translate-all.c 58.0 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  Host code generation
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19 20 21 22 23 24
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#endif
B
bellard 已提交
25 26 27 28 29 30 31
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>

#include "config.h"
B
bellard 已提交
32

33
#include "qemu-common.h"
B
bellard 已提交
34
#define NO_CPU_IO_DEFS
B
bellard 已提交
35
#include "cpu.h"
36
#include "trace.h"
37
#include "disas/disas.h"
B
bellard 已提交
38
#include "tcg.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/time.h>
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
56 57
#else
#include "exec/address-spaces.h"
58 59
#endif

60
#include "exec/cputlb.h"
61
#include "exec/tb-hash.h"
62
#include "translate-all.h"
63
#include "qemu/bitmap.h"
64
#include "qemu/timer.h"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
84
    unsigned long *code_bitmap;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

102 103 104 105
/* Size of the L2 (and L3, etc) page tables.  */
#define V_L2_BITS 10
#define V_L2_SIZE (1 << V_L2_BITS)

106 107
/* The bits remaining after N lower levels of page tables.  */
#define V_L1_BITS_REM \
108
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109 110

#if V_L1_BITS_REM < 4
111
#define V_L1_BITS  (V_L1_BITS_REM + V_L2_BITS)
112 113 114 115 116 117 118 119 120 121 122
#else
#define V_L1_BITS  V_L1_BITS_REM
#endif

#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)

#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)

uintptr_t qemu_host_page_size;
uintptr_t qemu_host_page_mask;

123
/* The bottom level has pointers to PageDesc */
124 125
static void *l1_map[V_L1_SIZE];

B
bellard 已提交
126 127
/* code generation context */
TCGContext tcg_ctx;
B
bellard 已提交
128

K
KONRAD Frederic 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/* translation block context */
#ifdef CONFIG_USER_ONLY
__thread int have_tb_lock;
#endif

void tb_lock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(!have_tb_lock);
    qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
    have_tb_lock++;
#endif
}

void tb_unlock(void)
{
#ifdef CONFIG_USER_ONLY
    assert(have_tb_lock);
    have_tb_lock--;
    qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
#endif
}

void tb_lock_reset(void)
{
#ifdef CONFIG_USER_ONLY
    if (have_tb_lock) {
        qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
        have_tb_lock = 0;
    }
#endif
}

162 163
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2);
B
Blue Swirl 已提交
164
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
165

B
bellard 已提交
166 167 168 169 170
void cpu_gen_init(void)
{
    tcg_context_init(&tcg_ctx); 
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(uint8_t **pp)
{
    uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
    uint8_t *p = block;
    int i, j, n;

    tb->tc_search = block;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (j == 0 ? tb->pc : 0);
            } else {
                prev = tcg_ctx.gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
    }

    return p - block;
}

249
/* The cpu state corresponding to 'searched_pc' is restored.  */
250
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
B
Blue Swirl 已提交
251
                                     uintptr_t searched_pc)
B
bellard 已提交
252
{
253 254
    target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
    uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
255
    CPUArchState *env = cpu->env_ptr;
256 257
    uint8_t *p = tb->tc_search;
    int i, j, num_insns = tb->icount;
B
bellard 已提交
258
#ifdef CONFIG_PROFILER
259
    int64_t ti = profile_getclock();
B
bellard 已提交
260 261
#endif

262 263 264
    if (searched_pc < host_pc) {
        return -1;
    }
B
bellard 已提交
265

266 267 268 269 270 271 272 273 274 275 276 277
    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;
278

279
 found:
280
    if (tb->cflags & CF_USE_ICOUNT) {
281
        assert(use_icount);
P
pbrook 已提交
282
        /* Reset the cycle counter to the start of the block.  */
283
        cpu->icount_decr.u16.low += num_insns;
P
pbrook 已提交
284
        /* Clear the IO flag.  */
285
        cpu->can_do_io = 0;
P
pbrook 已提交
286
    }
287 288
    cpu->icount_decr.u16.low -= i;
    restore_state_to_opc(env, tb, data);
B
bellard 已提交
289 290

#ifdef CONFIG_PROFILER
291 292
    tcg_ctx.restore_time += profile_getclock() - ti;
    tcg_ctx.restore_count++;
B
bellard 已提交
293
#endif
B
bellard 已提交
294 295
    return 0;
}
296

297
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
B
Blue Swirl 已提交
298 299 300 301 302
{
    TranslationBlock *tb;

    tb = tb_find_pc(retaddr);
    if (tb) {
303
        cpu_restore_state_from_tb(cpu, tb, retaddr);
304 305 306 307 308 309
        if (tb->cflags & CF_NOCACHE) {
            /* one-shot translation, invalidate it immediately */
            cpu->current_tb = NULL;
            tb_phys_invalidate(tb, -1);
            tb_free(tb);
        }
B
Blue Swirl 已提交
310 311 312 313 314
        return true;
    }
    return false;
}

315
#ifdef _WIN32
316
static __attribute__((unused)) void map_exec(void *addr, long size)
317 318 319 320 321 322
{
    DWORD old_protect;
    VirtualProtect(addr, size,
                   PAGE_EXECUTE_READWRITE, &old_protect);
}
#else
323
static __attribute__((unused)) void map_exec(void *addr, long size)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
{
    unsigned long start, end, page_size;

    page_size = getpagesize();
    start = (unsigned long)addr;
    start &= ~(page_size - 1);

    end = (unsigned long)addr + size;
    end += page_size - 1;
    end &= ~(page_size - 1);

    mprotect((void *)start, end - start,
             PROT_READ | PROT_WRITE | PROT_EXEC);
}
#endif

340
void page_size_init(void)
341 342 343 344
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    qemu_real_host_page_size = getpagesize();
345
    qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
346 347 348 349 350 351 352
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = ~(qemu_host_page_size - 1);
353
}
354

355 356 357
static void page_init(void)
{
    page_size_init();
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

424 425 426
/* If alloc=1:
 * Called with mmap_lock held for user-mode emulation.
 */
427 428 429 430 431 432 433 434 435 436
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));

    /* Level 2..N-1.  */
437
    for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
438
        void **p = atomic_rcu_read(lp);
439 440 441 442 443

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
444
            p = g_new0(void *, V_L2_SIZE);
445
            atomic_rcu_set(lp, p);
446 447
        }

448
        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
449 450
    }

451
    pd = atomic_rcu_read(lp);
452 453 454 455
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
456
        pd = g_new0(PageDesc, V_L2_SIZE);
457
        atomic_rcu_set(lp, pd);
458 459
    }

460
    return pd + (index & (V_L2_SIZE - 1));
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used.  */
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
   region in which the guest needs to run.  Revisit this.  */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

/* ??? Should configure for this, not list operating systems here.  */
#if (defined(__linux__) \
    || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
    || defined(__DragonFly__) || defined(__OpenBSD__) \
    || defined(__NetBSD__))
# define USE_MMAP
#endif

/* Minimum size of the code gen buffer.  This number is randomly chosen,
   but not so small that we can't have a fair number of TB's live.  */
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)

/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
   indicated, this is constrained by the range of direct branches on the
   host cpu, as used by the TCG implementation of goto_tb.  */
#if defined(__x86_64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
#elif defined(__sparc__)
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
495 496
#elif defined(__aarch64__)
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
497 498 499 500 501
#elif defined(__arm__)
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
#elif defined(__s390x__)
  /* We have a +- 4GB range on the branches; leave some slop.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
502 503 504 505
#elif defined(__mips__)
  /* We have a 256MB branch region, but leave room to make sure the
     main executable is also within that region.  */
# define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
#else
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)

#define DEFAULT_CODE_GEN_BUFFER_SIZE \
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)

static inline size_t size_code_gen_buffer(size_t tb_size)
{
    /* Size the buffer.  */
    if (tb_size == 0) {
#ifdef USE_STATIC_CODE_GEN_BUFFER
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* ??? Needs adjustments.  */
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
           static buffer, we could size this on RESERVED_VA, on the text
           segment size of the executable, or continue to use the default.  */
        tb_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
    }
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
    }
E
Evgeny Voevodin 已提交
536
    tcg_ctx.code_gen_buffer_size = tb_size;
537 538 539
    return tb_size;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
#ifdef __mips__
/* In order to use J and JAL within the code_gen_buffer, we require
   that the buffer not cross a 256MB boundary.  */
static inline bool cross_256mb(void *addr, size_t size)
{
    return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
}

/* We weren't able to allocate a buffer without crossing that boundary,
   so make do with the larger portion of the buffer that doesn't cross.
   Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
static inline void *split_cross_256mb(void *buf1, size_t size1)
{
    void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
    size_t size2 = buf1 + size1 - buf2;

    size1 = buf2 - buf1;
    if (size1 < size2) {
        size1 = size2;
        buf1 = buf2;
    }

    tcg_ctx.code_gen_buffer_size = size1;
    return buf1;
}
#endif

567 568 569 570 571 572
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
    __attribute__((aligned(CODE_GEN_ALIGN)));

static inline void *alloc_code_gen_buffer(void)
{
573 574 575 576 577 578 579 580
    void *buf = static_code_gen_buffer;
#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
        buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
    }
#endif
    map_exec(buf, tcg_ctx.code_gen_buffer_size);
    return buf;
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
}
#elif defined(USE_MMAP)
static inline void *alloc_code_gen_buffer(void)
{
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
    uintptr_t start = 0;
    void *buf;

    /* Constrain the position of the buffer based on the host cpu.
       Note that these addresses are chosen in concert with the
       addresses assigned in the relevant linker script file.  */
# if defined(__PIE__) || defined(__PIC__)
    /* Don't bother setting a preferred location if we're building
       a position-independent executable.  We're more likely to get
       an address near the main executable if we let the kernel
       choose the address.  */
# elif defined(__x86_64__) && defined(MAP_32BIT)
    /* Force the memory down into low memory with the executable.
       Leave the choice of exact location with the kernel.  */
    flags |= MAP_32BIT;
    /* Cannot expect to map more than 800MB in low memory.  */
E
Evgeny Voevodin 已提交
602 603
    if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
        tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
604 605 606 607 608
    }
# elif defined(__sparc__)
    start = 0x40000000ul;
# elif defined(__s390x__)
    start = 0x90000000ul;
609 610 611 612 613 614 615 616 617
# elif defined(__mips__)
    /* ??? We ought to more explicitly manage layout for softmmu too.  */
#  ifdef CONFIG_USER_ONLY
    start = 0x68000000ul;
#  elif _MIPS_SIM == _ABI64
    start = 0x128000000ul;
#  else
    start = 0x08000000ul;
#  endif
618 619
# endif

E
Evgeny Voevodin 已提交
620
    buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
621
               PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
622 623 624 625 626 627
    if (buf == MAP_FAILED) {
        return NULL;
    }

#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
S
Stefan Weil 已提交
628
        /* Try again, with the original still mapped, to avoid re-acquiring
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
           that 256mb crossing.  This time don't specify an address.  */
        size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
        void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
                          flags, -1, 0);
        if (buf2 != MAP_FAILED) {
            if (!cross_256mb(buf2, size1)) {
                /* Success!  Use the new buffer.  */
                munmap(buf, size1);
                return buf2;
            }
            /* Failure.  Work with what we had.  */
            munmap(buf2, size1);
        }

        /* Split the original buffer.  Free the smaller half.  */
        buf2 = split_cross_256mb(buf, size1);
        size2 = tcg_ctx.code_gen_buffer_size;
        munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
        return buf2;
    }
#endif

    return buf;
652 653 654 655
}
#else
static inline void *alloc_code_gen_buffer(void)
{
656
    void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
    if (buf == NULL) {
        return NULL;
    }

#ifdef __mips__
    if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
        void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
        if (buf2 != NULL && !cross_256mb(buf2, size1)) {
            /* Success!  Use the new buffer.  */
            free(buf);
            buf = buf2;
        } else {
            /* Failure.  Work with what we had.  Since this is malloc
               and not mmap, we can't free the other half.  */
            free(buf2);
            buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
        }
675
    }
676 677 678
#endif

    map_exec(buf, tcg_ctx.code_gen_buffer_size);
679 680 681 682 683 684
    return buf;
}
#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */

static inline void code_gen_alloc(size_t tb_size)
{
E
Evgeny Voevodin 已提交
685 686 687
    tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
    tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
    if (tcg_ctx.code_gen_buffer == NULL) {
688 689 690 691
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
        exit(1);
    }

E
Evgeny Voevodin 已提交
692 693
    qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
            QEMU_MADV_HUGEPAGE);
694 695 696 697 698 699

    /* Steal room for the prologue at the end of the buffer.  This ensures
       (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
       from TB's to the prologue are going to be in range.  It also means
       that we don't need to mark (additional) portions of the data segment
       as executable.  */
E
Evgeny Voevodin 已提交
700 701 702
    tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
            tcg_ctx.code_gen_buffer_size - 1024;
    tcg_ctx.code_gen_buffer_size -= 1024;
703

E
Evgeny Voevodin 已提交
704
    tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
705
        (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
E
Evgeny Voevodin 已提交
706 707
    tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
            CODE_GEN_AVG_BLOCK_SIZE;
708 709
    tcg_ctx.tb_ctx.tbs =
            g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
K
KONRAD Frederic 已提交
710
    qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
711 712 713 714 715 716 717 718 719
}

/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    code_gen_alloc(tb_size);
E
Evgeny Voevodin 已提交
720 721
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
    tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
722
    page_init();
723
#if defined(CONFIG_SOFTMMU)
724 725 726 727 728 729 730 731
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
E
Evgeny Voevodin 已提交
732
    return tcg_ctx.code_gen_buffer != NULL;
733 734 735 736 737 738 739 740
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

741
    if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
E
Evgeny Voevodin 已提交
742 743
        (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
         tcg_ctx.code_gen_buffer_max_size) {
744 745
        return NULL;
    }
746
    tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
747 748 749 750 751 752 753 754 755 756
    tb->pc = pc;
    tb->cflags = 0;
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
757 758
    if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
            tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
E
Evgeny Voevodin 已提交
759
        tcg_ctx.code_gen_ptr = tb->tc_ptr;
760
        tcg_ctx.tb_ctx.nb_tbs--;
761 762 763 764 765
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
766 767
    g_free(p->code_bitmap);
    p->code_bitmap = NULL;
768 769 770 771 772 773 774 775 776 777 778 779 780 781
    p->code_write_count = 0;
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;

782
        for (i = 0; i < V_L2_SIZE; ++i) {
783 784 785 786 787 788
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;

789
        for (i = 0; i < V_L2_SIZE; ++i) {
790 791 792 793 794 795 796 797 798 799
            page_flush_tb_1(level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
    int i;

    for (i = 0; i < V_L1_SIZE; i++) {
800
        page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
801 802 803 804 805
    }
}

/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
806
void tb_flush(CPUState *cpu)
807 808 809
{
#if defined(DEBUG_FLUSH)
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
E
Evgeny Voevodin 已提交
810
           (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
811
           tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
E
Evgeny Voevodin 已提交
812
           ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
813
           tcg_ctx.tb_ctx.nb_tbs : 0);
814
#endif
E
Evgeny Voevodin 已提交
815 816
    if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
        > tcg_ctx.code_gen_buffer_size) {
817
        cpu_abort(cpu, "Internal error: code buffer overflow\n");
818
    }
819
    tcg_ctx.tb_ctx.nb_tbs = 0;
820

A
Andreas Färber 已提交
821
    CPU_FOREACH(cpu) {
822
        memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
823 824
    }

825
    memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
826 827
    page_flush_tb();

E
Evgeny Voevodin 已提交
828
    tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
829 830
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
831
    tcg_ctx.tb_ctx.tb_flush_count++;
832 833 834 835 836 837 838 839 840 841 842
}

#ifdef DEBUG_TB_CHECK

static void tb_invalidate_check(target_ulong address)
{
    TranslationBlock *tb;
    int i;

    address &= TARGET_PAGE_MASK;
    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
843
        for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=" TARGET_FMT_lx
                       " PC=%08lx size=%04x\n",
                       address, (long)tb->pc, tb->size);
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;

    for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
861 862
        for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
                tb = tb->phys_hash_next) {
863 864 865 866 867 868 869 870 871 872 873 874
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
                       (long)tb->pc, tb->size, flags1, flags2);
            }
        }
    }
}

#endif

875
static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
876 877 878 879 880 881
{
    TranslationBlock *tb1;

    for (;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
882
            *ptb = tb1->phys_hash_next;
883 884
            break;
        }
885
        ptb = &tb1->phys_hash_next;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
    }
}

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for (;;) {
        tb1 = *ptb;
        n1 = (uintptr_t)tb1 & 3;
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for (;;) {
            tb1 = *ptb;
            n1 = (uintptr_t)tb1 & 3;
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
            if (n1 == n && tb1 == tb) {
                break;
            }
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}

942
/* invalidate one TB */
943 944
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
945
    CPUState *cpu;
946 947 948 949 950 951 952 953
    PageDesc *p;
    unsigned int h, n1;
    tb_page_addr_t phys_pc;
    TranslationBlock *tb1, *tb2;

    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
954
    tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
955 956 957 958 959 960 961 962 963 964 965 966 967

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

968
    tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
969 970 971

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
A
Andreas Färber 已提交
972
    CPU_FOREACH(cpu) {
973 974
        if (cpu->tb_jmp_cache[h] == tb) {
            cpu->tb_jmp_cache[h] = NULL;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
        }
    }

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for (;;) {
        n1 = (uintptr_t)tb1 & 3;
        if (n1 == 2) {
            break;
        }
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */

997
    tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
998 999 1000 1001 1002 1003 1004
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

1005
    p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE) {
                tb_end = TARGET_PAGE_SIZE;
            }
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
1024
        bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1025 1026 1027 1028
        tb = tb->page_next[n];
    }
}

1029
/* Called with mmap_lock held for user mode emulation.  */
1030
TranslationBlock *tb_gen_code(CPUState *cpu,
1031 1032 1033
                              target_ulong pc, target_ulong cs_base,
                              int flags, int cflags)
{
1034
    CPUArchState *env = cpu->env_ptr;
1035 1036 1037
    TranslationBlock *tb;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
1038
    tcg_insn_unit *gen_code_buf;
1039
    int gen_code_size, search_size;
1040 1041 1042
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
1043 1044

    phys_pc = get_page_addr_code(env, pc);
1045 1046 1047
    if (use_icount) {
        cflags |= CF_USE_ICOUNT;
    }
1048 1049 1050
    tb = tb_alloc(pc);
    if (!tb) {
        /* flush must be done */
1051
        tb_flush(cpu);
1052 1053 1054
        /* cannot fail at this point */
        tb = tb_alloc(pc);
        /* Don't forget to invalidate previous TB info.  */
1055
        tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1056
    }
1057 1058 1059

    gen_code_buf = tcg_ctx.code_gen_ptr;
    tb->tc_ptr = gen_code_buf;
1060 1061 1062
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count1++; /* includes aborted translations because of
                       exceptions */
    ti = profile_getclock();
#endif

    tcg_func_start(&tcg_ctx);

    gen_intermediate_code(env, tb);

    trace_translate_block(tb, tb->pc, tb->tc_ptr);

    /* generate machine code */
    tb->tb_next_offset[0] = 0xffff;
    tb->tb_next_offset[1] = 0xffff;
    tcg_ctx.tb_next_offset = tb->tb_next_offset;
#ifdef USE_DIRECT_JUMP
    tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
    tcg_ctx.tb_next = NULL;
#else
    tcg_ctx.tb_jmp_offset = NULL;
    tcg_ctx.tb_next = tb->tb_next;
#endif

#ifdef CONFIG_PROFILER
    tcg_ctx.tb_count++;
    tcg_ctx.interm_time += profile_getclock() - ti;
    tcg_ctx.code_time -= profile_getclock();
#endif

    gen_code_size = tcg_gen_code(&tcg_ctx, gen_code_buf);
1095
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1096 1097 1098 1099 1100

#ifdef CONFIG_PROFILER
    tcg_ctx.code_time += profile_getclock();
    tcg_ctx.code_in_len += tb->size;
    tcg_ctx.code_out_len += gen_code_size;
1101
    tcg_ctx.search_out_len += search_size;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
#endif

#ifdef DEBUG_DISAS
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
        qemu_log("OUT: [size=%d]\n", gen_code_size);
        log_disas(tb->tc_ptr, gen_code_size);
        qemu_log("\n");
        qemu_log_flush();
    }
#endif

1113 1114 1115
    tcg_ctx.code_gen_ptr = (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1133 1134
 *
 * Called with mmap_lock held for user-mode emulation
1135
 */
1136
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1137 1138
{
    while (start < end) {
1139
        tb_invalidate_phys_page_range(start, end, 0);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        start &= TARGET_PAGE_MASK;
        start += TARGET_PAGE_SIZE;
    }
}

/*
 * Invalidate all TBs which intersect with the target physical address range
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 * 'is_cpu_write_access' should be true if called from a real cpu write
 * access: the virtual CPU will exit the current TB if code is modified inside
 * this TB.
1151 1152
 *
 * Called with mmap_lock held for user-mode emulation
1153 1154 1155 1156 1157
 */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
    TranslationBlock *tb, *tb_next, *saved_tb;
1158
    CPUState *cpu = current_cpu;
1159
#if defined(TARGET_HAS_PRECISE_SMC)
1160 1161
    CPUArchState *env = NULL;
#endif
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1178
#if defined(TARGET_HAS_PRECISE_SMC)
1179 1180
    if (cpu != NULL) {
        env = cpu->env_ptr;
1181
    }
1182
#endif
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all
       the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
1207
                if (cpu->mem_io_pc) {
1208
                    /* now we have a real cpu fault */
1209
                    current_tb = tb_find_pc(cpu->mem_io_pc);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
1221
                cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1222 1223 1224 1225 1226 1227 1228
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
1229 1230 1231
            if (cpu != NULL) {
                saved_tb = cpu->current_tb;
                cpu->current_tb = NULL;
1232 1233
            }
            tb_phys_invalidate(tb, -1);
1234 1235
            if (cpu != NULL) {
                cpu->current_tb = saved_tb;
1236 1237
                if (cpu->interrupt_request && cpu->current_tb) {
                    cpu_interrupt(cpu, cpu->interrupt_request);
1238 1239 1240 1241 1242 1243 1244 1245 1246
                }
            }
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
1247
        tlb_unprotect_code(start);
1248 1249 1250 1251 1252 1253 1254
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1255
        cpu->current_tb = NULL;
1256
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1257
        cpu_resume_from_signal(cpu, NULL);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    }
#endif
}

/* len must be <= 8 and start must be a multiple of len */
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;

#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip +
                  (intptr_t)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
1280 1281 1282 1283 1284
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
        /* build code bitmap */
        build_page_bitmap(p);
    }
1285
    if (p->code_bitmap) {
1286 1287 1288 1289 1290
        unsigned int nr;
        unsigned long b;

        nr = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        if (b & ((1 << len) - 1)) {
            goto do_invalidate;
        }
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}

#if !defined(CONFIG_SOFTMMU)
1301
/* Called with mmap_lock held.  */
1302
static void tb_invalidate_phys_page(tb_page_addr_t addr,
1303 1304
                                    uintptr_t pc, void *puc,
                                    bool locked)
1305 1306 1307 1308 1309 1310
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
1311 1312
    CPUState *cpu = current_cpu;
    CPUArchState *env = NULL;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        return;
    }
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
1329 1330
    if (cpu != NULL) {
        env = cpu->env_ptr;
1331
    }
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
#endif
    while (tb != NULL) {
        n = (uintptr_t)tb & 3;
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
1346
            cpu_restore_state_from_tb(cpu, current_tb, pc);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1360
        cpu->current_tb = NULL;
1361
        tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1362 1363 1364
        if (locked) {
            mmap_unlock();
        }
1365
        cpu_resume_from_signal(cpu, puc);
1366 1367 1368 1369 1370
    }
#endif
}
#endif

1371 1372 1373 1374
/* add the tb in the target page and protect it if necessary
 *
 * Called with mmap_lock held for user-mode emulation.
 */
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
    invalidate_page_bitmap(p);

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find(addr >> TARGET_PAGE_BITS);
            if (!p2) {
                continue;
            }
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif
}

/* add a new TB and link it to the physical page tables. phys_page2 is
1430
 * (-1) to indicate that only one page contains the TB.
1431 1432
 *
 * Called with mmap_lock held for user-mode emulation.
1433
 */
1434 1435 1436 1437 1438 1439 1440 1441
static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
                         tb_page_addr_t phys_page2)
{
    unsigned int h;
    TranslationBlock **ptb;

    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
1442
    ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
    tb->phys_hash_next = *ptb;
    *ptb = tb;

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1) {
        tb_alloc_page(tb, 1, phys_page2);
    } else {
        tb->page_addr[1] = -1;
    }

    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff) {
        tb_reset_jump(tb, 0);
    }
    if (tb->tb_next_offset[1] != 0xffff) {
        tb_reset_jump(tb, 1);
    }

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
}

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
B
Blue Swirl 已提交
1473
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1474 1475 1476 1477 1478
{
    int m_min, m_max, m;
    uintptr_t v;
    TranslationBlock *tb;

1479
    if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1480 1481
        return NULL;
    }
E
Evgeny Voevodin 已提交
1482 1483
    if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
        tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1484 1485 1486 1487
        return NULL;
    }
    /* binary search (cf Knuth) */
    m_min = 0;
1488
    m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1489 1490
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
1491
        tb = &tcg_ctx.tb_ctx.tbs[m];
1492 1493 1494 1495 1496 1497 1498 1499 1500
        v = (uintptr_t)tb->tc_ptr;
        if (v == tc_ptr) {
            return tb;
        } else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
1501
    return &tcg_ctx.tb_ctx.tbs[m_max];
1502 1503
}

1504
#if !defined(CONFIG_USER_ONLY)
1505
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1506 1507
{
    ram_addr_t ram_addr;
1508
    MemoryRegion *mr;
1509
    hwaddr l = 1;
1510

1511
    rcu_read_lock();
1512
    mr = address_space_translate(as, addr, &addr, &l, false);
1513 1514
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
1515
        rcu_read_unlock();
1516 1517
        return;
    }
1518
    ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1519
        + addr;
1520
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1521
    rcu_read_unlock();
1522
}
1523
#endif /* !defined(CONFIG_USER_ONLY) */
1524

1525
void tb_check_watchpoint(CPUState *cpu)
1526 1527 1528
{
    TranslationBlock *tb;

1529
    tb = tb_find_pc(cpu->mem_io_pc);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
        int flags;

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        tb_invalidate_phys_range(addr, addr + 1);
1545 1546 1547 1548 1549 1550
    }
}

#ifndef CONFIG_USER_ONLY
/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
1551
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1552
{
1553
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
1554
    CPUArchState *env = cpu->env_ptr;
1555
#endif
1556 1557 1558 1559 1560 1561 1562
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
    uint64_t flags;

    tb = tb_find_pc(retaddr);
    if (!tb) {
1563
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1564 1565
                  (void *)retaddr);
    }
1566
    n = cpu->icount_decr.u16.low + tb->icount;
1567
    cpu_restore_state_from_tb(cpu, tb, retaddr);
1568 1569
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
1570
    n = n - cpu->icount_decr.u16.low;
1571 1572 1573 1574 1575 1576 1577 1578
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1579
        env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1580
        cpu->icount_decr.u16.low++;
1581 1582 1583 1584 1585 1586
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
1587
        cpu->icount_decr.u16.low++;
1588 1589 1590 1591 1592
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK) {
1593
        cpu_abort(cpu, "TB too big during recompile");
1594 1595 1596 1597 1598 1599 1600
    }

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
1601 1602 1603 1604 1605 1606 1607 1608
    if (tb->cflags & CF_NOCACHE) {
        if (tb->orig_tb) {
            /* Invalidate original TB if this TB was generated in
             * cpu_exec_nocache() */
            tb_phys_invalidate(tb->orig_tb, -1);
        }
        tb_free(tb);
    }
1609 1610
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
1611
    tb_gen_code(cpu, pc, cs_base, flags, cflags);
1612 1613 1614 1615 1616
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
1617
    cpu_resume_from_signal(cpu, NULL);
1618 1619
}

1620
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1621 1622 1623 1624 1625 1626
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1627
    memset(&cpu->tb_jmp_cache[i], 0,
1628 1629 1630
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
1631
    memset(&cpu->tb_jmp_cache[i], 0,
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
           TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
1646 1647
    for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
        tb = &tcg_ctx.tb_ctx.tbs[i];
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        target_code_size += tb->size;
        if (tb->size > max_target_code_size) {
            max_target_code_size = tb->size;
        }
        if (tb->page_addr[1] != -1) {
            cross_page++;
        }
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%zd\n",
E
Evgeny Voevodin 已提交
1665 1666
                tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
                tcg_ctx.code_gen_buffer_max_size);
1667
    cpu_fprintf(f, "TB count            %d/%d\n",
1668
            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1669
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1670 1671 1672
            tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
                    tcg_ctx.tb_ctx.nb_tbs : 0,
            max_target_code_size);
1673
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1674 1675 1676 1677 1678 1679 1680 1681 1682
            tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
                                     tcg_ctx.code_gen_buffer) /
                                     tcg_ctx.tb_ctx.nb_tbs : 0,
                target_code_size ? (double) (tcg_ctx.code_gen_ptr -
                                             tcg_ctx.code_gen_buffer) /
                                             target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
            tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
                                    tcg_ctx.tb_ctx.nb_tbs : 0);
1683 1684
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
1685 1686
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0,
1687
                direct_jmp2_count,
1688 1689
                tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
                        tcg_ctx.tb_ctx.nb_tbs : 0);
1690
    cpu_fprintf(f, "\nStatistics:\n");
1691 1692 1693
    cpu_fprintf(f, "TB flush count      %d\n", tcg_ctx.tb_ctx.tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n",
            tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1694 1695 1696 1697
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

1698 1699 1700 1701 1702
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
{
    tcg_dump_op_count(f, cpu_fprintf);
}

1703 1704
#else /* CONFIG_USER_ONLY */

1705
void cpu_interrupt(CPUState *cpu, int mask)
1706
{
1707
    cpu->interrupt_request |= mask;
1708
    cpu->tcg_exit_req = 1;
1709 1710 1711 1712 1713 1714 1715 1716 1717
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
1718
    target_ulong start;
1719 1720 1721 1722
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1723
                                   target_ulong end, int new_prot)
1724
{
1725
    if (data->start != -1u) {
1726 1727 1728 1729 1730 1731
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

1732
    data->start = (new_prot ? end : -1u);
1733 1734 1735 1736 1737 1738
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1739
                                 target_ulong base, int level, void **lp)
1740
{
1741
    target_ulong pa;
1742 1743 1744 1745 1746 1747 1748 1749 1750
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

1751
        for (i = 0; i < V_L2_SIZE; ++i) {
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

1765
        for (i = 0; i < V_L2_SIZE; ++i) {
1766
            pa = base | ((target_ulong)i <<
1767
                (TARGET_PAGE_BITS + V_L2_BITS * level));
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    uintptr_t i;

    data.fn = fn;
    data.priv = priv;
1785
    data.start = -1u;
1786 1787 1788
    data.prot = 0;

    for (i = 0; i < V_L1_SIZE; i++) {
1789
        int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1790
                                       V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1791 1792 1793 1794 1795 1796 1797 1798
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

1799 1800
static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
1801 1802 1803
{
    FILE *f = (FILE *)priv;

1804 1805
    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
1817
    const int length = sizeof(target_ulong) * 2;
1818 1819
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1845
    assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1866
            tb_invalidate_phys_page(addr, 0, NULL, false);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1882
    assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0, NULL)) {
                    return -1;
                }
            }
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was successfully handled. */
int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
    unsigned int prot;
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
1960
            tb_invalidate_phys_page(addr, pc, puc, true);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
        return 1;
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */