translate-all.c 60.6 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21
#ifdef _WIN32
#include <windows.h>
#endif
P
Peter Maydell 已提交
22
#include "qemu/osdep.h"
B
bellard 已提交
23

B
bellard 已提交
24

25
#include "qemu-common.h"
B
bellard 已提交
26
#define NO_CPU_IO_DEFS
B
bellard 已提交
27
#include "cpu.h"
28
#include "trace.h"
29
#include "disas/disas.h"
30
#include "exec/exec-all.h"
B
bellard 已提交
31
#include "tcg.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
48 49
#else
#include "exec/address-spaces.h"
50 51
#endif

52
#include "exec/cputlb.h"
53
#include "exec/tb-hash.h"
54
#include "translate-all.h"
55
#include "qemu/bitmap.h"
56
#include "qemu/timer.h"
57
#include "exec/log.h"
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
74
#ifdef CONFIG_SOFTMMU
75 76 77
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
78
    unsigned long *code_bitmap;
79
#else
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

96 97 98 99
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

100 101
/* The bits remaining after N lower levels of page tables.  */
#define V_L1_BITS_REM \
102
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
103 104

#if V_L1_BITS_REM < 4
105
#define V_L1_BITS  (V_L1_BITS_REM + V_L2_BITS)
106 107 108 109 110 111 112 113 114
#else
#define V_L1_BITS  V_L1_BITS_REM
#endif

#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)

#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)

uintptr_t qemu_host_page_size;
115
intptr_t qemu_host_page_mask;
116

117
/* The bottom level has pointers to PageDesc */
118 119
static void *l1_map[V_L1_SIZE];

B
bellard 已提交
120 121
/* code generation context */
TCGContext tcg_ctx;
B
bellard 已提交
122

K
KONRAD Frederic 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(!have_tb_lock);
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(have_tb_lock);
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

B
Blue Swirl 已提交
156
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
157

B
bellard 已提交
158 159 160 161 162
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
218
    uint8_t *highwater = tcg_ctx.code_gen_highwater;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
237 238 239 240 241 242 243 244

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
245 246 247 248 249
    }

    return p - block;
}

250
/* The cpu state corresponding to 'searched_pc' is restored.  */
251
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
252
                                     uintptr_t searched_pc)
B
bellard 已提交
253
{
254 255
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
256
    CPUArchState *env = cpu->env_ptr;
257 258
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
259
#ifdef CONFIG_PROFILER
260
    int64_t ti = profile_getclock();
B
bellard 已提交
261 262
#endif

263 264 265
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
266

267 268 269 270 271 272 273 274 275 276 277 278
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
279

280
 found:
281
    if (tb->cflags & CF_USE_ICOUNT) {
282
        assert(use_icount);
P
pbrook 已提交
283
        /* Reset the cycle counter to the start of the block.  */
284
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
285
        /* Clear the IO flag.  */
286
        cpu->can_do_io = 0;
P
pbrook 已提交
287
    }
288 289
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
290 291

#ifdef CONFIG_PROFILER
292 293
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
294
#endif
B
bellard 已提交
295 296
    return 0;
}
297

298
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
299 300 301 302 303
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
304
        cpu_restore_state_from_tb(cpu, tb, retaddr);
305 306 307 308 309
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
310 311 312 313 314
        return true;
    }
    return false;
}

315
void page_size_init(void)
316 317 318 319
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
320
    qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
321 322 323 324 325 326
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
327
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
328
}
329

330 331 332
static void page_init(void)
{
    page_size_init();
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

399 400 401
/* If alloc=1:
 * Called with mmap_lock held for user-mode emulation.
 */
402 403 404 405 406 407 408 409 410 411
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));

    /* Level 2..N-1.  */
412
    for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
413
        void **p = atomic_rcu_read(lp);
414 415 416 417 418

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
419
            p = g_new0(void *, V_L2_SIZE);
420
            atomic_rcu_set(lp, p);
421 422
        }

423
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
424 425
    }

426
    pd = atomic_rcu_read(lp);
427 428 429 430
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
431
        pd = g_new0(PageDesc, V_L2_SIZE);
432
        atomic_rcu_set(lp, pd);
433 434
    }

435
    return pd + (index & (V_L2_SIZE - 1));
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
462 463
#elif defined(__powerpc64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
464 465
#elif defined(__powerpc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
466 467
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
468 469 470 471 472
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
473 474 475 476
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
    return tb_size;
}

510 511 512 513 514
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
515
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
516 517 518 519 520 521 522
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
523
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
524 525 526 527 528 529 530 531 532 533 534 535 536
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

537 538 539 540
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
# ifdef _WIN32
static inline void do_protect(void *addr, long size, int prot)
{
    DWORD old_protect;
    VirtualProtect(addr, size, prot, &old_protect);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PAGE_EXECUTE_READWRITE);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PAGE_NOACCESS);
}
# else
static inline void do_protect(void *addr, long size, int prot)
{
    uintptr_t start, end;

    start = (uintptr_t)addr;
    start &= qemu_real_host_page_mask;

    end = (uintptr_t)addr + size;
    end = ROUND_UP(end, qemu_real_host_page_size);

    mprotect((void *)start, end - start, prot);
}

static inline void map_exec(void *addr, long size)
{
    do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
}

static inline void map_none(void *addr, long size)
{
    do_protect(addr, size, PROT_NONE);
}
# endif /* WIN32 */

582 583
static inline void *alloc_code_gen_buffer(void)
{
584
    void *buf = static_code_gen_buffer;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    size_t full_size, size;

    /* The size of the buffer, rounded down to end on a page boundary.  */
    full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
                 & qemu_real_host_page_mask) - (uintptr_t)buf;

    /* Reserve a guard page.  */
    size = full_size - qemu_real_host_page_size;

    /* Honor a command-line option limiting the size of the buffer.  */
    if (size > tcg_ctx.code_gen_buffer_size) {
        size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
                & qemu_real_host_page_mask) - (uintptr_t)buf;
    }
    tcg_ctx.code_gen_buffer_size = size;

601
#ifdef __mips__
602 603 604
    if (cross_256mb(buf, size)) {
        buf = split_cross_256mb(buf, size);
        size = tcg_ctx.code_gen_buffer_size;
605 606
    }
#endif
607 608 609 610 611

    map_exec(buf, size);
    map_none(buf + size, qemu_real_host_page_size);
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);

612
    return buf;
613
}
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
#elif defined(_WIN32)
static inline void *alloc_code_gen_buffer(void)
{
    size_t size = tcg_ctx.code_gen_buffer_size;
    void *buf1, *buf2;

    /* Perform the allocation in two steps, so that the guard page
       is reserved but uncommitted.  */
    buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
                        MEM_RESERVE, PAGE_NOACCESS);
    if (buf1 != NULL) {
        buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
        assert(buf1 == buf2);
    }

    return buf1;
}
#else
632 633 634 635
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
636
    size_t size = tcg_ctx.code_gen_buffer_size;
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
652 653
    if (size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
654 655 656 657 658
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
659
# elif defined(__mips__)
660
#  if _MIPS_SIM == _ABI64
661 662 663 664
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
665 666
# endif

667 668
    buf = mmap((void *)start, size + qemu_real_host_page_size,
               PROT_NONE, flags, -1, 0);
669 670 671 672 673
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
674
    if (cross_256mb(buf, size)) {
S
Stefan Weil 已提交
675
        /* Try again, with the original still mapped, to avoid re-acquiring
676
           that 256mb crossing.  This time don't specify an address.  */
677 678 679 680 681 682
        size_t size2;
        void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
                          PROT_NONE, flags, -1, 0);
        switch (buf2 != MAP_FAILED) {
        case 1:
            if (!cross_256mb(buf2, size)) {
683
                /* Success!  Use the new buffer.  */
684
                munmap(buf, size + qemu_real_host_page_size);
685
                break;
686 687
            }
            /* Failure.  Work with what we had.  */
688
            munmap(buf2, size + qemu_real_host_page_size);
689 690 691 692 693 694 695 696 697 698 699 700
            /* fallthru */
        default:
            /* Split the original buffer.  Free the smaller half.  */
            buf2 = split_cross_256mb(buf, size);
            size2 = tcg_ctx.code_gen_buffer_size;
            if (buf == buf2) {
                munmap(buf + size2 + qemu_real_host_page_size, size - size2);
            } else {
                munmap(buf, size - size2);
            }
            size = size2;
            break;
701
        }
702
        buf = buf2;
703 704 705
    }
#endif

706 707 708
    /* Make the final buffer accessible.  The guard page at the end
       will remain inaccessible with PROT_NONE.  */
    mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
709

710 711
    /* Request large pages for the buffer.  */
    qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
712

713 714
    return buf;
}
715
#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
716 717 718

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
719 720 721
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
722 723 724 725
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

726 727 728 729 730 731 732
    /* Estimate a good size for the number of TBs we can support.  We
       still haven't deducted the prologue from the buffer size here,
       but that's minimal and won't affect the estimate much.  */
    tcg_ctx.code_gen_max_blocks
        = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);

K
KONRAD Frederic 已提交
733
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
734 735
}

736 737 738 739 740 741 742
static void tb_htable_init(void)
{
    unsigned int mode = QHT_MODE_AUTO_RESIZE;

    qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
}

743 744 745 746 747 748 749
/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    page_init();
750
    tb_htable_init();
751
    code_gen_alloc(tb_size);
752
#if defined(CONFIG_SOFTMMU)
753 754 755 756 757 758 759 760
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
761
    return tcg_ctx.code_gen_buffer != NULL;
762 763 764 765 766 767 768 769
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

770
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
771 772
        return NULL;
    }
773
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
774 775 776 777 778 779 780 781 782 783
    tb->pc = pc;
    tb->cflags = 0;
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
784 785
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
786
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
787
        tcg_ctx.tb_ctx.nb_tbs--;
788 789 790 791 792
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
793
#ifdef CONFIG_SOFTMMU
794 795
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
796
    p->code_write_count = 0;
797
#endif
798 799 800 801 802 803 804 805 806 807 808 809 810
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

811
        for (i = 0; i < V_L2_SIZE; ++i) {
812 813 814 815 816 817
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

818
        for (i = 0; i < V_L2_SIZE; ++i) {
819 820 821 822 823 824 825 826 827 828
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
    int i;

    for (i = 0; i < V_L1_SIZE; i++) {
829
        page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
830 831 832 833 834
    }
}

/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
835
void tb_flush(CPUState *cpu)
836 837 838
{
#if defined(DEBUG_FLUSH)
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
839
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
840
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
841
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
842
           tcg_ctx.tb_ctx.nb_tbs : 0);
843
#endif
E
Evgeny Voevodin 已提交
844 845
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
846
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
847
    }
848
    tcg_ctx.tb_ctx.nb_tbs = 0;
849

A
Andreas Färber 已提交
850
    CPU_FOREACH(cpu) {
851
        memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
S
Sergey Fedorov 已提交
852
        cpu->tb_flushed = true;
853 854
    }

855
    qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
856 857
    page_flush_tb();

E
Evgeny Voevodin 已提交
858
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
859 860
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
861
    tcg_ctx.tb_ctx.tb_flush_count++;
862 863 864 865
}

#ifdef DEBUG_TB_CHECK

866 867
static void
do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
868
{
869 870 871 872 873 874 875 876
    TranslationBlock *tb = p;
    target_ulong addr = *(target_ulong *)userp;

    if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
        printf("ERROR invalidate: address=" TARGET_FMT_lx
               " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
    }
}
877

878 879
static void tb_invalidate_check(target_ulong address)
{
880
    address &= TARGET_PAGE_MASK;
881 882 883 884 885 886 887 888 889 890 891 892 893 894
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
}

static void
do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
{
    TranslationBlock *tb = p;
    int flags1, flags2;

    flags1 = page_get_flags(tb->pc);
    flags2 = page_get_flags(tb->pc + tb->size - 1);
    if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
        printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
               (long)tb->pc, tb->size, flags1, flags2);
895 896 897 898 899 900
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
901
    qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
}

#endif

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

923 924
/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
925
{
926 927
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
928 929
    unsigned int n1;

930
    ptb = &tb->jmp_list_next[n];
931
    if (*ptb) {
932 933
        /* find tb(n) in circular list */
        for (;;) {
934 935 936
            ntb = *ptb;
            n1 = ntb & 3;
            tb1 = (TranslationBlock *)(ntb & ~3);
937 938 939 940
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
941
                ptb = &tb1->jmp_list_first;
942
            } else {
943
                ptb = &tb1->jmp_list_next[n1];
944 945 946
            }
        }
        /* now we can suppress tb(n) from the list */
947
        *ptb = tb->jmp_list_next[n];
948

949
        tb->jmp_list_next[n] = (uintptr_t)NULL;
950 951 952 953 954 955 956
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
957 958
    uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
    tb_set_jmp_target(tb, n, addr);
959 960
}

961 962 963
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *tb)
{
S
Sergey Fedorov 已提交
964 965
    TranslationBlock *tb1;
    uintptr_t *ptb, ntb;
966 967
    unsigned int n1;

S
Sergey Fedorov 已提交
968
    ptb = &tb->jmp_list_first;
969
    for (;;) {
S
Sergey Fedorov 已提交
970 971 972
        ntb = *ptb;
        n1 = ntb & 3;
        tb1 = (TranslationBlock *)(ntb & ~3);
973 974 975
        if (n1 == 2) {
            break;
        }
S
Sergey Fedorov 已提交
976 977 978
        tb_reset_jump(tb1, n1);
        *ptb = tb1->jmp_list_next[n1];
        tb1->jmp_list_next[n1] = (uintptr_t)NULL;
979 980 981
    }
}

982
/* invalidate one TB */
983 984
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
985
    CPUState *cpu;
986
    PageDesc *p;
987
    uint32_t h;
988 989 990 991
    tb_page_addr_t phys_pc;

    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
992
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
993
    qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
1009
    CPU_FOREACH(cpu) {
1010 1011
        if (cpu->tb_jmp_cache[h] == tb) {
            cpu->tb_jmp_cache[h] = NULL;
1012 1013 1014 1015
        }
    }

    /* suppress this TB from the two jump lists */
1016 1017
    tb_remove_from_jmp_list(tb, 0);
    tb_remove_from_jmp_list(tb, 1);
1018 1019

    /* suppress any remaining jumps to this TB */
1020
    tb_jmp_unlink(tb);
1021

1022
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1023 1024
}

1025
#ifdef CONFIG_SOFTMMU
1026 1027 1028 1029 1030
static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1031
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1050
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1051 1052 1053
        tb = tb->page_next[n];
    }
}
1054
#endif
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
 * (-1) to indicate that only one page contains the TB.
 *
 * Called with mmap_lock held for user-mode emulation.
 */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
1122
    uint32_t h;
1123

1124 1125
    /* add in the hash table */
    h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1126
    qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

1141
/* Called with mmap_lock held for user mode emulation.  */
1142
TranslationBlock *tb_gen_code(CPUState *cpu,
1143
                              target_ulong pc, target_ulong cs_base,
1144
                              uint32_t flags, int cflags)
1145
{
1146
    CPUArchState *env = cpu->env_ptr;
1147 1148 1149
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1150
    tcg_insn_unit *gen_code_buf;
1151
    int gen_code_size, search_size;
1152 1153 1154
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1155 1156

    phys_pc = get_page_addr_code(env, pc);
1157
    if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1158 1159
        cflags |= CF_USE_ICOUNT;
    }
1160

1161
    tb = tb_alloc(pc);
1162 1163
    if (unlikely(!tb)) {
 buffer_overflow:
1164
        /* flush must be done */
1165
        tb_flush(cpu);
1166 1167
        /* cannot fail at this point */
        tb = tb_alloc(pc);
1168
        assert(tb != NULL);
1169
    }
1170 1171 1172

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1173 1174 1175
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1176 1177 1178 1179 1180 1181 1182 1183 1184

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

1185
    tcg_ctx.cpu = ENV_GET_CPU(env);
1186
    gen_intermediate_code(env, tb);
1187
    tcg_ctx.cpu = NULL;
1188 1189 1190 1191

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
1192 1193 1194
    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
    tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1195
#ifdef USE_DIRECT_JUMP
1196 1197
    tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
    tcg_ctx.tb_jmp_target_addr = NULL;
1198
#else
1199 1200
    tcg_ctx.tb_jmp_insn_offset = NULL;
    tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1201 1202 1203 1204 1205 1206 1207 1208
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

1209 1210 1211 1212 1213
    /* ??? Overflow could be handled better here.  In particular, we
       don't need to re-do gen_intermediate_code, nor should we re-do
       the tcg optimization currently hidden inside tcg_gen_code.  All
       that should be required is to flush the TBs, allocate a new TB,
       re-initialize it per above, and re-do the actual code generation.  */
1214
    gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1215 1216 1217
    if (unlikely(gen_code_size < 0)) {
        goto buffer_overflow;
    }
1218
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1219 1220 1221
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
1222 1223 1224 1225 1226

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1227
    tcg_ctx.search_out_len += search_size;
1228 1229 1230
#endif

#ifdef DEBUG_DISAS
1231 1232
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
        qemu_log_in_addr_range(tb->pc)) {
1233 1234 1235 1236 1237 1238 1239
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
    }
#endif

1240 1241 1242
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    /* init jump list */
    assert(((uintptr_t)tb & 3) == 0);
    tb->jmp_list_first = (uintptr_t)tb | 2;
    tb->jmp_list_next[0] = (uintptr_t)NULL;
    tb->jmp_list_next[1] = (uintptr_t)NULL;

    /* init original jump addresses wich has been set during tcg_gen_code() */
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 0);
    }
    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 1);
    }

1258 1259 1260 1261 1262 1263
    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
1264 1265 1266 1267 1268
    /* As long as consistency of the TB stuff is provided by tb_lock in user
     * mode and is implicit in single-threaded softmmu emulation, no explicit
     * memory barrier is required before tb_link_page() makes the TB visible
     * through the physical hash table and physical page list.
     */
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1279 1280
 *
 * Called with mmap_lock held for user-mode emulation
1281
 */
1282
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1283 1284
{
    while (start < end) {
1285
        tb_invalidate_phys_page_range(start, end, 0);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1297 1298
 *
 * Called with mmap_lock held for user-mode emulation
1299 1300 1301 1302
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
1303
    TranslationBlock *tb, *tb_next;
1304
#if defined(TARGET_HAS_PRECISE_SMC)
1305
    CPUState *cpu = current_cpu;
1306 1307
    CPUArchState *env = NULL;
#endif
1308 1309 1310 1311 1312 1313 1314 1315 1316
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1317
    uint32_t current_flags = 0;
1318 1319 1320 1321 1322 1323
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1324
#if defined(TARGET_HAS_PRECISE_SMC)
1325 1326
    if (cpu != NULL) {
        env = cpu->env_ptr;
1327
    }
1328
#endif
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1353
                if (cpu->mem_io_pc) {
1354
                    /* now we have a real cpu fault */
1355
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1367
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            tb_phys_invalidate(tb, -1);
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1380
        tlb_unprotect_code(start);
1381 1382 1383 1384 1385 1386 1387
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1388
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1389
        cpu_loop_exit_noexc(cpu);
1390 1391 1392 1393
    }
#endif
}

1394
#ifdef CONFIG_SOFTMMU
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1413 1414 1415 1416 1417
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1418
    if (p->code_bitmap) {
1419 1420 1421 1422 1423
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1424 1425 1426 1427 1428 1429 1430 1431
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}
1432
#else
1433 1434 1435 1436 1437 1438 1439
/* Called with mmap_lock held. If pc is not 0 then it indicates the
 * host PC of the faulting store instruction that caused this invalidate.
 * Returns true if the caller needs to abort execution of the current
 * TB (because it was modified by this store and the guest CPU has
 * precise-SMC semantics).
 */
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1440 1441 1442 1443 1444 1445
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1446 1447
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1448 1449 1450
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
1451
    uint32_t current_flags = 0;
1452 1453 1454 1455 1456
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
1457
        return false;
1458 1459 1460 1461 1462 1463
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1464 1465
    if (cpu != NULL) {
        env = cpu->env_ptr;
1466
    }
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1481
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1495
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1496
        return true;
1497 1498
    }
#endif
1499
    return false;
1500 1501 1502 1503 1504
}
#endif

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1505
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1506 1507 1508 1509 1510
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1511
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1512 1513
        return NULL;
    }
E
Evgeny Voevodin 已提交
1514 1515
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1516 1517 1518 1519
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1520
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1521 1522
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1523
        tb = &tcg_ctx.tb_ctx.tbs[m];
1524 1525 1526 1527 1528 1529 1530 1531 1532
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1533
    return &tcg_ctx.tb_ctx.tbs[m_max];
1534 1535
}

1536
#if !defined(CONFIG_USER_ONLY)
1537
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1538 1539
{
    ram_addr_t ram_addr;
1540
    MemoryRegion *mr;
1541
    hwaddr l = 1;
1542

1543
    rcu_read_lock();
1544
    mr = address_space_translate(as, addr, &addr, &l, false);
1545 1546
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1547
        rcu_read_unlock();
1548 1549
        return;
    }
1550
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1551
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1552
    rcu_read_unlock();
1553
}
1554
#endif /* !defined(CONFIG_USER_ONLY) */
1555

1556
void tb_check_watchpoint(CPUState *cpu)
1557 1558 1559
{
    TranslationBlock *tb;

1560
    tb = tb_find_pc(cpu->mem_io_pc);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
1571
        uint32_t flags;
1572 1573 1574 1575

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1576 1577 1578 1579 1580 1581
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1582
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1583
{
1584
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1585
    CPUArchState *env = cpu->env_ptr;
1586
#endif
1587 1588 1589
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
1590
    uint32_t flags;
1591 1592 1593

    tb = tb_find_pc(retaddr);
    if (!tb) {
1594
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1595 1596
                  (void *)retaddr);
    }
1597
    n = cpu->icount_decr.u16.low + tb->icount;
1598
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1599 1600
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1601
    n = n - cpu->icount_decr.u16.low;
1602 1603 1604 1605 1606 1607 1608 1609
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1610
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1611
        cpu->icount_decr.u16.low++;
1612 1613 1614 1615 1616 1617
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1618
        cpu->icount_decr.u16.low++;
1619 1620 1621 1622 1623
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1624
        cpu_abort(cpu, "TB too big during recompile");
1625 1626 1627 1628 1629 1630 1631
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1632 1633 1634 1635 1636 1637 1638 1639
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1640 1641
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1642
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1643 1644 1645 1646 1647
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1648
    cpu_loop_exit_noexc(cpu);
1649 1650
}

1651
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1652 1653 1654 1655 1656 1657
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1658
    memset(&cpu->tb_jmp_cache[i], 0,
1659 1660 1661
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1662
    memset(&cpu->tb_jmp_cache[i], 0,
1663 1664 1665 1666 1667 1668 1669 1670
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;
1671 1672 1673 1674
    struct qht_stats hst;
    uint32_t hgram_opts;
    size_t hgram_bins;
    char *hgram;
1675 1676 1677 1678 1679 1680

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1681 1682
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1683 1684 1685 1686 1687 1688 1689
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
1690
        if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1691
            direct_jmp_count++;
1692
            if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1693 1694 1695 1696 1697 1698 1699
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1700
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1701
                tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1702
    cpu_fprintf(f, "TB count            %d/%d\n",
1703
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1704
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1705 1706 1707
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1708
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1709 1710 1711 1712 1713 1714 1715 1716 1717
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1718 1719
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1720 1721
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1722
                direct_jmp2_count,
1723 1724
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

    qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);

    cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
                hst.used_head_buckets, hst.head_buckets,
                (double)hst.used_head_buckets / hst.head_buckets * 100);

    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
        hgram_opts |= QDIST_PR_NODECIMAL;
    }
    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
    cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
                qdist_avg(&hst.occupancy) * 100, hgram);
    g_free(hgram);

    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
    if (hgram_bins > 10) {
        hgram_bins = 10;
    } else {
        hgram_bins = 0;
        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
    }
    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
    cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
                qdist_avg(&hst.chain), hgram);
    g_free(hgram);

    qht_statistics_destroy(&hst);

1757
    cpu_fprintf(f, "\nStatistics:\n");
1758 1759 1760
    cpu_fprintf(f, "TB flush count      %d\n", tcg_ctx.tb_ctx.tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1761 1762 1763 1764
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1765 1766 1767 1768 1769
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1770 1771
#else /* CONFIG_USER_ONLY */

1772
void cpu_interrupt(CPUState *cpu, int mask)
1773
{
1774
    cpu->interrupt_request |= mask;
1775
    cpu->tcg_exit_req = 1;
1776 1777 1778 1779 1780 1781 1782 1783 1784
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1785
    target_ulong start;
1786 1787 1788 1789
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1790
                                   target_ulong end, int new_prot)
1791
{
1792
    if (data->start != -1u) {
1793 1794 1795 1796 1797 1798
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1799
    data->start = (new_prot ? end : -1u);
1800 1801 1802 1803 1804 1805
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1806
                                 target_ulong base, int level, void **lp)
1807
{
1808
    target_ulong pa;
1809 1810 1811 1812 1813 1814 1815 1816 1817
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1818
        for (i = 0; i < V_L2_SIZE; ++i) {
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1832
        for (i = 0; i < V_L2_SIZE; ++i) {
1833
            pa = base | ((target_ulong)i <<
1834
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    uintptr_t i;

    data.fn = fn;
    data.priv = priv;
1852
    data.start = -1u;
1853 1854 1855
    data.prot = 0;

    for (i = 0; i < V_L1_SIZE; i++) {
1856
        int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1857
                                       V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1858 1859 1860 1861 1862 1863 1864 1865
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1866 1867
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1868 1869 1870
{
    FILE *f = (FILE *)priv;

1871 1872
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1884
    const int length = sizeof(target_ulong) * 2;
1885 1886
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1912
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1933
            tb_invalidate_phys_page(addr, 0);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1949
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
1985
                if (!page_unprotect(addr, 0)) {
1986 1987 1988 1989 1990 1991 1992 1993 1994
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
1995 1996 1997 1998 1999 2000
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 * and 2 if it was handled but the caller must cause the TB to be
 * immediately exited. (We can only return 2 if the 'pc' argument is
 * non-zero.)
 */
int page_unprotect(target_ulong address, uintptr_t pc)
2001 2002
{
    unsigned int prot;
2003
    bool current_tb_invalidated;
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
2025
        current_tb_invalidated = false;
2026 2027 2028 2029 2030 2031 2032
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
2033
            current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2034 2035 2036 2037 2038 2039 2040 2041
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
2042 2043
        /* If current TB was invalidated return to main loop */
        return current_tb_invalidated ? 2 : 1;
2044 2045 2046 2047 2048
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */