translate-all.c 56.0 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21 22 23 24
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#endif
B
bellard 已提交
25 26 27 28 29 30 31
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>

#include "config.h"
B
bellard 已提交
32

33
#include "qemu-common.h"
B
bellard 已提交
34
#define NO_CPU_IO_DEFS
B
bellard 已提交
35
#include "cpu.h"
36
#include "trace.h"
37
#include "disas/disas.h"
B
bellard 已提交
38
#include "tcg.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/time.h>
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
56 57
#else
#include "exec/address-spaces.h"
58 59
#endif

60
#include "exec/cputlb.h"
61
#include "exec/tb-hash.h"
62
#include "translate-all.h"
63
#include "qemu/bitmap.h"
64
#include "qemu/timer.h"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
84
    unsigned long *code_bitmap;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

102 103 104 105
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

106 107
/* The bits remaining after N lower levels of page tables.  */
#define V_L1_BITS_REM \
108
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109 110

#if V_L1_BITS_REM < 4
111
#define V_L1_BITS  (V_L1_BITS_REM + V_L2_BITS)
112 113 114 115 116 117 118 119 120
#else
#define V_L1_BITS  V_L1_BITS_REM
#endif

#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)

#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)

uintptr_t qemu_real_host_page_size;
121
uintptr_t qemu_real_host_page_mask;
122 123 124 125 126 127 128
uintptr_t qemu_host_page_size;
uintptr_t qemu_host_page_mask;

/* This is a multi-level map on the virtual address space.
   The bottom level has pointers to PageDesc.  */
static void *l1_map[V_L1_SIZE];

B
bellard 已提交
129 130
/* code generation context */
TCGContext tcg_ctx;
B
bellard 已提交
131

132 133
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2);
B
Blue Swirl 已提交
134
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
135

B
bellard 已提交
136 137 138 139 140
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

B
bellard 已提交
141
/* return non zero if the very first instruction is invalid so that
142
   the virtual CPU can trigger an exception.
B
bellard 已提交
143 144 145 146

   '*gen_code_size_ptr' contains the size of the generated code (host
   code).
*/
147
int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
B
bellard 已提交
148
{
B
bellard 已提交
149
    TCGContext *s = &tcg_ctx;
150
    tcg_insn_unit *gen_code_buf;
B
bellard 已提交
151
    int gen_code_size;
B
bellard 已提交
152 153 154 155 156
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
B
bellard 已提交
157 158
    s->tb_count1++; /* includes aborted translations because of
                       exceptions */
B
bellard 已提交
159 160 161
    ti = profile_getclock();
#endif
    tcg_func_start(s);
B
bellard 已提交
162

163 164
    gen_intermediate_code(env, tb);

165 166
    trace_translate_block(tb, tb->pc, tb->tc_ptr);

B
bellard 已提交
167
    /* generate machine code */
B
bellard 已提交
168
    gen_code_buf = tb->tc_ptr;
B
bellard 已提交
169 170
    tb->tb_next_offset[0] = 0xffff;
    tb->tb_next_offset[1] = 0xffff;
B
bellard 已提交
171
    s->tb_next_offset = tb->tb_next_offset;
172
#ifdef USE_DIRECT_JUMP
B
bellard 已提交
173 174
    s->tb_jmp_offset = tb->tb_jmp_offset;
    s->tb_next = NULL;
B
bellard 已提交
175
#else
B
bellard 已提交
176 177
    s->tb_jmp_offset = NULL;
    s->tb_next = tb->tb_next;
B
bellard 已提交
178
#endif
B
bellard 已提交
179 180

#ifdef CONFIG_PROFILER
B
bellard 已提交
181 182 183
    s->tb_count++;
    s->interm_time += profile_getclock() - ti;
    s->code_time -= profile_getclock();
B
bellard 已提交
184
#endif
A
aurel32 已提交
185
    gen_code_size = tcg_gen_code(s, gen_code_buf);
B
bellard 已提交
186
    *gen_code_size_ptr = gen_code_size;
B
bellard 已提交
187
#ifdef CONFIG_PROFILER
B
bellard 已提交
188 189 190
    s->code_time += profile_getclock();
    s->code_in_len += tb->size;
    s->code_out_len += gen_code_size;
B
bellard 已提交
191 192
#endif

B
bellard 已提交
193
#ifdef DEBUG_DISAS
194
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
195 196
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
197
        qemu_log("\n");
198
        qemu_log_flush();
B
bellard 已提交
199 200 201 202 203
    }
#endif
    return 0;
}

204
/* The cpu state corresponding to 'searched_pc' is restored.
B
bellard 已提交
205
 */
206
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
207
                                     uintptr_t searched_pc)
B
bellard 已提交
208
{
209
    CPUArchState *env = cpu->env_ptr;
B
bellard 已提交
210 211
    TCGContext *s = &tcg_ctx;
    int j;
212
    uintptr_t tc_ptr;
B
bellard 已提交
213 214 215 216 217 218 219 220
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    tcg_func_start(s);
B
bellard 已提交
221

222
    gen_intermediate_code_pc(env, tb);
223

224
    if (tb->cflags & CF_USE_ICOUNT) {
P
pbrook 已提交
225
        /* Reset the cycle counter to the start of the block.  */
226
        cpu->icount_decr.u16.low += tb->icount;
P
pbrook 已提交
227
        /* Clear the IO flag.  */
228
        cpu->can_do_io = 0;
P
pbrook 已提交
229 230
    }

B
bellard 已提交
231
    /* find opc index corresponding to search_pc */
232
    tc_ptr = (uintptr_t)tb->tc_ptr;
B
bellard 已提交
233 234
    if (searched_pc < tc_ptr)
        return -1;
B
bellard 已提交
235 236 237 238 239 240 241 242 243

    s->tb_next_offset = tb->tb_next_offset;
#ifdef USE_DIRECT_JUMP
    s->tb_jmp_offset = tb->tb_jmp_offset;
    s->tb_next = NULL;
#else
    s->tb_jmp_offset = NULL;
    s->tb_next = tb->tb_next;
#endif
244 245
    j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
                               searched_pc - tc_ptr);
B
bellard 已提交
246 247
    if (j < 0)
        return -1;
B
bellard 已提交
248
    /* now find start of instruction before */
249
    while (s->gen_opc_instr_start[j] == 0) {
B
bellard 已提交
250
        j--;
251
    }
252
    cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
253

254
    restore_state_to_opc(env, tb, j);
B
bellard 已提交
255 256

#ifdef CONFIG_PROFILER
B
bellard 已提交
257 258
    s->restore_time += profile_getclock() - ti;
    s->restore_count++;
B
bellard 已提交
259
#endif
B
bellard 已提交
260 261
    return 0;
}
262

263
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
264 265 266 267 268
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
269
        cpu_restore_state_from_tb(cpu, tb, retaddr);
270 271 272 273 274 275
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            cpu->current_tb = NULL;
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
276 277 278 279 280
        return true;
    }
    return false;
}

281
#ifdef _WIN32
282
static __attribute__((unused)) void map_exec(void *addr, long size)
283 284 285 286 287 288
{
    DWORD old_protect;
    VirtualProtect(addr, size,
                   PAGE_EXECUTE_READWRITE, &old_protect);
}
#else
289
static __attribute__((unused)) void map_exec(void *addr, long size)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
{
    unsigned long start, end, page_size;

    page_size = getpagesize();
    start = (unsigned long)addr;
    start &= ~(page_size - 1);

    end = (unsigned long)addr + size;
    end += page_size - 1;
    end &= ~(page_size - 1);

    mprotect((void *)start, end - start,
             PROT_READ | PROT_WRITE | PROT_EXEC);
}
#endif

306
void page_size_init(void)
307 308 309 310
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
311
    qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
312 313 314 315 316 317 318
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = ~(qemu_host_page_size - 1);
319
}
320

321 322 323
static void page_init(void)
{
    page_size_init();
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));

    /* Level 2..N-1.  */
400
    for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
401 402 403 404 405 406
        void **p = *lp;

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
407
            p = g_new0(void *, V_L2_SIZE);
408 409 410
            *lp = p;
        }

411
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
412 413 414 415 416 417 418
    }

    pd = *lp;
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
419
        pd = g_new0(PageDesc, V_L2_SIZE);
420 421 422
        *lp = pd;
    }

423
    return pd + (index & (V_L2_SIZE - 1));
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if !defined(CONFIG_USER_ONLY)
#define mmap_lock() do { } while (0)
#define mmap_unlock() do { } while (0)
#endif

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* ??? Should configure for this, not list operating systems here.  */
#if (defined(__linux__) \
    || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
    || defined(__DragonFly__) || defined(__OpenBSD__) \
    || defined(__NetBSD__))
# define USE_MMAP
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
463 464
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
465 466 467 468 469
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
470 471 472 473
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
E
Evgeny Voevodin 已提交
504
    tcg_ctx.code_gen_buffer_size = tb_size;
505 506 507
    return tb_size;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

535 536 537 538 539 540
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

static inline void *alloc_code_gen_buffer(void)
{
541 542 543 544 545 546 547 548
    void *buf = static_code_gen_buffer;
#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
        buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
    }
#endif
    map_exec(buf, tcg_ctx.code_gen_buffer_size);
    return buf;
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
}
#elif defined(USE_MMAP)
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
E
Evgeny Voevodin 已提交
570 571
    if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
572 573 574 575 576
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
577 578 579 580 581 582 583 584 585
# elif defined(__mips__)
    /* ??? We ought to more explicitly manage layout for softmmu too.  */
#  ifdef CONFIG_USER_ONLY
    start = 0x68000000ul;
#  elif _MIPS_SIM == _ABI64
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
586 587
# endif

E
Evgeny Voevodin 已提交
588
    buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
589
               PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
590 591 592 593 594 595
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
S
Stefan Weil 已提交
596
        /* Try again, with the original still mapped, to avoid re-acquiring
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
           that 256mb crossing.  This time don't specify an address.  */
        size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
        void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
                          flags, -1, 0);
        if (buf2 != MAP_FAILED) {
            if (!cross_256mb(buf2, size1)) {
                /* Success!  Use the new buffer.  */
                munmap(buf, size1);
                return buf2;
            }
            /* Failure.  Work with what we had.  */
            munmap(buf2, size1);
        }

        /* Split the original buffer.  Free the smaller half.  */
        buf2 = split_cross_256mb(buf, size1);
        size2 = tcg_ctx.code_gen_buffer_size;
        munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
        return buf2;
    }
#endif

    return buf;
620 621 622 623
}
#else
static inline void *alloc_code_gen_buffer(void)
{
624
    void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    if (buf == NULL) {
        return NULL;
    }

#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
        void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
        if (buf2 != NULL && !cross_256mb(buf2, size1)) {
            /* Success!  Use the new buffer.  */
            free(buf);
            buf = buf2;
        } else {
            /* Failure.  Work with what we had.  Since this is malloc
               and not mmap, we can't free the other half.  */
            free(buf2);
            buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
        }
643
    }
644 645 646
#endif

    map_exec(buf, tcg_ctx.code_gen_buffer_size);
647 648 649 650 651 652
    return buf;
}
#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
653 654 655
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
656 657 658 659
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

E
Evgeny Voevodin 已提交
660 661
    qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
            QEMU_MADV_HUGEPAGE);
662 663 664 665 666 667

    /* Steal room for the prologue at the end of the buffer.  This ensures
       (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
       from TB's to the prologue are going to be in range.  It also means
       that we don't need to mark (additional) portions of the data segment
       as executable.  */
E
Evgeny Voevodin 已提交
668 669 670
    tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
            tcg_ctx.code_gen_buffer_size - 1024;
    tcg_ctx.code_gen_buffer_size -= 1024;
671

E
Evgeny Voevodin 已提交
672
    tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
673
        (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
E
Evgeny Voevodin 已提交
674 675
    tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
            CODE_GEN_AVG_BLOCK_SIZE;
676 677
    tcg_ctx.tb_ctx.tbs =
            g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
678 679 680 681 682 683 684 685 686
}

/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    code_gen_alloc(tb_size);
E
Evgeny Voevodin 已提交
687 688
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
    tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
689 690 691 692 693 694 695 696 697 698
    page_init();
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
699
    return tcg_ctx.code_gen_buffer != NULL;
700 701 702 703 704 705 706 707
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

708
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
E
Evgeny Voevodin 已提交
709 710
        (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
         tcg_ctx.code_gen_buffer_max_size) {
711 712
        return NULL;
    }
713
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
714 715 716 717 718 719 720 721 722 723
    tb->pc = pc;
    tb->cflags = 0;
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
724 725
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
726
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
727
        tcg_ctx.tb_ctx.nb_tbs--;
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
    if (p->code_bitmap) {
        g_free(p->code_bitmap);
        p->code_bitmap = NULL;
    }
    p->code_write_count = 0;
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

751
        for (i = 0; i < V_L2_SIZE; ++i) {
752 753 754 755 756 757
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

758
        for (i = 0; i < V_L2_SIZE; ++i) {
759 760 761 762 763 764 765 766 767 768
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
    int i;

    for (i = 0; i < V_L1_SIZE; i++) {
769
        page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
770 771 772 773 774 775 776
    }
}

/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
void tb_flush(CPUArchState *env1)
{
777
    CPUState *cpu = ENV_GET_CPU(env1);
778 779 780

#if defined(DEBUG_FLUSH)
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
781
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
782
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
783
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
784
           tcg_ctx.tb_ctx.nb_tbs : 0);
785
#endif
E
Evgeny Voevodin 已提交
786 787
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
788
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
789
    }
790
    tcg_ctx.tb_ctx.nb_tbs = 0;
791

A
Andreas Färber 已提交
792
    CPU_FOREACH(cpu) {
793
        memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
794 795
    }

796
    memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
797 798
    page_flush_tb();

E
Evgeny Voevodin 已提交
799
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
800 801
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
802
    tcg_ctx.tb_ctx.tb_flush_count++;
803 804 805 806 807 808 809 810 811 812 813
}

#ifdef DEBUG_TB_CHECK

static void tb_invalidate_check(target_ulong address)
{
    TranslationBlock *tb;
    int i;

    address &= TARGET_PAGE_MASK;
    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
814
        for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=" TARGET_FMT_lx
                       " PC=%08lx size=%04x\n",
                       address, (long)tb->pc, tb->size);
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;

    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
832 833
        for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
                tb = tb->phys_hash_next) {
834 835 836 837 838 839 840 841 842 843 844 845
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
                       (long)tb->pc, tb->size, flags1, flags2);
            }
        }
    }
}

#endif

846
static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
847 848 849 850 851 852
{
    TranslationBlock *tb1;

    for (;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
853
            *ptb = tb1->phys_hash_next;
854 855
            break;
        }
856
        ptb = &tb1->phys_hash_next;
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
    }
}

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for (;;) {
            tb1 = *ptb;
            n1 = (uintptr_t)tb1 & 3;
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}

913
/* invalidate one TB */
914 915
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
916
    CPUState *cpu;
917 918 919 920 921 922 923 924
    PageDesc *p;
    unsigned int h, n1;
    tb_page_addr_t phys_pc;
    TranslationBlock *tb1, *tb2;

    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
925
    tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
926 927 928 929 930 931 932 933 934 935 936 937 938

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

939
    tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
940 941 942

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
943
    CPU_FOREACH(cpu) {
944 945
        if (cpu->tb_jmp_cache[h] == tb) {
            cpu->tb_jmp_cache[h] = NULL;
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
        }
    }

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for (;;) {
        n1 = (uintptr_t)tb1 & 3;
        if (n1 == 2) {
            break;
        }
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */

968
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
969 970 971 972 973 974 975
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

976
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
995
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
996 997 998 999
        tb = tb->page_next[n];
    }
}

1000
TranslationBlock *tb_gen_code(CPUState *cpu,
1001 1002 1003
                              target_ulong pc, target_ulong cs_base,
                              int flags, int cflags)
{
1004
    CPUArchState *env = cpu->env_ptr;
1005 1006 1007 1008 1009 1010
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
    int code_gen_size;

    phys_pc = get_page_addr_code(env, pc);
1011 1012 1013
    if (use_icount) {
        cflags |= CF_USE_ICOUNT;
    }
1014 1015 1016 1017 1018 1019 1020
    tb = tb_alloc(pc);
    if (!tb) {
        /* flush must be done */
        tb_flush(env);
        /* cannot fail at this point */
        tb = tb_alloc(pc);
        /* Don't forget to invalidate previous TB info.  */
1021
        tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1022
    }
1023
    tb->tc_ptr = tcg_ctx.code_gen_ptr;
1024 1025 1026 1027
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
    cpu_gen_code(env, tb, &code_gen_size);
E
Evgeny Voevodin 已提交
1028 1029
    tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
            code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
 */
1048
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1049 1050
{
    while (start < end) {
1051
        tb_invalidate_phys_page_range(start, end, 0);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
    TranslationBlock *tb, *tb_next, *saved_tb;
1068
    CPUState *cpu = current_cpu;
1069
#if defined(TARGET_HAS_PRECISE_SMC)
1070 1071
    CPUArchState *env = NULL;
#endif
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1088
#if defined(TARGET_HAS_PRECISE_SMC)
1089 1090
    if (cpu != NULL) {
        env = cpu->env_ptr;
1091
    }
1092
#endif
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1117
                if (cpu->mem_io_pc) {
1118
                    /* now we have a real cpu fault */
1119
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1131
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1132 1133 1134 1135 1136 1137 1138
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
1139 1140 1141
            if (cpu != NULL) {
                saved_tb = cpu->current_tb;
                cpu->current_tb = NULL;
1142 1143
            }
            tb_phys_invalidate(tb, -1);
1144 1145
            if (cpu != NULL) {
                cpu->current_tb = saved_tb;
1146 1147
                if (cpu->interrupt_request && cpu->current_tb) {
                    cpu_interrupt(cpu, cpu->interrupt_request);
1148 1149 1150 1151 1152 1153 1154 1155 1156
                }
            }
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1157
        tlb_unprotect_code(start);
1158 1159 1160 1161 1162 1163 1164
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1165
        cpu->current_tb = NULL;
1166
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1167
        cpu_resume_from_signal(cpu, NULL);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    }
#endif
}

/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1190 1191 1192 1193 1194
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1195
    if (p->code_bitmap) {
1196 1197 1198 1199 1200
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}

#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(tb_page_addr_t addr,
1212 1213
                                    uintptr_t pc, void *puc,
                                    bool locked)
1214 1215 1216 1217 1218 1219
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1220 1221
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1238 1239
    if (cpu != NULL) {
        env = cpu->env_ptr;
1240
    }
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1255
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1269
        cpu->current_tb = NULL;
1270
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1271 1272 1273
        if (locked) {
            mmap_unlock();
        }
1274
        cpu_resume_from_signal(cpu, puc);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    }
#endif
}
#endif

/* add the tb in the target page and protect it if necessary */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
   (-1) to indicate that only one page contains the TB. */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
    unsigned int h;
    TranslationBlock **ptb;

    /* Grab the mmap lock to stop another thread invalidating this TB
       before we are done.  */
    mmap_lock();
    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
1348
    ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    tb->phys_hash_next = *ptb;
    *ptb = tb;

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff) {
        tb_reset_jump(tb, 0);
    }
    if (tb->tb_next_offset[1] != 0xffff) {
        tb_reset_jump(tb, 1);
    }

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
    mmap_unlock();
}

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1380
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1381 1382 1383 1384 1385
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1386
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1387 1388
        return NULL;
    }
E
Evgeny Voevodin 已提交
1389 1390
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1391 1392 1393 1394
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1395
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1396 1397
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1398
        tb = &tcg_ctx.tb_ctx.tbs[m];
1399 1400 1401 1402 1403 1404 1405 1406 1407
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1408
    return &tcg_ctx.tb_ctx.tbs[m_max];
1409 1410
}

1411
#if !defined(CONFIG_USER_ONLY)
1412
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1413 1414
{
    ram_addr_t ram_addr;
1415
    MemoryRegion *mr;
1416
    hwaddr l = 1;
1417

1418
    rcu_read_lock();
1419
    mr = address_space_translate(as, addr, &addr, &l, false);
1420 1421
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1422
        rcu_read_unlock();
1423 1424
        return;
    }
1425
    ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1426
        + addr;
1427
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1428
    rcu_read_unlock();
1429
}
1430
#endif /* !defined(CONFIG_USER_ONLY) */
1431

1432
void tb_check_watchpoint(CPUState *cpu)
1433 1434 1435
{
    TranslationBlock *tb;

1436
    tb = tb_find_pc(cpu->mem_io_pc);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
        int flags;

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1452 1453 1454 1455 1456
    }
}

#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
1457
static void tcg_handle_interrupt(CPUState *cpu, int mask)
1458 1459 1460
{
    int old_mask;

1461 1462
    old_mask = cpu->interrupt_request;
    cpu->interrupt_request |= mask;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

    /*
     * If called from iothread context, wake the target cpu in
     * case its halted.
     */
    if (!qemu_cpu_is_self(cpu)) {
        qemu_cpu_kick(cpu);
        return;
    }

    if (use_icount) {
1474
        cpu->icount_decr.u16.high = 0xffff;
1475
        if (!cpu_can_do_io(cpu)
1476
            && (mask & ~old_mask) != 0) {
1477
            cpu_abort(cpu, "Raised interrupt while not in I/O function");
1478 1479
        }
    } else {
1480
        cpu->tcg_exit_req = 1;
1481 1482 1483 1484 1485 1486 1487
    }
}

CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;

/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1488
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1489
{
1490
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1491
    CPUArchState *env = cpu->env_ptr;
1492
#endif
1493 1494 1495 1496 1497 1498 1499
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
    uint64_t flags;

    tb = tb_find_pc(retaddr);
    if (!tb) {
1500
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1501 1502
                  (void *)retaddr);
    }
1503
    n = cpu->icount_decr.u16.low + tb->icount;
1504
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1505 1506
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1507
    n = n - cpu->icount_decr.u16.low;
1508 1509 1510 1511 1512 1513 1514 1515
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1516
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1517
        cpu->icount_decr.u16.low++;
1518 1519 1520 1521 1522 1523
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1524
        cpu->icount_decr.u16.low++;
1525 1526 1527 1528 1529
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1530
        cpu_abort(cpu, "TB too big during recompile");
1531 1532 1533 1534 1535 1536 1537 1538 1539
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1540
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1541 1542 1543 1544 1545
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1546
    cpu_resume_from_signal(cpu, NULL);
1547 1548
}

1549
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1550 1551 1552 1553 1554 1555
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1556
    memset(&cpu->tb_jmp_cache[i], 0,
1557 1558 1559
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1560
    memset(&cpu->tb_jmp_cache[i], 0,
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1575 1576
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1594 1595
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
                tcg_ctx.code_gen_buffer_max_size);
1596
    cpu_fprintf(f, "TB count            %d/%d\n",
1597
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1598
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1599 1600 1601
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1602
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1603 1604 1605 1606 1607 1608 1609 1610 1611
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1612 1613
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1614 1615
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1616
                direct_jmp2_count,
1617 1618
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1619
    cpu_fprintf(f, "\nStatistics:\n");
1620 1621 1622
    cpu_fprintf(f, "TB flush count      %d\n", tcg_ctx.tb_ctx.tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1623 1624 1625 1626
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1627 1628 1629 1630 1631
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1632 1633
#else /* CONFIG_USER_ONLY */

1634
void cpu_interrupt(CPUState *cpu, int mask)
1635
{
1636
    cpu->interrupt_request |= mask;
1637
    cpu->tcg_exit_req = 1;
1638 1639 1640 1641 1642 1643 1644 1645 1646
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1647
    target_ulong start;
1648 1649 1650 1651
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1652
                                   target_ulong end, int new_prot)
1653
{
1654
    if (data->start != -1u) {
1655 1656 1657 1658 1659 1660
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1661
    data->start = (new_prot ? end : -1u);
1662 1663 1664 1665 1666 1667
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1668
                                 target_ulong base, int level, void **lp)
1669
{
1670
    target_ulong pa;
1671 1672 1673 1674 1675 1676 1677 1678 1679
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1680
        for (i = 0; i < V_L2_SIZE; ++i) {
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1694
        for (i = 0; i < V_L2_SIZE; ++i) {
1695
            pa = base | ((target_ulong)i <<
1696
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    uintptr_t i;

    data.fn = fn;
    data.priv = priv;
1714
    data.start = -1u;
1715 1716 1717
    data.prot = 0;

    for (i = 0; i < V_L1_SIZE; i++) {
1718
        int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1719
                                       V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1720 1721 1722 1723 1724 1725 1726 1727
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1728 1729
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1730 1731 1732
{
    FILE *f = (FILE *)priv;

1733 1734
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1746
    const int length = sizeof(target_ulong) * 2;
1747 1748
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1774
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1795
            tb_invalidate_phys_page(addr, 0, NULL, false);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1811
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0, NULL)) {
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was successfully handled. */
int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
    unsigned int prot;
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
1889
            tb_invalidate_phys_page(addr, pc, puc, true);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
        return 1;
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */