");
1726 1727 1728
    cpu_fprintf(f, "TB flush count      %d\n", tcg_ctx.tb_ctx.tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1729 1730 1731 1732
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1733 1734 1735 1736 1737
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1738 1739
#else /* CONFIG_USER_ONLY */

1740
void cpu_interrupt(CPUState *cpu, int mask)
1741
{
1742
    cpu->interrupt_request |= mask;
1743
    cpu->tcg_exit_req = 1;
1744 1745 1746 1747 1748 1749 1750 1751 1752
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1753
    target_ulong start;
1754 1755 1756 1757
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1758
                                   target_ulong end, int new_prot)
1759
{
1760
    if (data->start != -1u) {
1761 1762 1763 1764 1765 1766
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1767
    data->start = (new_prot ? end : -1u);
1768 1769 1770 1771 1772 1773
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1774
                                 target_ulong base, int level, void **lp)
1775
{
1776
    target_ulong pa;
1777 1778 1779 1780 1781 1782 1783 1784 1785
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1786
        for (i = 0; i < V_L2_SIZE; ++i) {
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1800
        for (i = 0; i < V_L2_SIZE; ++i) {
1801
            pa = base | ((target_ulong)i <<
1802
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    uintptr_t i;

    data.fn = fn;
    data.priv = priv;
1820
    data.start = -1u;
1821 1822 1823
    data.prot = 0;

    for (i = 0; i < V_L1_SIZE; i++) {
1824
        int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1825
                                       V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1826 1827 1828 1829 1830 1831 1832 1833
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1834 1835
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1836 1837 1838
{
    FILE *f = (FILE *)priv;

1839 1840
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1852
    const int length = sizeof(target_ulong) * 2;
1853 1854
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1880
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1901
            tb_invalidate_phys_page(addr, 0, NULL, false);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1917
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0, NULL)) {
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was successfully handled. */
int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
    unsigned int prot;
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
1995
            tb_invalidate_phys_page(addr, pc, puc, true);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
        return 1;
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */