translate-all.c 64.1 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21
#ifdef _WIN32
#include <windows.h>
#endif
P
Peter Maydell 已提交
22
#include "qemu/osdep.h"
B
bellard 已提交
23

B
bellard 已提交
24

25
#include "qemu-common.h"
B
bellard 已提交
26
#define NO_CPU_IO_DEFS
B
bellard 已提交
27
#include "cpu.h"
28
#include "trace.h"
29
#include "disas/disas.h"
30
#include "exec/exec-all.h"
B
bellard 已提交
31
#include "tcg.h"
32 33
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
34
#include "exec/exec-all.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
49 50
#else
#include "exec/address-spaces.h"
51 52
#endif

53
#include "exec/cputlb.h"
54
#include "exec/tb-hash.h"
55
#include "translate-all.h"
56
#include "qemu/bitmap.h"
57
#include "qemu/timer.h"
58
#include "exec/log.h"
59

60 61
/* #define DEBUG_TB_INVALIDATE */
/* #define DEBUG_TB_FLUSH */
62
/* #define DEBUG_LOCKING */
63
/* make various TB consistency checks */
64
/* #define DEBUG_TB_CHECK */
65 66 67 68 69 70

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* Access to the various translations structures need to be serialised via locks
 * for consistency. This is automatic for SoftMMU based system
 * emulation due to its single threaded nature. In user-mode emulation
 * access to the memory related structures are protected with the
 * mmap_lock.
 */
#ifdef DEBUG_LOCKING
#define DEBUG_MEM_LOCKS 1
#else
#define DEBUG_MEM_LOCKS 0
#endif

#ifdef CONFIG_SOFTMMU
#define assert_memory_lock() do { /* nothing */ } while (0)
#else
#define assert_memory_lock() do {               \
        if (DEBUG_MEM_LOCKS) {                  \
            g_assert(have_mmap_lock());         \
        }                                       \
    } while (0)
#endif

93 94 95 96 97
#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
98
#ifdef CONFIG_SOFTMMU
99 100 101
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
102
    unsigned long *code_bitmap;
103
#else
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

120 121 122 123
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

124
uintptr_t qemu_host_page_size;
125
intptr_t qemu_host_page_mask;
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/*
 * L1 Mapping properties
 */
static int v_l1_size;
static int v_l1_shift;
static int v_l2_levels;

/* The bottom level has pointers to PageDesc, and is indexed by
 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
 */
#define V_L1_MIN_BITS 4
#define V_L1_MAX_BITS (V_L2_BITS + 3)
#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)

static void *l1_map[V_L1_MAX_SIZE];
142

B
bellard 已提交
143 144
/* code generation context */
TCGContext tcg_ctx;
R
Richard Henderson 已提交
145
bool parallel_cpus;
B
bellard 已提交
146

K
KONRAD Frederic 已提交
147 148 149 150 151
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static void page_table_config_init(void)
{
    uint32_t v_l1_bits;

    assert(TARGET_PAGE_BITS);
    /* The bits remaining after N lower levels of page tables.  */
    v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
    if (v_l1_bits < V_L1_MIN_BITS) {
        v_l1_bits += V_L2_BITS;
    }

    v_l1_size = 1 << v_l1_bits;
    v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
    v_l2_levels = v_l1_shift / V_L2_BITS - 1;

    assert(v_l1_bits <= V_L1_MAX_BITS);
    assert(v_l1_shift % V_L2_BITS == 0);
    assert(v_l2_levels >= 0);
}

K
KONRAD Frederic 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(!have_tb_lock);
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(have_tb_lock);
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#ifdef DEBUG_LOCKING
#define DEBUG_TB_LOCKS 1
#else
#define DEBUG_TB_LOCKS 0
#endif

#ifdef CONFIG_SOFTMMU
#define assert_tb_lock() do { /* nothing */ } while (0)
#else
#define assert_tb_lock() do {               \
        if (DEBUG_TB_LOCKS) {               \
            g_assert(have_tb_lock);         \
        }                                   \
    } while (0)
#endif


B
Blue Swirl 已提交
217
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
218

B
bellard 已提交
219 220 221 222 223
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
279
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
298 299 300 301 302 303 304 305

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
306 307 308 309 310
    }

    return p - block;
}

311 312 313
/* The cpu state corresponding to 'searched_pc' is restored.
 * Called with tb_lock held.
 */
314
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
315
                                     uintptr_t searched_pc)
B
bellard 已提交
316
{
317 318
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
319
    CPUArchState *env = cpu->env_ptr;
320 321
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
322
#ifdef CONFIG_PROFILER
323
    int64_t ti = profile_getclock();
B
bellard 已提交
324 325
#endif

R
Richard Henderson 已提交
326 327
    searched_pc -= GETPC_ADJ;

328 329 330
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
331

332 333 334 335 336 337 338 339 340 341 342 343
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
344

345
 found:
346
    if (tb->cflags & CF_USE_ICOUNT) {
347
        assert(use_icount);
P
pbrook 已提交
348
        /* Reset the cycle counter to the start of the block.  */
349
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
350
        /* Clear the IO flag.  */
351
        cpu->can_do_io = 0;
P
pbrook 已提交
352
    }
353 354
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
355 356

#ifdef CONFIG_PROFILER
357 358
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
359
#endif
B
bellard 已提交
360 361
    return 0;
}
362

363
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
364 365
{
    TranslationBlock *tb;
366
    bool r = false;
B
Blue Swirl 已提交
367

368
    tb_lock();
B
Blue Swirl 已提交
369 370
    tb = tb_find_pc(retaddr);
    if (tb) {
371
        cpu_restore_state_from_tb(cpu, tb, retaddr);
372 373 374 375 376
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
377
        r = true;
B
Blue Swirl 已提交
378
    }
379 380 381
    tb_unlock();

    return r;
B
Blue Swirl 已提交
382 383
}

384
void page_size_init(void)
385 386 387 388
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
389
    qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
390 391 392 393 394 395
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
396
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
397
}
398

399 400 401
static void page_init(void)
{
    page_size_init();
402 403
    page_table_config_init();

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

470
/* If alloc=1:
471
 * Called with tb_lock held for system emulation.
472 473
 * Called with mmap_lock held for user-mode emulation.
 */
474 475 476 477 478 479
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

480 481 482 483
    if (alloc) {
        assert_memory_lock();
    }

484
    /* Level 1.  Always allocated.  */
485
    lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
486 487

    /* Level 2..N-1.  */
488
    for (i = v_l2_levels; i > 0; i--) {
489
        void **p = atomic_rcu_read(lp);
490 491 492 493 494

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
495
            p = g_new0(void *, V_L2_SIZE);
496
            atomic_rcu_set(lp, p);
497 498
        }

499
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
500 501
    }

502
    pd = atomic_rcu_read(lp);
503 504 505 506
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
507
        pd = g_new0(PageDesc, V_L2_SIZE);
508
        atomic_rcu_set(lp, pd);
509 510
    }

511
    return pd + (index & (V_L2_SIZE - 1));
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
538 539
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
540 541
#elif defined(__powerpc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
542 543
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
544 545 546 547 548
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
549 550 551 552
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
    return tb_size;
}

586 587 588 589 590
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
591
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
592 593 594 595 596 597 598
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
599
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
600 601 602 603 604 605 606 607 608 609 610 611 612
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

613 614 615 616
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

658 659
static inline void *alloc_code_gen_buffer(void)
{
660
    void *buf = static_code_gen_buffer;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

677
#ifdef __mips__
678 679 680
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
681 682
    }
#endif
683 684 685 686 687

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

688
    return buf;
689
}
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
708 709 710 711
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
712
    size_t size = tcg_ctx.code_gen_buffer_size;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
728 729
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
730 731 732 733 734
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
735
# elif defined(__mips__)
736
#  if _MIPS_SIM == _ABI64
737 738 739 740
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
741 742
# endif

743 744
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
745 746 747 748 749
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
750
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
751
        /* Try again, with the original still mapped, to avoid re-acquiring
752
           that 256mb crossing.  This time don't specify an address.  */
753 754 755 756 757 758
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
        switch (buf2 != MAP_FAILED) {
        case 1:
            if (!cross_256mb(buf2, size)) {
759
                /* Success!  Use the new buffer.  */
760
                munmap(buf, size + qemu_real_host_page_size);
761
                break;
762 763
            }
            /* Failure.  Work with what we had.  */
764
            munmap(buf2, size + qemu_real_host_page_size);
765 766 767 768 769 770 771 772 773 774 775 776
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
777
        }
778
        buf = buf2;
779 780 781
    }
#endif

782 783 784
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
785

786 787
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
788

789 790
    return buf;
}
791
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
792 793 794

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
795 796 797
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
798 799 800 801
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

802 803 804 805 806 807 808
    /* Estimate a good size for the number of TBs we can support.  We
       still haven't deducted the prologue from the buffer size here,
       but that's minimal and won't affect the estimate much.  */
    tcg_ctx.code_gen_max_blocks
        = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);

K
KONRAD Frederic 已提交
809
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
810 811
}

812 813 814 815 816 817 818
static void tb_htable_init(void)
{
    unsigned int mode = QHT_MODE_AUTO_RESIZE;

    qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
}

819 820 821 822 823 824 825
/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    page_init();
826
    tb_htable_init();
827
    code_gen_alloc(tb_size);
828
#if defined(CONFIG_SOFTMMU)
829 830 831 832 833 834 835 836
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
837
    return tcg_ctx.code_gen_buffer != NULL;
838 839
}

840 841 842 843 844 845
/*
 * Allocate a new translation block. Flush the translation buffer if
 * too many translation blocks or too much generated code.
 *
 * Called with tb_lock held.
 */
846 847 848 849
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

850 851
    assert_tb_lock();

852
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
853 854
        return NULL;
    }
855
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
856 857
    tb->pc = pc;
    tb->cflags = 0;
858
    tb->invalid = false;
859 860 861
    return tb;
}

862
/* Called with tb_lock held.  */
863 864
void tb_free(TranslationBlock *tb)
{
865 866
    assert_tb_lock();

867 868 869
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
870 871
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
872
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
873
        tcg_ctx.tb_ctx.nb_tbs--;
874 875 876 877 878
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
879
#ifdef CONFIG_SOFTMMU
880 881
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
882
    p->code_write_count = 0;
883
#endif
884 885 886 887 888 889 890 891 892 893 894 895 896
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

897
        for (i = 0; i < V_L2_SIZE; ++i) {
898 899 900 901 902 903
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

904
        for (i = 0; i < V_L2_SIZE; ++i) {
905 906 907 908 909 910 911
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
912
    int i, l1_sz = v_l1_size;
913

914 915
    for (i = 0; i < l1_sz; i++) {
        page_flush_tb_1(v_l2_levels, l1_map + i);
916 917 918 919
    }
}

/* flush all the translation blocks */
920
static void do_tb_flush(CPUState *cpu, void *data)
921
{
922 923 924 925 926 927 928 929 930
    unsigned tb_flush_req = (unsigned) (uintptr_t) data;

    tb_lock();

    /* If it's already been done on request of another CPU,
     * just retry.
     */
    if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
        goto done;
931
    }
932

933
#if defined(DEBUG_TB_FLUSH)
934
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
935
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
936
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
937
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
938
           tcg_ctx.tb_ctx.nb_tbs : 0);
939
#endif
E
Evgeny Voevodin 已提交
940 941
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
942
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
943 944
    }

A
Andreas Färber 已提交
945
    CPU_FOREACH(cpu) {
946 947 948 949 950
        int i;

        for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
            atomic_set(&cpu->tb_jmp_cache[i], NULL);
        }
951 952
    }

953
    tcg_ctx.tb_ctx.nb_tbs = 0;
954
    qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
955 956
    page_flush_tb();

E
Evgeny Voevodin 已提交
957
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
958 959
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
960 961 962 963 964 965 966 967 968 969 970 971 972
    atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
                  tcg_ctx.tb_ctx.tb_flush_count + 1);

done:
    tb_unlock();
}

void tb_flush(CPUState *cpu)
{
    if (tcg_enabled()) {
        uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
        async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
    }
973 974 975 976
}

#ifdef DEBUG_TB_CHECK

977 978
static void
do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
979
{
980 981 982 983 984 985 986 987
    TranslationBlock *tb = p;
    target_ulong addr = *(target_ulong *)userp;

    if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
        printf("ERROR invalidate: address=" TARGET_FMT_lx
               " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
    }
}
988

989 990 991 992
/* verify that all the pages have correct rights for code
 *
 * Called with tb_lock held.
 */
993 994
static void tb_invalidate_check(target_ulong address)
{
995
    address &= TARGET_PAGE_MASK;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
}

static void
do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
{
    TranslationBlock *tb = p;
    int flags1, flags2;

    flags1 = page_get_flags(tb->pc);
    flags2 = page_get_flags(tb->pc + tb->size - 1);
    if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
        printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
               (long)tb->pc, tb->size, flags1, flags2);
1010 1011 1012 1013 1014 1015
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
1016
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
}

#endif

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

1038 1039
/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1040
{
1041 1042
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1043 1044
    unsigned int n1;

1045
    ptb = &tb->jmp_list_next[n];
1046
    if (*ptb) {
1047 1048
        /* find tb(n) in circular list */
        for (;;) {
1049 1050 1051
            ntb = *ptb;
            n1 = ntb & 3;
            tb1 = (TranslationBlock *)(ntb & ~3);
1052 1053 1054 1055
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
1056
                ptb = &tb1->jmp_list_first;
1057
            } else {
1058
                ptb = &tb1->jmp_list_next[n1];
1059 1060 1061
            }
        }
        /* now we can suppress tb(n) from the list */
1062
        *ptb = tb->jmp_list_next[n];
1063

1064
        tb->jmp_list_next[n] = (uintptr_t)NULL;
1065 1066 1067 1068 1069 1070 1071
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
1072 1073
    uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
    tb_set_jmp_target(tb, n, addr);
1074 1075
}

1076 1077 1078
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *tb)
{
S
Sergey Fedorov 已提交
1079 1080
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
1081 1082
    unsigned int n1;

S
Sergey Fedorov 已提交
1083
    ptb = &tb->jmp_list_first;
1084
    for (;;) {
S
Sergey Fedorov 已提交
1085 1086 1087
        ntb = *ptb;
        n1 = ntb & 3;
        tb1 = (TranslationBlock *)(ntb & ~3);
1088 1089 1090
        if (n1 == 2) {
            break;
        }
S
Sergey Fedorov 已提交
1091 1092 1093
        tb_reset_jump(tb1, n1);
        *ptb = tb1->jmp_list_next[n1];
        tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1094 1095 1096
    }
}

1097 1098 1099 1100
/* invalidate one TB
 *
 * Called with tb_lock held.
 */
1101 1102
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
1103
    CPUState *cpu;
1104
    PageDesc *p;
1105
    uint32_t h;
1106 1107
    tb_page_addr_t phys_pc;

1108 1109
    assert_tb_lock();

1110 1111
    atomic_set(&tb->invalid, true);

1112 1113
    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1114
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1115
    qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
1131
    CPU_FOREACH(cpu) {
1132 1133
        if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
            atomic_set(&cpu->tb_jmp_cache[h], NULL);
1134 1135 1136 1137
        }
    }

    /* suppress this TB from the two jump lists */
1138 1139
    tb_remove_from_jmp_list(tb, 0);
    tb_remove_from_jmp_list(tb, 1);
1140 1141

    /* suppress any remaining jumps to this TB */
1142
    tb_jmp_unlink(tb);
1143

1144
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1145 1146
}

1147
#ifdef CONFIG_SOFTMMU
1148 1149 1150 1151 1152
static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1153
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
1167
             }
1168 1169 1170 1171
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1172
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1173 1174 1175
        tb = tb->page_next[n];
    }
}
1176
#endif
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

1190 1191
    assert_memory_lock();

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
 * (-1) to indicate that only one page contains the TB.
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
1246
    uint32_t h;
1247

1248 1249
    assert_memory_lock();

1250 1251 1252 1253 1254 1255 1256 1257
    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

1258 1259 1260 1261
    /* add in the hash table */
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
    qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);

1262 1263 1264 1265 1266
#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

1267
/* Called with mmap_lock held for user mode emulation.  */
1268
TranslationBlock *tb_gen_code(CPUState *cpu,
1269
                              target_ulong pc, target_ulong cs_base,
1270
                              uint32_t flags, int cflags)
1271
{
1272
    CPUArchState *env = cpu->env_ptr;
1273 1274 1275
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1276
    tcg_insn_unit *gen_code_buf;
1277
    int gen_code_size, search_size;
1278 1279 1280
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1281
    assert_memory_lock();
1282 1283

    phys_pc = get_page_addr_code(env, pc);
1284
    if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1285 1286
        cflags |= CF_USE_ICOUNT;
    }
1287

1288
    tb = tb_alloc(pc);
1289 1290
    if (unlikely(!tb)) {
 buffer_overflow:
1291
        /* flush must be done */
1292
        tb_flush(cpu);
1293 1294
        mmap_unlock();
        cpu_loop_exit(cpu);
1295
    }
1296 1297 1298

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1299 1300 1301
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1302 1303 1304 1305 1306 1307 1308 1309 1310

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

1311
    tcg_ctx.cpu = ENV_GET_CPU(env);
1312
    gen_intermediate_code(env, tb);
1313
    tcg_ctx.cpu = NULL;
1314 1315 1316 1317

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
1318 1319 1320
    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
    tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1321
#ifdef USE_DIRECT_JUMP
1322 1323
    tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
    tcg_ctx.tb_jmp_target_addr = NULL;
1324
#else
1325 1326
    tcg_ctx.tb_jmp_insn_offset = NULL;
    tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1327 1328 1329 1330 1331 1332 1333 1334
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

1335 1336 1337 1338 1339
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1340
    gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1341 1342 1343
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1344
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1345 1346 1347
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1348 1349 1350 1351 1352

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1353
    tcg_ctx.search_out_len += search_size;
1354 1355 1356
#endif

#ifdef DEBUG_DISAS
1357 1358
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
        qemu_log_in_addr_range(tb->pc)) {
1359 1360 1361 1362 1363 1364 1365
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
    }
#endif

1366 1367 1368
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    /* init jump list */
    assert(((uintptr_t)tb & 3) == 0);
    tb->jmp_list_first = (uintptr_t)tb | 2;
    tb->jmp_list_next[0] = (uintptr_t)NULL;
    tb->jmp_list_next[1] = (uintptr_t)NULL;

    /* init original jump addresses wich has been set during tcg_gen_code() */
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 0);
    }
    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 1);
    }

1384 1385 1386 1387 1388 1389
    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
1390 1391 1392 1393 1394
    /* As long as consistency of the TB stuff is provided by tb_lock in user
     * mode and is implicit in single-threaded softmmu emulation, no explicit
     * memory barrier is required before tb_link_page() makes the TB visible
     * through the physical hash table and physical page list.
     */
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1405 1406
 *
 * Called with mmap_lock held for user-mode emulation
1407
 */
1408
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1409
{
1410 1411
    assert_memory_lock();

1412
    while (start < end) {
1413
        tb_invalidate_phys_page_range(start, end, 0);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1425 1426
 *
 * Called with mmap_lock held for user-mode emulation
1427 1428 1429 1430
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
1431
    TranslationBlock *tb, *tb_next;
1432
#if defined(TARGET_HAS_PRECISE_SMC)
1433
    CPUState *cpu = current_cpu;
1434 1435
    CPUArchState *env = NULL;
#endif
1436 1437 1438 1439 1440 1441 1442 1443 1444
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1445
    uint32_t current_flags = 0;
1446 1447
#endif /* TARGET_HAS_PRECISE_SMC */

1448 1449
    assert_memory_lock();

1450 1451 1452 1453
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1454
#if defined(TARGET_HAS_PRECISE_SMC)
1455 1456
    if (cpu != NULL) {
        env = cpu->env_ptr;
1457
    }
1458
#endif
1459 1460 1461 1462

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
1463
    tb_lock();
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1484
                if (cpu->mem_io_pc) {
1485
                    /* now we have a real cpu fault */
1486
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1498
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            tb_phys_invalidate(tb, -1);
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1511
        tlb_unprotect_code(start);
1512 1513 1514 1515 1516 1517 1518
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1519
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1520
        cpu_loop_exit_noexc(cpu);
1521 1522
    }
#endif
1523
    tb_unlock();
1524 1525
}

1526
#ifdef CONFIG_SOFTMMU
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1545 1546
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1547 1548 1549
        /* build code bitmap.  FIXME: writes should be protected by
         * tb_lock, reads by tb_lock or RCU.
         */
1550 1551
        build_page_bitmap(p);
    }
1552
    if (p->code_bitmap) {
1553 1554 1555 1556 1557
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1558 1559 1560 1561 1562 1563 1564 1565
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}
1566
#else
1567 1568 1569 1570 1571 1572 1573
/* Called with mmap_lock held. If pc is not 0 then it indicates the
 * host PC of the faulting store instruction that caused this invalidate.
 * Returns true if the caller needs to abort execution of the current
 * TB (because it was modified by this store and the guest CPU has
 * precise-SMC semantics).
 */
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1574 1575 1576 1577 1578 1579
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1580 1581
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1582 1583 1584
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1585
    uint32_t current_flags = 0;
1586 1587 1588 1589 1590
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
1591
        return false;
1592
    }
1593 1594

    tb_lock();
1595 1596 1597 1598 1599
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1600 1601
    if (cpu != NULL) {
        env = cpu->env_ptr;
1602
    }
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1617
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1631
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1632 1633
        /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
         * back into the cpu_exec loop. */
1634
        return true;
1635 1636
    }
#endif
1637 1638
    tb_unlock();

1639
    return false;
1640 1641 1642 1643 1644
}
#endif

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1645
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1646 1647 1648 1649 1650
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1651
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1652 1653
        return NULL;
    }
E
Evgeny Voevodin 已提交
1654 1655
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1656 1657 1658 1659
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1660
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1661 1662
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1663
        tb = &tcg_ctx.tb_ctx.tbs[m];
1664 1665 1666 1667 1668 1669 1670 1671 1672
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1673
    return &tcg_ctx.tb_ctx.tbs[m_max];
1674 1675
}

1676
#if !defined(CONFIG_USER_ONLY)
1677
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1678 1679
{
    ram_addr_t ram_addr;
1680
    MemoryRegion *mr;
1681
    hwaddr l = 1;
1682

1683
    rcu_read_lock();
1684
    mr = address_space_translate(as, addr, &addr, &l, false);
1685 1686
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1687
        rcu_read_unlock();
1688 1689
        return;
    }
1690
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1691
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1692
    rcu_read_unlock();
1693
}
1694
#endif /* !defined(CONFIG_USER_ONLY) */
1695

1696
/* Called with tb_lock held.  */
1697
void tb_check_watchpoint(CPUState *cpu)
1698 1699 1700
{
    TranslationBlock *tb;

1701
    tb = tb_find_pc(cpu->mem_io_pc);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
1712
        uint32_t flags;
1713 1714 1715 1716

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1717 1718 1719 1720 1721 1722
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1723
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1724
{
1725
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1726
    CPUArchState *env = cpu->env_ptr;
1727
#endif
1728 1729 1730
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
1731
    uint32_t flags;
1732

1733
    tb_lock();
1734 1735
    tb = tb_find_pc(retaddr);
    if (!tb) {
1736
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1737 1738
                  (void *)retaddr);
    }
1739
    n = cpu->icount_decr.u16.low + tb->icount;
1740
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1741 1742
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1743
    n = n - cpu->icount_decr.u16.low;
1744 1745 1746 1747 1748 1749 1750 1751
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1752
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1753
        cpu->icount_decr.u16.low++;
1754 1755 1756 1757 1758 1759
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1760
        cpu->icount_decr.u16.low++;
1761 1762 1763 1764 1765
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1766
        cpu_abort(cpu, "TB too big during recompile");
1767 1768 1769 1770 1771 1772 1773
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1774 1775 1776 1777 1778 1779 1780 1781
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1782 1783
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1784
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1785

1786
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1787 1788 1789 1790 1791 1792 1793 1794
     * the first in the TB) then we end up generating a whole new TB and
     *  repeating the fault, which is horribly inefficient.
     *  Better would be to execute just this insn uncached, or generate a
     *  second new TB.
     *
     * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
     * tb_lock gets reset.
     */
1795
    cpu_loop_exit_noexc(cpu);
1796 1797
}

1798
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1799 1800 1801 1802 1803 1804
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1805
    memset(&cpu->tb_jmp_cache[i], 0,
1806 1807 1808
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1809
    memset(&cpu->tb_jmp_cache[i], 0,
1810 1811 1812
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
                                 struct qht_stats hst)
{
    uint32_t hgram_opts;
    size_t hgram_bins;
    char *hgram;

    if (!hst.head_buckets) {
        return;
    }
    cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
                hst.used_head_buckets, hst.head_buckets,
                (double)hst.used_head_buckets / hst.head_buckets * 100);

    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
        hgram_opts |= QDIST_PR_NODECIMAL;
    }
    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
    cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
                qdist_avg(&hst.occupancy) * 100, hgram);
    g_free(hgram);

    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
    if (hgram_bins > 10) {
        hgram_bins = 10;
    } else {
        hgram_bins = 0;
        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
    }
    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
    cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
                qdist_avg(&hst.chain), hgram);
    g_free(hgram);
}

1851 1852 1853 1854 1855
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;
1856
    struct qht_stats hst;
1857

1858 1859
    tb_lock();

1860 1861 1862 1863 1864
    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1865 1866
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1867 1868 1869 1870 1871 1872 1873
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
1874
        if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1875
            direct_jmp_count++;
1876
            if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1877 1878 1879 1880 1881 1882 1883
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1884
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1885
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1886
    cpu_fprintf(f, "TB count            %d/%d\n",
1887
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1888
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1889 1890 1891
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1892
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1893 1894 1895 1896 1897 1898 1899 1900 1901
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1902 1903
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1904 1905
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1906
                direct_jmp2_count,
1907 1908
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1909 1910

    qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1911
    print_qht_statistics(f, cpu_fprintf, hst);
1912 1913
    qht_statistics_destroy(&hst);

1914
    cpu_fprintf(f, "\nStatistics:\n");
1915 1916
    cpu_fprintf(f, "TB flush count      %u\n",
            atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1917 1918
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1919 1920
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
1921 1922

    tb_unlock();
1923 1924
}

1925 1926 1927 1928 1929
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1930 1931
#else /* CONFIG_USER_ONLY */

1932
void cpu_interrupt(CPUState *cpu, int mask)
1933
{
1934
    cpu->interrupt_request |= mask;
1935
    cpu->tcg_exit_req = 1;
1936 1937 1938 1939 1940 1941 1942 1943 1944
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1945
    target_ulong start;
1946 1947 1948 1949
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1950
                                   target_ulong end, int new_prot)
1951
{
1952
    if (data->start != -1u) {
1953 1954 1955 1956 1957 1958
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1959
    data->start = (new_prot ? end : -1u);
1960 1961 1962 1963 1964 1965
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1966
                                 target_ulong base, int level, void **lp)
1967
{
1968
    target_ulong pa;
1969 1970 1971 1972 1973 1974 1975 1976 1977
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1978
        for (i = 0; i < V_L2_SIZE; ++i) {
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1992
        for (i = 0; i < V_L2_SIZE; ++i) {
1993
            pa = base | ((target_ulong)i <<
1994
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
2008
    uintptr_t i, l1_sz = v_l1_size;
2009 2010 2011

    data.fn = fn;
    data.priv = priv;
2012
    data.start = -1u;
2013 2014
    data.prot = 0;

2015 2016 2017
    for (i = 0; i < l1_sz; i++) {
        target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
        int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2018 2019 2020 2021 2022 2023 2024 2025
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

2026 2027
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
2028 2029 2030
{
    FILE *f = (FILE *)priv;

2031 2032
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
2044
    const int length = sizeof(target_ulong) * 2;
2045 2046
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2072
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2073 2074
#endif
    assert(start < end);
2075
    assert_memory_lock();
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
2094
            tb_invalidate_phys_page(addr, 0);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2110
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
2146
                if (!page_unprotect(addr, 0)) {
2147 2148 2149 2150 2151 2152 2153 2154 2155
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
2156 2157 2158 2159 2160 2161
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 * and 2 if it was handled but the caller must cause the TB to be
 * immediately exited. (We can only return 2 if the 'pc' argument is
 * non-zero.)
 */
int page_unprotect(target_ulong address, uintptr_t pc)
2162 2163
{
    unsigned int prot;
2164
    bool current_tb_invalidated;
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
2186
        current_tb_invalidated = false;
2187 2188 2189 2190 2191 2192 2193
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
2194
            current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2195 2196 2197 2198 2199 2200 2201 2202
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
2203 2204
        /* If current TB was invalidated return to main loop */
        return current_tb_invalidated ? 2 : 1;
2205 2206 2207 2208 2209
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */