translate-all.c 55.5 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21 22 23 24
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#endif
B
bellard 已提交
25 26 27 28 29 30 31
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>

#include "config.h"
B
bellard 已提交
32

33
#include "qemu-common.h"
B
bellard 已提交
34
#define NO_CPU_IO_DEFS
B
bellard 已提交
35
#include "cpu.h"
36
#include "trace.h"
37
#include "disas/disas.h"
B
bellard 已提交
38
#include "tcg.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/time.h>
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
56 57
#else
#include "exec/address-spaces.h"
58 59
#endif

60
#include "exec/cputlb.h"
61
#include "translate-all.h"
62
#include "qemu/bitmap.h"
63
#include "qemu/timer.h"
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
83
    unsigned long *code_bitmap;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

101 102 103 104
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

105 106
/* The bits remaining after N lower levels of page tables.  */
#define V_L1_BITS_REM \
107
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
108 109

#if V_L1_BITS_REM < 4
110
#define V_L1_BITS  (V_L1_BITS_REM + V_L2_BITS)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#else
#define V_L1_BITS  V_L1_BITS_REM
#endif

#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)

#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)

uintptr_t qemu_real_host_page_size;
uintptr_t qemu_host_page_size;
uintptr_t qemu_host_page_mask;

/* This is a multi-level map on the virtual address space.
   The bottom level has pointers to PageDesc.  */
static void *l1_map[V_L1_SIZE];

B
bellard 已提交
127 128
/* code generation context */
TCGContext tcg_ctx;
B
bellard 已提交
129

130 131
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2);
B
Blue Swirl 已提交
132
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
133

B
bellard 已提交
134 135 136 137 138
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

B
bellard 已提交
139
/* return non zero if the very first instruction is invalid so that
140
   the virtual CPU can trigger an exception.
B
bellard 已提交
141 142 143 144

   '*gen_code_size_ptr' contains the size of the generated code (host
   code).
*/
145
int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
B
bellard 已提交
146
{
B
bellard 已提交
147
    TCGContext *s = &tcg_ctx;
148
    tcg_insn_unit *gen_code_buf;
B
bellard 已提交
149
    int gen_code_size;
B
bellard 已提交
150 151 152 153 154
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
B
bellard 已提交
155 156
    s->tb_count1++; /* includes aborted translations because of
                       exceptions */
B
bellard 已提交
157 158 159
    ti = profile_getclock();
#endif
    tcg_func_start(s);
B
bellard 已提交
160

161 162
    gen_intermediate_code(env, tb);

163 164
    trace_translate_block(tb, tb->pc, tb->tc_ptr);

B
bellard 已提交
165
    /* generate machine code */
B
bellard 已提交
166
    gen_code_buf = tb->tc_ptr;
B
bellard 已提交
167 168
    tb->tb_next_offset[0] = 0xffff;
    tb->tb_next_offset[1] = 0xffff;
B
bellard 已提交
169
    s->tb_next_offset = tb->tb_next_offset;
170
#ifdef USE_DIRECT_JUMP
B
bellard 已提交
171 172
    s->tb_jmp_offset = tb->tb_jmp_offset;
    s->tb_next = NULL;
B
bellard 已提交
173
#else
B
bellard 已提交
174 175
    s->tb_jmp_offset = NULL;
    s->tb_next = tb->tb_next;
B
bellard 已提交
176
#endif
B
bellard 已提交
177 178

#ifdef CONFIG_PROFILER
B
bellard 已提交
179 180 181
    s->tb_count++;
    s->interm_time += profile_getclock() - ti;
    s->code_time -= profile_getclock();
B
bellard 已提交
182
#endif
A
aurel32 已提交
183
    gen_code_size = tcg_gen_code(s, gen_code_buf);
B
bellard 已提交
184
    *gen_code_size_ptr = gen_code_size;
B
bellard 已提交
185
#ifdef CONFIG_PROFILER
B
bellard 已提交
186 187 188
    s->code_time += profile_getclock();
    s->code_in_len += tb->size;
    s->code_out_len += gen_code_size;
B
bellard 已提交
189 190
#endif

B
bellard 已提交
191
#ifdef DEBUG_DISAS
192
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
193 194
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
195
        qemu_log("\n");
196
        qemu_log_flush();
B
bellard 已提交
197 198 199 200 201
    }
#endif
    return 0;
}

202
/* The cpu state corresponding to 'searched_pc' is restored.
B
bellard 已提交
203
 */
204
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
205
                                     uintptr_t searched_pc)
B
bellard 已提交
206
{
207
    CPUArchState *env = cpu->env_ptr;
B
bellard 已提交
208 209
    TCGContext *s = &tcg_ctx;
    int j;
210
    uintptr_t tc_ptr;
B
bellard 已提交
211 212 213 214 215 216 217 218
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    tcg_func_start(s);
B
bellard 已提交
219

220
    gen_intermediate_code_pc(env, tb);
221

222
    if (tb->cflags & CF_USE_ICOUNT) {
P
pbrook 已提交
223
        /* Reset the cycle counter to the start of the block.  */
224
        cpu->icount_decr.u16.low += tb->icount;
P
pbrook 已提交
225
        /* Clear the IO flag.  */
226
        cpu->can_do_io = 0;
P
pbrook 已提交
227 228
    }

B
bellard 已提交
229
    /* find opc index corresponding to search_pc */
230
    tc_ptr = (uintptr_t)tb->tc_ptr;
B
bellard 已提交
231 232
    if (searched_pc < tc_ptr)
        return -1;
B
bellard 已提交
233 234 235 236 237 238 239 240 241

    s->tb_next_offset = tb->tb_next_offset;
#ifdef USE_DIRECT_JUMP
    s->tb_jmp_offset = tb->tb_jmp_offset;
    s->tb_next = NULL;
#else
    s->tb_jmp_offset = NULL;
    s->tb_next = tb->tb_next;
#endif
242 243
    j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
                               searched_pc - tc_ptr);
B
bellard 已提交
244 245
    if (j < 0)
        return -1;
B
bellard 已提交
246
    /* now find start of instruction before */
247
    while (s->gen_opc_instr_start[j] == 0) {
B
bellard 已提交
248
        j--;
249
    }
250
    cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
251

252
    restore_state_to_opc(env, tb, j);
B
bellard 已提交
253 254

#ifdef CONFIG_PROFILER
B
bellard 已提交
255 256
    s->restore_time += profile_getclock() - ti;
    s->restore_count++;
B
bellard 已提交
257
#endif
B
bellard 已提交
258 259
    return 0;
}
260

261
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
262 263 264 265 266
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
267
        cpu_restore_state_from_tb(cpu, tb, retaddr);
268 269 270 271 272 273
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            cpu->current_tb = NULL;
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
274 275 276 277 278
        return true;
    }
    return false;
}

279
#ifdef _WIN32
280
static __attribute__((unused)) void map_exec(void *addr, long size)
281 282 283 284 285 286
{
    DWORD old_protect;
    VirtualProtect(addr, size,
                   PAGE_EXECUTE_READWRITE, &old_protect);
}
#else
287
static __attribute__((unused)) void map_exec(void *addr, long size)
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
{
    unsigned long start, end, page_size;

    page_size = getpagesize();
    start = (unsigned long)addr;
    start &= ~(page_size - 1);

    end = (unsigned long)addr + size;
    end += page_size - 1;
    end &= ~(page_size - 1);

    mprotect((void *)start, end - start,
             PROT_READ | PROT_WRITE | PROT_EXEC);
}
#endif

304
void page_size_init(void)
305 306 307 308 309 310 311 312 313 314 315
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = ~(qemu_host_page_size - 1);
316
}
317

318 319 320
static void page_init(void)
{
    page_size_init();
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));

    /* Level 2..N-1.  */
397
    for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
398 399 400 401 402 403
        void **p = *lp;

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
404
            p = g_new0(void *, V_L2_SIZE);
405 406 407
            *lp = p;
        }

408
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
409 410 411 412 413 414 415
    }

    pd = *lp;
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
416
        pd = g_new0(PageDesc, V_L2_SIZE);
417 418 419
        *lp = pd;
    }

420
    return pd + (index & (V_L2_SIZE - 1));
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if !defined(CONFIG_USER_ONLY)
#define mmap_lock() do { } while (0)
#define mmap_unlock() do { } while (0)
#endif

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* ??? Should configure for this, not list operating systems here.  */
#if (defined(__linux__) \
    || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
    || defined(__DragonFly__) || defined(__OpenBSD__) \
    || defined(__NetBSD__))
# define USE_MMAP
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
460 461
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
462 463 464 465 466
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
467 468 469 470
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
E
Evgeny Voevodin 已提交
501
    tcg_ctx.code_gen_buffer_size = tb_size;
502 503 504
    return tb_size;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

532 533 534 535 536 537
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

static inline void *alloc_code_gen_buffer(void)
{
538 539 540 541 542 543 544 545
    void *buf = static_code_gen_buffer;
#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
        buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
    }
#endif
    map_exec(buf, tcg_ctx.code_gen_buffer_size);
    return buf;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
}
#elif defined(USE_MMAP)
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
E
Evgeny Voevodin 已提交
567 568
    if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
569 570 571 572 573
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
574 575 576 577 578 579 580 581 582
# elif defined(__mips__)
    /* ??? We ought to more explicitly manage layout for softmmu too.  */
#  ifdef CONFIG_USER_ONLY
    start = 0x68000000ul;
#  elif _MIPS_SIM == _ABI64
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
583 584
# endif

E
Evgeny Voevodin 已提交
585
    buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
586
               PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
587 588 589 590 591 592
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
S
Stefan Weil 已提交
593
        /* Try again, with the original still mapped, to avoid re-acquiring
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
           that 256mb crossing.  This time don't specify an address.  */
        size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
        void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
                          flags, -1, 0);
        if (buf2 != MAP_FAILED) {
            if (!cross_256mb(buf2, size1)) {
                /* Success!  Use the new buffer.  */
                munmap(buf, size1);
                return buf2;
            }
            /* Failure.  Work with what we had.  */
            munmap(buf2, size1);
        }

        /* Split the original buffer.  Free the smaller half.  */
        buf2 = split_cross_256mb(buf, size1);
        size2 = tcg_ctx.code_gen_buffer_size;
        munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
        return buf2;
    }
#endif

    return buf;
617 618 619 620
}
#else
static inline void *alloc_code_gen_buffer(void)
{
621
    void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    if (buf == NULL) {
        return NULL;
    }

#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
        void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
        if (buf2 != NULL && !cross_256mb(buf2, size1)) {
            /* Success!  Use the new buffer.  */
            free(buf);
            buf = buf2;
        } else {
            /* Failure.  Work with what we had.  Since this is malloc
               and not mmap, we can't free the other half.  */
            free(buf2);
            buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
        }
640
    }
641 642 643
#endif

    map_exec(buf, tcg_ctx.code_gen_buffer_size);
644 645 646 647 648 649
    return buf;
}
#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
650 651 652
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
653 654 655 656
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

E
Evgeny Voevodin 已提交
657 658
    qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
            QEMU_MADV_HUGEPAGE);
659 660 661 662 663 664

    /* Steal room for the prologue at the end of the buffer.  This ensures
       (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
       from TB's to the prologue are going to be in range.  It also means
       that we don't need to mark (additional) portions of the data segment
       as executable.  */
E
Evgeny Voevodin 已提交
665 666 667
    tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
            tcg_ctx.code_gen_buffer_size - 1024;
    tcg_ctx.code_gen_buffer_size -= 1024;
668

E
Evgeny Voevodin 已提交
669
    tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
670
        (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
E
Evgeny Voevodin 已提交
671 672
    tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
            CODE_GEN_AVG_BLOCK_SIZE;
673 674
    tcg_ctx.tb_ctx.tbs =
            g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
675 676 677 678 679 680 681 682 683
}

/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    code_gen_alloc(tb_size);
E
Evgeny Voevodin 已提交
684 685
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
    tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
686 687 688 689 690 691 692 693 694 695
    page_init();
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
696
    return tcg_ctx.code_gen_buffer != NULL;
697 698 699 700 701 702 703 704
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

705
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
E
Evgeny Voevodin 已提交
706 707
        (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
         tcg_ctx.code_gen_buffer_max_size) {
708 709
        return NULL;
    }
710
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
711 712 713 714 715 716 717 718 719 720
    tb->pc = pc;
    tb->cflags = 0;
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
721 722
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
723
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
724
        tcg_ctx.tb_ctx.nb_tbs--;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
    if (p->code_bitmap) {
        g_free(p->code_bitmap);
        p->code_bitmap = NULL;
    }
    p->code_write_count = 0;
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

748
        for (i = 0; i < V_L2_SIZE; ++i) {
749 750 751 752 753 754
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

755
        for (i = 0; i < V_L2_SIZE; ++i) {
756 757 758 759 760 761 762 763 764 765
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
    int i;

    for (i = 0; i < V_L1_SIZE; i++) {
766
        page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
767 768 769 770 771 772 773
    }
}

/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
void tb_flush(CPUArchState *env1)
{
774
    CPUState *cpu = ENV_GET_CPU(env1);
775 776 777

#if defined(DEBUG_FLUSH)
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
778
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
779
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
780
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
781
           tcg_ctx.tb_ctx.nb_tbs : 0);
782
#endif
E
Evgeny Voevodin 已提交
783 784
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
785
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
786
    }
787
    tcg_ctx.tb_ctx.nb_tbs = 0;
788

A
Andreas Färber 已提交
789
    CPU_FOREACH(cpu) {
790
        memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
791 792
    }

793
    memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
794 795
    page_flush_tb();

E
Evgeny Voevodin 已提交
796
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
797 798
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
799
    tcg_ctx.tb_ctx.tb_flush_count++;
800 801 802 803 804 805 806 807 808 809 810
}

#ifdef DEBUG_TB_CHECK

static void tb_invalidate_check(target_ulong address)
{
    TranslationBlock *tb;
    int i;

    address &= TARGET_PAGE_MASK;
    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
811
        for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=" TARGET_FMT_lx
                       " PC=%08lx size=%04x\n",
                       address, (long)tb->pc, tb->size);
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;

    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
829 830
        for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
                tb = tb->phys_hash_next) {
831 832 833 834 835 836 837 838 839 840 841 842
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
                       (long)tb->pc, tb->size, flags1, flags2);
            }
        }
    }
}

#endif

843
static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
844 845 846 847 848 849
{
    TranslationBlock *tb1;

    for (;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
850
            *ptb = tb1->phys_hash_next;
851 852
            break;
        }
853
        ptb = &tb1->phys_hash_next;
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    }
}

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for (;;) {
            tb1 = *ptb;
            n1 = (uintptr_t)tb1 & 3;
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}

910
/* invalidate one TB */
911 912
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
913
    CPUState *cpu;
914 915 916 917 918 919 920 921
    PageDesc *p;
    unsigned int h, n1;
    tb_page_addr_t phys_pc;
    TranslationBlock *tb1, *tb2;

    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
922
    tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
923 924 925 926 927 928 929 930 931 932 933 934 935

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

936
    tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
937 938 939

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
940
    CPU_FOREACH(cpu) {
941 942
        if (cpu->tb_jmp_cache[h] == tb) {
            cpu->tb_jmp_cache[h] = NULL;
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
        }
    }

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for (;;) {
        n1 = (uintptr_t)tb1 & 3;
        if (n1 == 2) {
            break;
        }
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */

965
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
966 967 968 969 970 971 972
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

973
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
992
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
993 994 995 996
        tb = tb->page_next[n];
    }
}

997
TranslationBlock *tb_gen_code(CPUState *cpu,
998 999 1000
                              target_ulong pc, target_ulong cs_base,
                              int flags, int cflags)
{
1001
    CPUArchState *env = cpu->env_ptr;
1002 1003 1004 1005 1006 1007
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
    int code_gen_size;

    phys_pc = get_page_addr_code(env, pc);
1008 1009 1010
    if (use_icount) {
        cflags |= CF_USE_ICOUNT;
    }
1011 1012 1013 1014 1015 1016 1017
    tb = tb_alloc(pc);
    if (!tb) {
        /* flush must be done */
        tb_flush(env);
        /* cannot fail at this point */
        tb = tb_alloc(pc);
        /* Don't forget to invalidate previous TB info.  */
1018
        tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1019
    }
1020
    tb->tc_ptr = tcg_ctx.code_gen_ptr;
1021 1022 1023 1024
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
    cpu_gen_code(env, tb, &code_gen_size);
E
Evgeny Voevodin 已提交
1025 1026
    tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
            code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
 */
1045
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1046 1047
{
    while (start < end) {
1048
        tb_invalidate_phys_page_range(start, end, 0);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
    TranslationBlock *tb, *tb_next, *saved_tb;
1065
    CPUState *cpu = current_cpu;
1066
#if defined(TARGET_HAS_PRECISE_SMC)
1067 1068
    CPUArchState *env = NULL;
#endif
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1085
#if defined(TARGET_HAS_PRECISE_SMC)
1086 1087
    if (cpu != NULL) {
        env = cpu->env_ptr;
1088
    }
1089
#endif
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1114
                if (cpu->mem_io_pc) {
1115
                    /* now we have a real cpu fault */
1116
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1128
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1129 1130 1131 1132 1133 1134 1135
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
1136 1137 1138
            if (cpu != NULL) {
                saved_tb = cpu->current_tb;
                cpu->current_tb = NULL;
1139 1140
            }
            tb_phys_invalidate(tb, -1);
1141 1142
            if (cpu != NULL) {
                cpu->current_tb = saved_tb;
1143 1144
                if (cpu->interrupt_request && cpu->current_tb) {
                    cpu_interrupt(cpu, cpu->interrupt_request);
1145 1146 1147 1148 1149 1150 1151 1152 1153
                }
            }
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1154
        tlb_unprotect_code(start);
1155 1156 1157 1158 1159 1160 1161
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1162
        cpu->current_tb = NULL;
1163
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1164
        cpu_resume_from_signal(cpu, NULL);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    }
#endif
}

/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1187 1188 1189 1190 1191
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1192
    if (p->code_bitmap) {
1193 1194 1195 1196 1197
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}

#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(tb_page_addr_t addr,
1209 1210
                                    uintptr_t pc, void *puc,
                                    bool locked)
1211 1212 1213 1214 1215 1216
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1217 1218
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1235 1236
    if (cpu != NULL) {
        env = cpu->env_ptr;
1237
    }
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1252
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1266
        cpu->current_tb = NULL;
1267
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1268 1269 1270
        if (locked) {
            mmap_unlock();
        }
1271
        cpu_resume_from_signal(cpu, puc);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    }
#endif
}
#endif

/* add the tb in the target page and protect it if necessary */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
   (-1) to indicate that only one page contains the TB. */
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
    unsigned int h;
    TranslationBlock **ptb;

    /* Grab the mmap lock to stop another thread invalidating this TB
       before we are done.  */
    mmap_lock();
    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
1345
    ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    tb->phys_hash_next = *ptb;
    *ptb = tb;

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff) {
        tb_reset_jump(tb, 0);
    }
    if (tb->tb_next_offset[1] != 0xffff) {
        tb_reset_jump(tb, 1);
    }

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
    mmap_unlock();
}

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1377
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1378 1379 1380 1381 1382
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1383
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1384 1385
        return NULL;
    }
E
Evgeny Voevodin 已提交
1386 1387
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1388 1389 1390 1391
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1392
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1393 1394
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1395
        tb = &tcg_ctx.tb_ctx.tbs[m];
1396 1397 1398 1399 1400 1401 1402 1403 1404
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1405
    return &tcg_ctx.tb_ctx.tbs[m_max];
1406 1407
}

1408
#if !defined(CONFIG_USER_ONLY)
1409
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1410 1411
{
    ram_addr_t ram_addr;
1412
    MemoryRegion *mr;
1413
    hwaddr l = 1;
1414

1415
    rcu_read_lock();
1416
    mr = address_space_translate(as, addr, &addr, &l, false);
1417 1418
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1419
        rcu_read_unlock();
1420 1421
        return;
    }
1422
    ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1423
        + addr;
1424
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1425
    rcu_read_unlock();
1426
}
1427
#endif /* !defined(CONFIG_USER_ONLY) */
1428

1429
void tb_check_watchpoint(CPUState *cpu)
1430 1431 1432
{
    TranslationBlock *tb;

1433
    tb = tb_find_pc(cpu->mem_io_pc);
1434
    if (!tb) {
1435
        cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
1436
                  (void *)cpu->mem_io_pc);
1437
    }
1438
    cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1439 1440 1441 1442 1443
    tb_phys_invalidate(tb, -1);
}

#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
1444
static void tcg_handle_interrupt(CPUState *cpu, int mask)
1445 1446 1447
{
    int old_mask;

1448 1449
    old_mask = cpu->interrupt_request;
    cpu->interrupt_request |= mask;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

    /*
     * If called from iothread context, wake the target cpu in
     * case its halted.
     */
    if (!qemu_cpu_is_self(cpu)) {
        qemu_cpu_kick(cpu);
        return;
    }

    if (use_icount) {
1461
        cpu->icount_decr.u16.high = 0xffff;
1462
        if (!cpu_can_do_io(cpu)
1463
            && (mask & ~old_mask) != 0) {
1464
            cpu_abort(cpu, "Raised interrupt while not in I/O function");
1465 1466
        }
    } else {
1467
        cpu->tcg_exit_req = 1;
1468 1469 1470 1471 1472 1473 1474
    }
}

CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;

/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1475
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1476
{
1477
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1478
    CPUArchState *env = cpu->env_ptr;
1479
#endif
1480 1481 1482 1483 1484 1485 1486
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
    uint64_t flags;

    tb = tb_find_pc(retaddr);
    if (!tb) {
1487
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1488 1489
                  (void *)retaddr);
    }
1490
    n = cpu->icount_decr.u16.low + tb->icount;
1491
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1492 1493
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1494
    n = n - cpu->icount_decr.u16.low;
1495 1496 1497 1498 1499 1500 1501 1502
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1503
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1504
        cpu->icount_decr.u16.low++;
1505 1506 1507 1508 1509 1510
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1511
        cpu->icount_decr.u16.low++;
1512 1513 1514 1515 1516
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1517
        cpu_abort(cpu, "TB too big during recompile");
1518 1519 1520 1521 1522 1523 1524 1525 1526
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1527
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1528 1529 1530 1531 1532
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1533
    cpu_resume_from_signal(cpu, NULL);
1534 1535
}

1536
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1537 1538 1539 1540 1541 1542
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1543
    memset(&cpu->tb_jmp_cache[i], 0,
1544 1545 1546
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1547
    memset(&cpu->tb_jmp_cache[i], 0,
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1562 1563
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1581 1582
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
                tcg_ctx.code_gen_buffer_max_size);
1583
    cpu_fprintf(f, "TB count            %d/%d\n",
1584
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1585
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1586 1587 1588
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1589
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1590 1591 1592 1593 1594 1595 1596 1597 1598
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1599 1600
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1601 1602
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1603
                direct_jmp2_count,
1604 1605
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1606
    cpu_fprintf(f, "\nStatistics:\n");
1607 1608 1609
    cpu_fprintf(f, "TB flush count      %d\n", tcg_ctx.tb_ctx.tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1610 1611 1612 1613
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1614 1615 1616 1617 1618
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1619 1620
#else /* CONFIG_USER_ONLY */

1621
void cpu_interrupt(CPUState *cpu, int mask)
1622
{
1623
    cpu->interrupt_request |= mask;
1624
    cpu->tcg_exit_req = 1;
1625 1626 1627 1628 1629 1630 1631 1632 1633
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1634
    target_ulong start;
1635 1636 1637 1638
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1639
                                   target_ulong end, int new_prot)
1640
{
1641
    if (data->start != -1u) {
1642 1643 1644 1645 1646 1647
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1648
    data->start = (new_prot ? end : -1u);
1649 1650 1651 1652 1653 1654
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1655
                                 target_ulong base, int level, void **lp)
1656
{
1657
    target_ulong pa;
1658 1659 1660 1661 1662 1663 1664 1665 1666
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1667
        for (i = 0; i < V_L2_SIZE; ++i) {
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1681
        for (i = 0; i < V_L2_SIZE; ++i) {
1682
            pa = base | ((target_ulong)i <<
1683
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    uintptr_t i;

    data.fn = fn;
    data.priv = priv;
1701
    data.start = -1u;
1702 1703 1704
    data.prot = 0;

    for (i = 0; i < V_L1_SIZE; i++) {
1705
        int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1706
                                       V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1707 1708 1709 1710 1711 1712 1713 1714
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1715 1716
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1717 1718 1719
{
    FILE *f = (FILE *)priv;

1720 1721
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1733
    const int length = sizeof(target_ulong) * 2;
1734 1735
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1761
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1782
            tb_invalidate_phys_page(addr, 0, NULL, false);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1798
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0, NULL)) {
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was successfully handled. */
int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
    unsigned int prot;
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
1876
            tb_invalidate_phys_page(addr, pc, puc, true);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
        return 1;
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */