cpu.h 63.1 KB
Newer Older
B
bellard 已提交
1 2
/*
 * ARM virtual CPU header
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18 19 20 21
 */
#ifndef CPU_ARM_H
#define CPU_ARM_H

22
#include "config.h"
B
bellard 已提交
23

24 25
#include "kvm-consts.h"

26 27 28 29 30 31 32 33
#if defined(TARGET_AARCH64)
  /* AArch64 definitions */
#  define TARGET_LONG_BITS 64
#  define ELF_MACHINE EM_AARCH64
#else
#  define TARGET_LONG_BITS 32
#  define ELF_MACHINE EM_ARM
#endif
34

35
#define CPUArchState struct CPUARMState
36

37
#include "qemu-common.h"
38
#include "exec/cpu-defs.h"
B
bellard 已提交
39

40
#include "fpu/softfloat.h"
B
bellard 已提交
41

B
bellard 已提交
42 43
#define TARGET_HAS_ICE 1

B
bellard 已提交
44 45 46 47
#define EXCP_UDEF            1   /* undefined instruction */
#define EXCP_SWI             2   /* software interrupt */
#define EXCP_PREFETCH_ABORT  3
#define EXCP_DATA_ABORT      4
B
bellard 已提交
48 49
#define EXCP_IRQ             5
#define EXCP_FIQ             6
P
pbrook 已提交
50
#define EXCP_BKPT            7
P
pbrook 已提交
51
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
P
Paul Brook 已提交
53
#define EXCP_STREX          10
54
#define EXCP_HVC            11   /* HyperVisor Call */
55
#define EXCP_HYP_TRAP       12
56
#define EXCP_SMC            13   /* Secure Monitor Call */
57 58
#define EXCP_VIRQ           14
#define EXCP_VFIQ           15
P
pbrook 已提交
59 60 61 62 63 64 65 66 67 68 69

#define ARMV7M_EXCP_RESET   1
#define ARMV7M_EXCP_NMI     2
#define ARMV7M_EXCP_HARD    3
#define ARMV7M_EXCP_MEM     4
#define ARMV7M_EXCP_BUS     5
#define ARMV7M_EXCP_USAGE   6
#define ARMV7M_EXCP_SVC     11
#define ARMV7M_EXCP_DEBUG   12
#define ARMV7M_EXCP_PENDSV  14
#define ARMV7M_EXCP_SYSTICK 15
B
bellard 已提交
70

71 72
/* ARM-specific interrupt pending bits.  */
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
73 74
#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
75

76 77 78 79 80 81 82
/* The usual mapping for an AArch64 system register to its AArch32
 * counterpart is for the 32 bit world to have access to the lower
 * half only (with writes leaving the upper half untouched). It's
 * therefore useful to be able to pass TCG the offset of the least
 * significant half of a uint64_t struct member.
 */
#ifdef HOST_WORDS_BIGENDIAN
83
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84
#define offsetofhigh32(S, M) offsetof(S, M)
85 86
#else
#define offsetoflow32(S, M) offsetof(S, M)
87
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
88 89
#endif

90
/* Meanings of the ARMCPU object's four inbound GPIO lines */
91 92
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
93 94
#define ARM_CPU_VIRQ 2
#define ARM_CPU_VFIQ 3
95

96 97 98 99 100
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
                            int srcreg, int operand, uint32_t value);
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
                               int dstreg, int operand);

101 102
struct arm_boot_info;

103
#define NB_MMU_MODES 4
104

B
bellard 已提交
105 106 107 108
/* We currently assume float and double are IEEE single and double
   precision respectively.
   Doing runtime conversions is tricky because VFP registers may contain
   integer values (eg. as the result of a FTOSI instruction).
B
bellard 已提交
109 110 111
   s<2n> maps to the least significant half of d<n>
   s<2n+1> maps to the most significant half of d<n>
 */
B
bellard 已提交
112

113 114 115
/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
    uint64_t cval; /* Timer CompareValue register */
116
    uint64_t ctl; /* Timer Control register */
117 118 119 120 121 122
} ARMGenericTimer;

#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
#define NUM_GTIMERS 2

B
bellard 已提交
123
typedef struct CPUARMState {
B
bellard 已提交
124
    /* Regs for current mode.  */
B
bellard 已提交
125
    uint32_t regs[16];
126 127 128 129 130 131 132 133

    /* 32/64 switch only happens when taking and returning from
     * exceptions so the overlap semantics are taken care of then
     * instead of having a complicated union.
     */
    /* Regs for A64 mode.  */
    uint64_t xregs[32];
    uint64_t pc;
134 135 136 137 138 139 140 141
    /* PSTATE isn't an architectural register for ARMv8. However, it is
     * convenient for us to assemble the underlying state into a 32 bit format
     * identical to the architectural format used for the SPSR. (This is also
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
     * 'pstate' register are.) Of the PSTATE bits:
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
     *    semantics as for AArch32, as described in the comments on each field)
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
142
     *  DAIF (exception masks) are kept in env->daif
143
     *  all other bits are stored in their correct places in env->pstate
144 145 146 147
     */
    uint32_t pstate;
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */

148
    /* Frequently accessed CPSR bits are stored separately for efficiency.
P
pbrook 已提交
149
       This contains all the other bits.  Use cpsr_{read,write} to access
B
bellard 已提交
150 151 152 153 154
       the whole CPSR.  */
    uint32_t uncached_cpsr;
    uint32_t spsr;

    /* Banked registers.  */
155
    uint64_t banked_spsr[8];
156 157
    uint32_t banked_r13[8];
    uint32_t banked_r14[8];
158

B
bellard 已提交
159 160 161
    /* These hold r8-r12.  */
    uint32_t usr_regs[5];
    uint32_t fiq_regs[5];
162

B
bellard 已提交
163 164 165
    /* cpsr flag cache for faster execution */
    uint32_t CF; /* 0 or 1 */
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
P
pbrook 已提交
166 167
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
    uint32_t ZF; /* Z set if zero.  */
B
bellard 已提交
168
    uint32_t QF; /* 0 or 1 */
P
pbrook 已提交
169
    uint32_t GE; /* cpsr[19:16] */
P
pbrook 已提交
170
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
P
pbrook 已提交
171
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
172
    uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
B
bellard 已提交
173

174
    uint64_t elr_el[4]; /* AArch64 exception link regs  */
175
    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
176

B
bellard 已提交
177 178
    /* System control coprocessor (cp15) */
    struct {
P
pbrook 已提交
179
        uint32_t c0_cpuid;
F
Fabian Aggeler 已提交
180 181 182 183 184 185 186 187 188
        union { /* Cache size selection */
            struct {
                uint64_t _unused_csselr0;
                uint64_t csselr_ns;
                uint64_t _unused_csselr1;
                uint64_t csselr_s;
            };
            uint64_t csselr_el[4];
        };
189 190 191 192 193 194 195 196 197
        union { /* System control register. */
            struct {
                uint64_t _unused_sctlr;
                uint64_t sctlr_ns;
                uint64_t hsctlr;
                uint64_t sctlr_s;
            };
            uint64_t sctlr_el[4];
        };
198
        uint64_t c1_coproc; /* Coprocessor access register.  */
199
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
G
Greg Bellows 已提交
200
        uint64_t sder; /* Secure debug enable register. */
F
Fabian Aggeler 已提交
201
        uint32_t nsacr; /* Non-secure access control register. */
F
Fabian Aggeler 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        union { /* MMU translation table base 0. */
            struct {
                uint64_t _unused_ttbr0_0;
                uint64_t ttbr0_ns;
                uint64_t _unused_ttbr0_1;
                uint64_t ttbr0_s;
            };
            uint64_t ttbr0_el[4];
        };
        union { /* MMU translation table base 1. */
            struct {
                uint64_t _unused_ttbr1_0;
                uint64_t ttbr1_ns;
                uint64_t _unused_ttbr1_1;
                uint64_t ttbr1_s;
            };
            uint64_t ttbr1_el[4];
        };
220
        uint64_t c2_control; /* MMU translation table base control.  */
221 222
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
P
pbrook 已提交
223 224 225 226
        uint32_t c2_data; /* MPU data cachable bits.  */
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
        uint32_t c3; /* MMU domain access control register
                        MPU write buffer control.  */
227 228
        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
E
Edgar E. Iglesias 已提交
229
        uint64_t hcr_el2; /* Hypervisor configuration register */
E
Edgar E. Iglesias 已提交
230
        uint64_t scr_el3; /* Secure configuration register.  */
231
        uint32_t ifsr_el2; /* Fault status registers.  */
232
        uint64_t esr_el[4];
P
pbrook 已提交
233
        uint32_t c6_region[8]; /* MPU base/size registers.  */
234
        uint64_t far_el[4]; /* Fault address registers.  */
235
        uint64_t par_el1;  /* Translation result. */
B
bellard 已提交
236 237
        uint32_t c9_insn; /* Cache lockdown registers.  */
        uint32_t c9_data;
238 239
        uint64_t c9_pmcr; /* performance monitor control register */
        uint64_t c9_pmcnten; /* perf monitor counter enables */
240 241 242 243
        uint32_t c9_pmovsr; /* perf monitor overflow status */
        uint32_t c9_pmxevtyper; /* perf monitor event type */
        uint32_t c9_pmuserenr; /* perf monitor user enable */
        uint32_t c9_pminten; /* perf monitor interrupt enables */
244
        uint64_t mair_el1;
245
        uint64_t vbar_el[4]; /* vector base address register */
F
Fabian Aggeler 已提交
246
        uint32_t mvbar; /* (monitor) vector base address register */
B
bellard 已提交
247
        uint32_t c13_fcse; /* FCSE PID.  */
248
        uint64_t contextidr_el1; /* Context ID.  */
249 250 251
        uint64_t tpidr_el0; /* User RW Thread register.  */
        uint64_t tpidrro_el0; /* User RO Thread register.  */
        uint64_t tpidr_el1; /* Privileged Thread register.  */
252 253
        uint64_t c14_cntfrq; /* Counter Frequency register */
        uint64_t c14_cntkctl; /* Timer Control register */
254
        ARMGenericTimer c14_timer[NUM_GTIMERS];
255
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
256 257 258 259
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
260 261 262 263
        uint32_t c15_config_base_address; /* SCU base address.  */
        uint32_t c15_diagnostic; /* diagnostic register */
        uint32_t c15_power_diagnostic;
        uint32_t c15_power_control; /* power control */
264 265 266 267
        uint64_t dbgbvr[16]; /* breakpoint value registers */
        uint64_t dbgbcr[16]; /* breakpoint control registers */
        uint64_t dbgwvr[16]; /* watchpoint value registers */
        uint64_t dbgwcr[16]; /* watchpoint control registers */
268
        uint64_t mdscr_el1;
269 270 271
        /* If the counter is enabled, this stores the last time the counter
         * was reset. Otherwise it stores the counter value
         */
272
        uint64_t c15_ccnt;
273
        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
B
bellard 已提交
274
    } cp15;
P
pbrook 已提交
275

P
pbrook 已提交
276 277 278 279 280 281 282 283 284 285
    struct {
        uint32_t other_sp;
        uint32_t vecbase;
        uint32_t basepri;
        uint32_t control;
        int current_sp;
        int exception;
        int pending_exception;
    } v7m;

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    /* Information associated with an exception about to be taken:
     * code which raises an exception must set cs->exception_index and
     * the relevant parts of this structure; the cpu_do_interrupt function
     * will then set the guest-visible registers as part of the exception
     * entry process.
     */
    struct {
        uint32_t syndrome; /* AArch64 format syndrome register */
        uint32_t fsr; /* AArch32 format fault status register info */
        uint64_t vaddress; /* virtual addr associated with exception, if any */
        /* If we implement EL2 we will also need to store information
         * about the intermediate physical address for stage 2 faults.
         */
    } exception;

301 302 303 304
    /* Thumb-2 EE state.  */
    uint32_t teecr;
    uint32_t teehbr;

B
bellard 已提交
305 306
    /* VFP coprocessor state.  */
    struct {
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        /* VFP/Neon register state. Note that the mapping between S, D and Q
         * views of the register bank differs between AArch64 and AArch32:
         * In AArch32:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[n]
         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
         * (and regs[32] to regs[63] are inaccessible)
         * In AArch64:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[2n]
         *  Sn = regs[2n] bits 31..0
         * This corresponds to the architecturally defined mapping between
         * the two execution states, and means we do not need to explicitly
         * map these registers when changing states.
         */
        float64 regs[64];
B
bellard 已提交
323

P
pbrook 已提交
324
        uint32_t xregs[16];
B
bellard 已提交
325 326 327 328
        /* We store these fpcsr fields separately for convenience.  */
        int vec_len;
        int vec_stride;

P
pbrook 已提交
329 330
        /* scratch space when Tn are not sufficient.  */
        uint32_t scratch[8];
331

332 333 334 335 336 337 338 339 340 341 342 343
        /* fp_status is the "normal" fp status. standard_fp_status retains
         * values corresponding to the ARM "Standard FPSCR Value", ie
         * default-NaN, flush-to-zero, round-to-nearest and is used by
         * any operations (generally Neon) which the architecture defines
         * as controlled by the standard FPSCR value rather than the FPSCR.
         *
         * To avoid having to transfer exception bits around, we simply
         * say that the FPSCR cumulative exception flags are the logical
         * OR of the flags in the two fp statuses. This relies on the
         * only thing which needs to read the exception flags being
         * an explicit FPSCR read.
         */
B
bellard 已提交
344
        float_status fp_status;
345
        float_status standard_fp_status;
B
bellard 已提交
346
    } vfp;
347 348 349
    uint64_t exclusive_addr;
    uint64_t exclusive_val;
    uint64_t exclusive_high;
P
pbrook 已提交
350
#if defined(CONFIG_USER_ONLY)
351
    uint64_t exclusive_test;
P
Paul Brook 已提交
352
    uint32_t exclusive_info;
P
pbrook 已提交
353
#endif
B
bellard 已提交
354

355 356 357 358 359 360 361 362
    /* iwMMXt coprocessor state.  */
    struct {
        uint64_t regs[16];
        uint64_t val;

        uint32_t cregs[16];
    } iwmmxt;

P
Paul Brook 已提交
363 364 365
    /* For mixed endian mode.  */
    bool bswap_code;

P
pbrook 已提交
366 367 368 369 370
#if defined(CONFIG_USER_ONLY)
    /* For usermode syscall translation.  */
    int eabi;
#endif

371
    struct CPUBreakpoint *cpu_breakpoint[16];
372 373
    struct CPUWatchpoint *cpu_watchpoint[16];

374 375
    CPU_COMMON

376
    /* These fields after the common ones so they are preserved on reset.  */
L
Lars Munch 已提交
377

378
    /* Internal CPU feature flags.  */
379
    uint64_t features;
380

P
Paul Brook 已提交
381
    void *nvic;
382
    const struct arm_boot_info *boot_info;
B
bellard 已提交
383 384
} CPUARMState;

385 386 387
#include "cpu-qom.h"

ARMCPU *cpu_arm_init(const char *cpu_model);
B
bellard 已提交
388
int cpu_arm_exec(CPUARMState *s);
P
pbrook 已提交
389
uint32_t do_arm_semihosting(CPUARMState *env);
B
bellard 已提交
390

391 392 393 394 395
static inline bool is_a64(CPUARMState *env)
{
    return env->aarch64;
}

B
bellard 已提交
396 397 398
/* you can call this signal handler from your SIGBUS and SIGSEGV
   signal handlers to inform the virtual CPU of exceptions. non zero
   is returned if the signal was handled by the virtual CPU.  */
399
int cpu_arm_signal_handler(int host_signum, void *pinfo,
B
bellard 已提交
400
                           void *puc);
401 402
int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
                             int mmu_idx);
B
bellard 已提交
403

404 405 406 407 408 409 410 411 412 413 414
/**
 * pmccntr_sync
 * @env: CPUARMState
 *
 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 * once before any action that might affect the timer and again afterwards.
 * The function is used to swap the state of the register if required.
 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 */
void pmccntr_sync(CPUARMState *env);

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/* SCTLR bit meanings. Several bits have been reused in newer
 * versions of the architecture; in that case we define constants
 * for both old and new bit meanings. Code which tests against those
 * bits should probably check or otherwise arrange that the CPU
 * is the architectural version it expects.
 */
#define SCTLR_M       (1U << 0)
#define SCTLR_A       (1U << 1)
#define SCTLR_C       (1U << 2)
#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
#define SCTLR_SA      (1U << 3)
#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
#define SCTLR_ITD     (1U << 7) /* v8 onward */
#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
#define SCTLR_SED     (1U << 8) /* v8 onward */
#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
#define SCTLR_F       (1U << 10) /* up to v6 */
#define SCTLR_SW      (1U << 10) /* v7 onward */
#define SCTLR_Z       (1U << 11)
#define SCTLR_I       (1U << 12)
#define SCTLR_V       (1U << 13)
#define SCTLR_RR      (1U << 14) /* up to v7 */
#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWI    (1U << 16) /* v8 onward */
#define SCTLR_HA      (1U << 17)
#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWE    (1U << 18) /* v8 onward */
#define SCTLR_WXN     (1U << 19)
#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
#define SCTLR_UWXN    (1U << 20) /* v7 onward */
#define SCTLR_FI      (1U << 21)
#define SCTLR_U       (1U << 22)
#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
#define SCTLR_VE      (1U << 24) /* up to v7 */
#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
#define SCTLR_EE      (1U << 25)
#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
#define SCTLR_NMFI    (1U << 27)
#define SCTLR_TRE     (1U << 28)
#define SCTLR_AFE     (1U << 29)
#define SCTLR_TE      (1U << 30)

467 468 469 470 471 472 473 474
#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
475 476 477 478 479 480 481
#define CPSR_IL (1U << 20)
/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 * where it is live state but not accessible to the AArch32 code.
 */
#define CPSR_RESERVED (0x7U << 21)
482 483 484 485 486 487 488
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
P
pbrook 已提交
489
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
490
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
P
pbrook 已提交
491 492

#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
493 494
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
    | CPSR_NZCV)
P
pbrook 已提交
495 496 497
/* Bits writable in user mode.  */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
498 499 500
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
/* Mask of bits which may be set by exception return copying them from SPSR */
#define CPSR_ERET_MASK (~CPSR_RESERVED)
B
bellard 已提交
501

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
#define TTBCR_PD0    (1U << 4)
#define TTBCR_PD1    (1U << 5)
#define TTBCR_EPD0   (1U << 7)
#define TTBCR_IRGN0  (3U << 8)
#define TTBCR_ORGN0  (3U << 10)
#define TTBCR_SH0    (3U << 12)
#define TTBCR_T1SZ   (3U << 16)
#define TTBCR_A1     (1U << 22)
#define TTBCR_EPD1   (1U << 23)
#define TTBCR_IRGN1  (3U << 24)
#define TTBCR_ORGN1  (3U << 26)
#define TTBCR_SH1    (1U << 28)
#define TTBCR_EAE    (1U << 31)

518 519 520 521
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 * Only these are valid when in AArch64 mode; in
 * AArch32 mode SPSRs are basically CPSR-format.
 */
522
#define PSTATE_SP (1U)
523 524 525 526 527 528 529 530 531 532 533 534 535
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
536 537
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
538 539 540 541 542 543 544 545 546
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0

547 548 549 550 551 552
/* Map EL and handler into a PSTATE_MODE.  */
static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
{
    return (el << 2) | handler;
}

553 554 555 556 557 558 559 560 561 562 563
/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 * interprocessing, so we don't attempt to sync with the cpsr state used by
 * the 32 bit decoder.
 */
static inline uint32_t pstate_read(CPUARMState *env)
{
    int ZF;

    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
564
        | env->pstate | env->daif;
565 566 567 568 569 570 571 572
}

static inline void pstate_write(CPUARMState *env, uint32_t val)
{
    env->ZF = (~val) & PSTATE_Z;
    env->NF = val;
    env->CF = (val >> 29) & 1;
    env->VF = (val << 3) & 0x80000000;
573
    env->daif = val & PSTATE_DAIF;
574 575 576
    env->pstate = val & ~CACHED_PSTATE_BITS;
}

B
bellard 已提交
577
/* Return the current CPSR value.  */
578 579 580
uint32_t cpsr_read(CPUARMState *env);
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
P
pbrook 已提交
581 582 583 584 585

/* Return the current xPSR value.  */
static inline uint32_t xpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
586 587
    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
P
pbrook 已提交
588 589 590 591
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | env->v7m.exception;
B
bellard 已提交
592 593
}

P
pbrook 已提交
594 595 596 597
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
598 599
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
P
pbrook 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & (1 << 24))
        env->thumb = ((val & (1 << 24)) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & 0x1ff) {
        env->v7m.exception = val & 0x1ff;
    }
}

E
Edgar E. Iglesias 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
#define HCR_VM        (1ULL << 0)
#define HCR_SWIO      (1ULL << 1)
#define HCR_PTW       (1ULL << 2)
#define HCR_FMO       (1ULL << 3)
#define HCR_IMO       (1ULL << 4)
#define HCR_AMO       (1ULL << 5)
#define HCR_VF        (1ULL << 6)
#define HCR_VI        (1ULL << 7)
#define HCR_VSE       (1ULL << 8)
#define HCR_FB        (1ULL << 9)
#define HCR_BSU_MASK  (3ULL << 10)
#define HCR_DC        (1ULL << 12)
#define HCR_TWI       (1ULL << 13)
#define HCR_TWE       (1ULL << 14)
#define HCR_TID0      (1ULL << 15)
#define HCR_TID1      (1ULL << 16)
#define HCR_TID2      (1ULL << 17)
#define HCR_TID3      (1ULL << 18)
#define HCR_TSC       (1ULL << 19)
#define HCR_TIDCP     (1ULL << 20)
#define HCR_TACR      (1ULL << 21)
#define HCR_TSW       (1ULL << 22)
#define HCR_TPC       (1ULL << 23)
#define HCR_TPU       (1ULL << 24)
#define HCR_TTLB      (1ULL << 25)
#define HCR_TVM       (1ULL << 26)
#define HCR_TGE       (1ULL << 27)
#define HCR_TDZ       (1ULL << 28)
#define HCR_HCD       (1ULL << 29)
#define HCR_TRVM      (1ULL << 30)
#define HCR_RW        (1ULL << 31)
#define HCR_CD        (1ULL << 32)
#define HCR_ID        (1ULL << 33)
#define HCR_MASK      ((1ULL << 34) - 1)

E
Edgar E. Iglesias 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
#define SCR_NS                (1U << 0)
#define SCR_IRQ               (1U << 1)
#define SCR_FIQ               (1U << 2)
#define SCR_EA                (1U << 3)
#define SCR_FW                (1U << 4)
#define SCR_AW                (1U << 5)
#define SCR_NET               (1U << 6)
#define SCR_SMD               (1U << 7)
#define SCR_HCE               (1U << 8)
#define SCR_SIF               (1U << 9)
#define SCR_RW                (1U << 10)
#define SCR_ST                (1U << 11)
#define SCR_TWI               (1U << 12)
#define SCR_TWE               (1U << 13)
#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)

672 673 674 675
/* Return the current FPSCR value.  */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
/* For A64 the FPSCR is split into two logically distinct registers,
 * FPCR and FPSR. However since they still use non-overlapping bits
 * we store the underlying state in fpscr and just mask on read/write.
 */
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07f79f00
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPSR_MASK;
}

static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPCR_MASK;
}

static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

B
bellard 已提交
704 705 706 707 708
enum arm_cpu_mode {
  ARM_CPU_MODE_USR = 0x10,
  ARM_CPU_MODE_FIQ = 0x11,
  ARM_CPU_MODE_IRQ = 0x12,
  ARM_CPU_MODE_SVC = 0x13,
709
  ARM_CPU_MODE_MON = 0x16,
B
bellard 已提交
710
  ARM_CPU_MODE_ABT = 0x17,
711
  ARM_CPU_MODE_HYP = 0x1a,
B
bellard 已提交
712 713 714 715
  ARM_CPU_MODE_UND = 0x1b,
  ARM_CPU_MODE_SYS = 0x1f
};

P
pbrook 已提交
716 717 718
/* VFP system registers.  */
#define ARM_VFP_FPSID   0
#define ARM_VFP_FPSCR   1
719
#define ARM_VFP_MVFR2   5
P
pbrook 已提交
720 721
#define ARM_VFP_MVFR1   6
#define ARM_VFP_MVFR0   7
P
pbrook 已提交
722 723 724 725
#define ARM_VFP_FPEXC   8
#define ARM_VFP_FPINST  9
#define ARM_VFP_FPINST2 10

726 727 728 729 730 731 732 733 734 735
/* iwMMXt coprocessor control registers.  */
#define ARM_IWMMXT_wCID		0
#define ARM_IWMMXT_wCon		1
#define ARM_IWMMXT_wCSSF	2
#define ARM_IWMMXT_wCASF	3
#define ARM_IWMMXT_wCGR0	8
#define ARM_IWMMXT_wCGR1	9
#define ARM_IWMMXT_wCGR2	10
#define ARM_IWMMXT_wCGR3	11

736 737 738 739
/* If adding a feature bit which corresponds to a Linux ELF
 * HWCAP bit, remember to update the feature-bit-to-hwcap
 * mapping in linux-user/elfload.c:get_elf_hwcap().
 */
P
pbrook 已提交
740 741
enum arm_features {
    ARM_FEATURE_VFP,
742 743
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
P
pbrook 已提交
744
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
P
pbrook 已提交
745 746 747 748
    ARM_FEATURE_V6,
    ARM_FEATURE_V6K,
    ARM_FEATURE_V7,
    ARM_FEATURE_THUMB2,
749
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
P
pbrook 已提交
750
    ARM_FEATURE_VFP3,
P
Paul Brook 已提交
751
    ARM_FEATURE_VFP_FP16,
P
pbrook 已提交
752
    ARM_FEATURE_NEON,
753
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
P
pbrook 已提交
754
    ARM_FEATURE_M, /* Microcontroller profile.  */
755
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
756
    ARM_FEATURE_THUMB2EE,
757 758 759
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
    ARM_FEATURE_V4T,
    ARM_FEATURE_V5,
760
    ARM_FEATURE_STRONGARM,
761
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
762
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
763
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
764
    ARM_FEATURE_GENERIC_TIMER,
765
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
766
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
767 768 769
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
P
Peter Maydell 已提交
770
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
771 772
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
773
    ARM_FEATURE_V8,
774
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
775
    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
776
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
777
    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
778
    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
779
    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
780
    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
781 782
    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
783
    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
P
pbrook 已提交
784 785 786 787
};

static inline int arm_feature(CPUARMState *env, int feature)
{
788
    return (env->features & (1ULL << feature)) != 0;
P
pbrook 已提交
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
#if !defined(CONFIG_USER_ONLY)
/* Return true if exception levels below EL3 are in secure state,
 * or would be following an exception return to that level.
 * Unlike arm_is_secure() (which is always a question about the
 * _current_ state of the CPU) this doesn't care about the current
 * EL or mode.
 */
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        return !(env->cp15.scr_el3 & SCR_NS);
    } else {
        /* If EL2 is not supported then the secure state is implementation
         * defined, in which case QEMU defaults to non-secure.
         */
        return false;
    }
}

/* Return true if the processor is in secure state */
static inline bool arm_is_secure(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
            /* CPU currently in AArch64 state and EL3 */
            return true;
        } else if (!is_a64(env) &&
                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
            /* CPU currently in AArch32 state and monitor mode */
            return true;
        }
    }
    return arm_is_secure_below_el3(env);
}

#else
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
    return false;
}

static inline bool arm_is_secure(CPUARMState *env)
{
    return false;
}
#endif

838 839 840
/* Return true if the specified exception level is running in AArch64 state. */
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
{
841
    /* We don't currently support EL2, and this isn't valid for EL0
842 843 844
     * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
     * then the state of EL0 isn't well defined.)
     */
845 846
    assert(el == 1 || el == 3);

847 848 849 850 851 852 853 854
    /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
     * is a QEMU-imposed simplification which we may wish to change later.
     * If we in future support EL2 and/or EL3, then the state of lower
     * exception levels is controlled by the HCR.RW and SCR.RW bits.
     */
    return arm_feature(env, ARM_FEATURE_AARCH64);
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/* Function for determing whether guest cp register reads and writes should
 * access the secure or non-secure bank of a cp register.  When EL3 is
 * operating in AArch32 state, the NS-bit determines whether the secure
 * instance of a cp register should be used. When EL3 is AArch64 (or if
 * it doesn't exist at all) then there is no register banking, and all
 * accesses are to the non-secure version.
 */
static inline bool access_secure_reg(CPUARMState *env)
{
    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
                !arm_el_is_aa64(env, 3) &&
                !(env->cp15.scr_el3 & SCR_NS));

    return ret;
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/* Macros for accessing a specified CP register bank */
#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)

#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
    do {                                                \
        if (_secure) {                                   \
            (_env)->cp15._regname##_s = (_val);            \
        } else {                                        \
            (_env)->cp15._regname##_ns = (_val);           \
        }                                               \
    } while (0)

/* Macros for automatically accessing a specific CP register bank depending on
 * the current secure state of the system.  These macros are not intended for
 * supporting instruction translation reads/writes as these are dependent
 * solely on the SCR.NS bit and not the mode.
 */
#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
    A32_BANKED_REG_GET((_env), _regname,                \
                       ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))

#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
    A32_BANKED_REG_SET((_env), _regname,                                    \
                       ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))),  \
                       (_val))

898
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
899
unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx);
P
pbrook 已提交
900

P
pbrook 已提交
901 902 903 904 905
/* Interface between CPU and Interrupt controller.  */
void armv7m_nvic_set_pending(void *opaque, int irq);
int armv7m_nvic_acknowledge_irq(void *opaque);
void armv7m_nvic_complete_irq(void *opaque, int irq);

906 907 908 909 910 911 912 913 914 915 916
/* Interface for defining coprocessor registers.
 * Registers are defined in tables of arm_cp_reginfo structs
 * which are passed to define_arm_cp_regs().
 */

/* When looking up a coprocessor register we look for it
 * via an integer which encodes all of:
 *  coprocessor number
 *  Crn, Crm, opc1, opc2 fields
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
 *    or via MRRC/MCRR?)
917
 *  non-secure/secure bank (AArch32 only)
918 919
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 * (In this case crn and opc2 should be zero.)
920 921 922 923 924 925 926
 * For AArch64, there is no 32/64 bit size distinction;
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 * and 4 bit CRn and CRm. The encoding patterns are chosen
 * to be easy to convert to and from the KVM encodings, and also
 * so that the hashtable can contain both AArch32 and AArch64
 * registers (to allow for interprocessing where we might run
 * 32 bit code on a 64 bit core).
927
 */
928 929 930 931 932 933 934
/* This bit is private to our hashtable cpreg; in KVM register
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 * in the upper bits of the 64 bit ID.
 */
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)

935 936 937 938 939 940 941 942 943 944
/* To enable banking of coprocessor registers depending on ns-bit we
 * add a bit to distinguish between secure and non-secure cpregs in the
 * hashtable.
 */
#define CP_REG_NS_SHIFT 29
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)

#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
945

946 947 948 949 950 951 952 953 954
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
    (CP_REG_AA64_MASK |                                 \
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))

955 956 957 958 959 960
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
 * version used as a key for the coprocessor register hashtable
 */
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
    uint32_t cpregid = kvmid;
961 962
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
        cpregid |= CP_REG_AA64_MASK;
963 964 965 966 967 968 969 970 971
    } else {
        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
            cpregid |= (1 << 15);
        }

        /* KVM is always non-secure so add the NS flag on AArch32 register
         * entries.
         */
         cpregid |= 1 << CP_REG_NS_SHIFT;
972 973 974 975 976 977 978 979 980
    }
    return cpregid;
}

/* Convert a truncated 32 bit hashtable key into the full
 * 64 bit KVM register ID.
 */
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
981 982 983 984 985
    uint64_t kvmid;

    if (cpregid & CP_REG_AA64_MASK) {
        kvmid = cpregid & ~CP_REG_AA64_MASK;
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
986
    } else {
987 988 989 990 991 992
        kvmid = cpregid & ~(1 << 15);
        if (cpregid & (1 << 15)) {
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
        } else {
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
        }
993 994 995 996
    }
    return kvmid;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
 * TCG can assume the value to be constant (ie load at translate time)
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 * indicates that the TB should not be ended after a write to this register
 * (the default is that the TB ends after cp writes). OVERRIDE permits
 * a register definition to override a previous definition for the
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 * old must have the OVERRIDE bit set.
1007 1008
 * NO_MIGRATE indicates that this register should be ignored for migration;
 * (eg because any state is accessed via some other coprocessor register).
1009 1010 1011
 * IO indicates that this register does I/O and therefore its accesses
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 * registers which implement clocks or timers require this.
1012 1013 1014 1015 1016 1017
 */
#define ARM_CP_SPECIAL 1
#define ARM_CP_CONST 2
#define ARM_CP_64BIT 4
#define ARM_CP_SUPPRESS_TB_END 8
#define ARM_CP_OVERRIDE 16
1018
#define ARM_CP_NO_MIGRATE 32
1019
#define ARM_CP_IO 64
1020 1021
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1022
#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1023
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1024 1025
#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1026 1027 1028
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL 0xffff
/* Mask of only the flag bits in a type field */
1029
#define ARM_CP_FLAG_MASK 0x7f
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/* Valid values for ARMCPRegInfo state field, indicating which of
 * the AArch32 and AArch64 execution states this register is visible in.
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
 * If the reginfo is declared to be visible in both states then a second
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 * Note that we rely on the values of these enums as we iterate through
 * the various states in some places.
 */
enum {
    ARM_CP_STATE_AA32 = 0,
    ARM_CP_STATE_AA64 = 1,
    ARM_CP_STATE_BOTH = 2,
};

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/* ARM CP register secure state flags.  These flags identify security state
 * attributes for a given CP register entry.
 * The existence of both or neither secure and non-secure flags indicates that
 * the register has both a secure and non-secure hash entry.  A single one of
 * these flags causes the register to only be hashed for the specified
 * security state.
 * Although definitions may have any combination of the S/NS bits, each
 * registered entry will only have one to identify whether the entry is secure
 * or non-secure.
 */
enum {
    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
};

1061 1062 1063 1064 1065 1066 1067 1068
/* Return true if cptype is a valid type field. This is used to try to
 * catch errors where the sentinel has been accidentally left off the end
 * of a list of registers.
 */
static inline bool cptype_valid(int cptype)
{
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
        || ((cptype & ARM_CP_SPECIAL) &&
1069
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

/* Access rights:
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 * (ie any of the privileged modes in Secure state, or Monitor mode).
 * If a register is accessible in one privilege level it's always accessible
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 * terminology a little and call this PL3.
1082 1083
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 * with the ELx exception levels.
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
 *
 * If access permissions for a register are more complex than can be
 * described with these bits, then use a laxer set of restrictions, and
 * do the more restrictive/complex check inside a helper function.
 */
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)

#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)

1103 1104 1105 1106
/* Return the current Exception Level (as per ARMv8; note that this differs
 * from the ARMv7 Privilege Level).
 */
static inline int arm_current_el(CPUARMState *env)
1107
{
1108
    if (is_a64(env)) {
1109 1110 1111
        return extract32(env->pstate, 2, 2);
    }

1112 1113
    switch (env->uncached_cpsr & 0x1f) {
    case ARM_CPU_MODE_USR:
1114
        return 0;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    case ARM_CPU_MODE_HYP:
        return 2;
    case ARM_CPU_MODE_MON:
        return 3;
    default:
        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
            /* If EL3 is 32-bit then all secure privileged modes run in
             * EL3
             */
            return 3;
        }

        return 1;
1128 1129 1130 1131 1132
    }
}

typedef struct ARMCPRegInfo ARMCPRegInfo;

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
typedef enum CPAccessResult {
    /* Access is permitted */
    CP_ACCESS_OK = 0,
    /* Access fails due to a configurable trap or enable which would
     * result in a categorized exception syndrome giving information about
     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
     * 0xc or 0x18).
     */
    CP_ACCESS_TRAP = 1,
    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
     * Note that this is not a catch-all case -- the set of cases which may
     * result in this failure is specifically defined by the architecture.
     */
    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
} CPAccessResult;

1149 1150 1151 1152 1153 1154
/* Access functions for coprocessor registers. These cannot fail and
 * may not raise exceptions.
 */
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                       uint64_t value);
1155 1156
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);

#define CP_ANY 0xff

/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
    /* Name of register (useful mainly for debugging, need not be unique) */
    const char *name;
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
     * will be decoded to this register. The register read and write
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
     * used by the program, so it is possible to register a wildcard and
     * then behave differently on read/write if necessary.
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
     * must both be zero.
1175 1176 1177 1178 1179 1180 1181
     * For AArch64-visible registers, opc0 is also used.
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
     * way to distinguish (for KVM's benefit) guest-visible system registers
     * from demuxed ones provided to preserve the "no side effects on
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
     * visible (to match KVM's encoding); cp==0 will be converted to
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1182 1183 1184 1185
     */
    uint8_t cp;
    uint8_t crn;
    uint8_t crm;
1186
    uint8_t opc0;
1187 1188
    uint8_t opc1;
    uint8_t opc2;
1189 1190
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
    int state;
1191 1192 1193 1194
    /* Register type: ARM_CP_* bits/values */
    int type;
    /* Access rights: PL*_[RW] */
    int access;
1195 1196
    /* Security state: ARM_CP_SECSTATE_* bits/values */
    int secure;
1197 1198 1199 1200 1201 1202 1203 1204 1205
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
     * this register was defined: can be used to hand data through to the
     * register read/write functions, since they are passed the ARMCPRegInfo*.
     */
    void *opaque;
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
     * fieldoffset is non-zero, the reset value of the register.
     */
    uint64_t resetvalue;
1206 1207 1208
    /* Offset of the field in CPUARMState for this register.
     *
     * This is not needed if either:
1209 1210 1211 1212
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
     *  2. both readfn and writefn are specified
     */
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

    /* Offsets of the secure and non-secure fields in CPUARMState for the
     * register if it is banked.  These fields are only used during the static
     * registration of a register.  During hashing the bank associated
     * with a given security state is copied to fieldoffset which is used from
     * there on out.
     *
     * It is expected that register definitions use either fieldoffset or
     * bank_fieldoffsets in the definition but not both.  It is also expected
     * that both bank offsets are set when defining a banked register.  This
     * use indicates that a register is banked.
     */
    ptrdiff_t bank_fieldoffsets[2];

1227 1228 1229 1230 1231 1232
    /* Function for making any access checks for this register in addition to
     * those specified by the 'access' permissions bits. If NULL, no extra
     * checks required. The access check is performed at runtime, not at
     * translate time.
     */
    CPAccessFn *accessfn;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    /* Function for handling reads of this register. If NULL, then reads
     * will be done by loading from the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPReadFn *readfn;
    /* Function for handling writes of this register. If NULL, then writes
     * will be done by writing to the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPWriteFn *writefn;
1243 1244 1245
    /* Function for doing a "raw" read; used when we need to copy
     * coprocessor state to the kernel for KVM or out for
     * migration. This only needs to be provided if there is also a
1246
     * readfn and it has side effects (for instance clear-on-read bits).
1247 1248 1249 1250 1251
     */
    CPReadFn *raw_readfn;
    /* Function for doing a "raw" write; used when we need to copy KVM
     * kernel coprocessor state into userspace, or for inbound
     * migration. This only needs to be provided if there is also a
1252 1253
     * writefn and it masks out "unwritable" bits or has write-one-to-clear
     * or similar behaviour.
1254 1255
     */
    CPWriteFn *raw_writefn;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    /* Function for resetting the register. If NULL, then reset will be done
     * by writing resetvalue to the field specified in fieldoffset. If
     * fieldoffset is 0 then no reset will be done.
     */
    CPResetFn *resetfn;
};

/* Macros which are lvalues for the field in CPUARMState for the
 * ARMCPRegInfo *ri.
 */
#define CPREG_FIELD32(env, ri) \
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))

#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
1285
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1286 1287

/* CPWriteFn that can be used to implement writes-ignored behaviour */
1288 1289
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value);
1290
/* CPReadFn that can be used for read-as-zero behaviour */
1291
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1292

1293 1294 1295 1296 1297
/* CPResetFn that does nothing, for use if no reset is required even
 * if fieldoffset is non zero.
 */
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);

1298 1299 1300 1301 1302 1303 1304 1305
/* Return true if this reginfo struct's field in the cpu state struct
 * is 64 bits wide.
 */
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}

1306
static inline bool cp_access_ok(int current_el,
1307 1308
                                const ARMCPRegInfo *ri, int isread)
{
1309
    return (ri->access >> ((current_el * 2) + isread)) & 1;
1310 1311
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/**
 * write_list_to_cpustate
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the cpreg_values list into the ARMCPUState structure.
 * This updates TCG's working data structures from KVM data or
 * from incoming migration state.
 *
 * Returns: true if all register values were updated correctly,
 * false if some register was unknown or could not be written.
 * Note that we do not stop early on failure -- we will attempt
 * writing all registers in the list.
 */
bool write_list_to_cpustate(ARMCPU *cpu);

/**
 * write_cpustate_to_list:
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the ARMCPUState structure into the cpreg_values list.
 * This is used to copy info from TCG's working data structures into
 * KVM or for outbound migration.
 *
 * Returns: true if all register values were read correctly,
 * false if some register was unknown or could not be read.
 * Note that we do not stop early on failure -- we will attempt
 * reading all registers in the list.
 */
bool write_cpustate_to_list(ARMCPU *cpu);

P
pbrook 已提交
1344 1345 1346 1347 1348 1349 1350 1351
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
   conventional cores (ie. Application or Realtime profile).  */

#define IS_M(env) arm_feature(env, ARM_FEATURE_M)

#define ARM_CPUID_TI915T      0x54029152
#define ARM_CPUID_TI925T      0x54029252
P
pbrook 已提交
1352

B
bellard 已提交
1353
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
1354
#define TARGET_PAGE_BITS 12
B
bellard 已提交
1355 1356 1357
#else
/* The ARM MMU allows 1k pages.  */
/* ??? Linux doesn't actually use these, and they're deprecated in recent
B
balrog 已提交
1358
   architecture revisions.  Maybe a configure option to disable them.  */
B
bellard 已提交
1359 1360
#define TARGET_PAGE_BITS 10
#endif
1361

1362 1363 1364 1365 1366 1367 1368
#if defined(TARGET_AARCH64)
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
#else
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif
1369

1370 1371 1372
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
{
    CPUARMState *env = cs->env_ptr;
1373
    unsigned int cur_el = arm_current_el(env);
1374
    unsigned int target_el = arm_excp_target_el(cs, excp_idx);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    bool secure = arm_is_secure(env);
    uint32_t scr;
    uint32_t hcr;
    bool pstate_unmasked;
    int8_t unmasked = 0;

    /* Don't take exceptions if they target a lower EL.
     * This check should catch any exceptions that would not be taken but left
     * pending.
     */
1385 1386 1387
    if (cur_el > target_el) {
        return false;
    }
1388 1389 1390

    switch (excp_idx) {
    case EXCP_FIQ:
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
        /* If FIQs are routed to EL3 or EL2 then there are cases where we
         * override the CPSR.F in determining if the exception is masked or
         * not.  If neither of these are set then we fall back to the CPSR.F
         * setting otherwise we further assess the state below.
         */
        hcr = (env->cp15.hcr_el2 & HCR_FMO);
        scr = (env->cp15.scr_el3 & SCR_FIQ);

        /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
         * masks FIQ interrupts when taken in non-secure state.  If SCR.FW is
         * set then FIQs can be masked by CPSR.F when non-secure but only
         * when FIQs are only routed to EL3.
         */
        scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
        pstate_unmasked = !(env->daif & PSTATE_F);
        break;

1408
    case EXCP_IRQ:
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
        /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
         * override the CPSR.I masking when in non-secure state.  The SCR.IRQ
         * setting has already been taken into consideration when setting the
         * target EL, so it does not have a further affect here.
         */
        hcr = (env->cp15.hcr_el2 & HCR_IMO);
        scr = false;
        pstate_unmasked = !(env->daif & PSTATE_I);
        break;

1419
    case EXCP_VFIQ:
1420
        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1421 1422 1423 1424 1425
            /* VFIQs are only taken when hypervized and non-secure.  */
            return false;
        }
        return !(env->daif & PSTATE_F);
    case EXCP_VIRQ:
1426
        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1427 1428 1429
            /* VIRQs are only taken when hypervized and non-secure.  */
            return false;
        }
1430
        return !(env->daif & PSTATE_I);
1431 1432 1433
    default:
        g_assert_not_reached();
    }
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

    /* Use the target EL, current execution state and SCR/HCR settings to
     * determine whether the corresponding CPSR bit is used to mask the
     * interrupt.
     */
    if ((target_el > cur_el) && (target_el != 1)) {
        if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
            unmasked = 1;
        }
    }

    /* The PSTATE bits only mask the interrupt if we have not overriden the
     * ability above.
     */
    return unmasked || pstate_unmasked;
1449 1450
}

1451 1452 1453 1454 1455 1456 1457 1458 1459
static inline CPUARMState *cpu_init(const char *cpu_model)
{
    ARMCPU *cpu = cpu_arm_init(cpu_model);
    if (cpu) {
        return &cpu->env;
    }
    return NULL;
}

1460 1461 1462
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_signal_handler cpu_arm_signal_handler
J
j_mayer 已提交
1463
#define cpu_list arm_cpu_list
1464

1465
/* MMU modes definitions */
1466 1467 1468
#define MMU_MODE0_SUFFIX _user
#define MMU_MODE1_SUFFIX _kernel
#define MMU_USER_IDX 0
1469
static inline int cpu_mmu_index (CPUARMState *env)
1470
{
1471
    return arm_current_el(env);
1472 1473
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/* Return the Exception Level targeted by debug exceptions;
 * currently always EL1 since we don't implement EL2 or EL3.
 */
static inline int arm_debug_target_el(CPUARMState *env)
{
    return 1;
}

static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
1484
    if (arm_current_el(env) == arm_debug_target_el(env)) {
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
            || (env->daif & PSTATE_D)) {
            return false;
        }
    }
    return true;
}

static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
1495
    if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1496 1497
        return aa64_generate_debug_exceptions(env);
    }
1498
    return arm_current_el(env) != 2;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
}

/* Return true if debugging exceptions are currently enabled.
 * This corresponds to what in ARM ARM pseudocode would be
 *    if UsingAArch32() then
 *        return AArch32.GenerateDebugExceptions()
 *    else
 *        return AArch64.GenerateDebugExceptions()
 * We choose to push the if() down into this function for clarity,
 * since the pseudocode has it at all callsites except for the one in
 * CheckSoftwareStep(), where it is elided because both branches would
 * always return the same value.
 *
 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
 * don't yet implement those exception levels or their associated trap bits.
 */
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
{
    if (env->aarch64) {
        return aa64_generate_debug_exceptions(env);
    } else {
        return aa32_generate_debug_exceptions(env);
    }
}

/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
 * implicitly means this always returns false in pre-v8 CPUs.)
 */
static inline bool arm_singlestep_active(CPUARMState *env)
{
    return extract32(env->cp15.mdscr_el1, 0, 1)
        && arm_el_is_aa64(env, arm_debug_target_el(env))
        && arm_generate_debug_exceptions(env);
}

1534
#include "exec/cpu-all.h"
1535

1536 1537 1538 1539 1540 1541 1542
/* Bit usage in the TB flags field: bit 31 indicates whether we are
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 */
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)

/* Bit usage when in AArch32 state: */
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
#define ARM_TBFLAG_THUMB_SHIFT      0
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN_SHIFT     1
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV_SHIFT       6
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN_SHIFT      7
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
P
Paul Brook 已提交
1555 1556
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1557 1558
#define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
#define ARM_TBFLAG_CPACR_FPEN_MASK  (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1559 1560 1561 1562
#define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS_SHIFT 19
#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1563 1564 1565 1566 1567
/* We store the bottom two bits of the CPAR as TB flags and handle
 * checks on the other bits at runtime
 */
#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1568 1569 1570 1571 1572 1573
/* Indicates whether cp register reads and writes by guest code should access
 * the secure or nonsecure bank of banked registers; note that this is not
 * the same thing as the current security state of the processor!
 */
#define ARM_TBFLAG_NS_SHIFT         22
#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
1574

1575 1576 1577
/* Bit usage when in AArch64 state */
#define ARM_TBFLAG_AA64_EL_SHIFT    0
#define ARM_TBFLAG_AA64_EL_MASK     (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1578 1579
#define ARM_TBFLAG_AA64_FPEN_SHIFT  2
#define ARM_TBFLAG_AA64_FPEN_MASK   (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1580 1581 1582 1583
#define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
#define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
#define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1584 1585

/* some convenience accessor macros */
1586 1587
#define ARM_TBFLAG_AARCH64_STATE(F) \
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
#define ARM_TBFLAG_THUMB(F) \
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN(F) \
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE(F) \
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV(F) \
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN(F) \
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC(F) \
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
P
Paul Brook 已提交
1600 1601
#define ARM_TBFLAG_BSWAP_CODE(F) \
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1602 1603
#define ARM_TBFLAG_CPACR_FPEN(F) \
    (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1604 1605 1606 1607
#define ARM_TBFLAG_SS_ACTIVE(F) \
    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS(F) \
    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1608 1609
#define ARM_TBFLAG_XSCALE_CPAR(F) \
    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1610 1611
#define ARM_TBFLAG_AA64_EL(F) \
    (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1612 1613
#define ARM_TBFLAG_AA64_FPEN(F) \
    (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1614 1615 1616 1617
#define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
    (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_AA64_PSTATE_SS(F) \
    (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1618 1619
#define ARM_TBFLAG_NS(F) \
    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1620

1621
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1622 1623
                                        target_ulong *cs_base, int *flags)
{
1624 1625 1626 1627 1628 1629 1630 1631
    int fpen;

    if (arm_feature(env, ARM_FEATURE_V6)) {
        fpen = extract32(env->cp15.c1_coproc, 20, 2);
    } else {
        /* CPACR doesn't exist before v6, so VFP is always accessible */
        fpen = 3;
    }
1632

1633 1634
    if (is_a64(env)) {
        *pc = env->pc;
1635
        *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1636 1637
            | (arm_current_el(env) << ARM_TBFLAG_AA64_EL_SHIFT);
        if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1638 1639
            *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
        }
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
        /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
         * states defined in the ARM ARM for software singlestep:
         *  SS_ACTIVE   PSTATE.SS   State
         *     0            x       Inactive (the TB flag for SS is always 0)
         *     1            0       Active-pending
         *     1            1       Active-not-pending
         */
        if (arm_singlestep_active(env)) {
            *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
            if (env->pstate & PSTATE_SS) {
                *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
            }
        }
1653
    } else {
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        int privmode;
        *pc = env->regs[15];
        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
        if (arm_feature(env, ARM_FEATURE_M)) {
            privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
        } else {
            privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
        }
        if (privmode) {
            *flags |= ARM_TBFLAG_PRIV_MASK;
        }
1669 1670 1671
        if (!(access_secure_reg(env))) {
            *flags |= ARM_TBFLAG_NS_MASK;
        }
1672 1673
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
            || arm_el_is_aa64(env, 1)) {
1674 1675
            *flags |= ARM_TBFLAG_VFPEN_MASK;
        }
1676
        if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1677 1678
            *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
        }
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
        /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
         * states defined in the ARM ARM for software singlestep:
         *  SS_ACTIVE   PSTATE.SS   State
         *     0            x       Inactive (the TB flag for SS is always 0)
         *     1            0       Active-pending
         *     1            1       Active-not-pending
         */
        if (arm_singlestep_active(env)) {
            *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
            if (env->uncached_cpsr & PSTATE_SS) {
                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
            }
        }
1692 1693
        *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1694
    }
1695 1696

    *cs_base = 0;
1697 1698
}

1699
#include "exec/exec-all.h"
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
{
    if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
        env->pc = tb->pc;
    } else {
        env->regs[15] = tb->pc;
    }
}

1710 1711 1712 1713 1714 1715
enum {
    QEMU_PSCI_CONDUIT_DISABLED = 0,
    QEMU_PSCI_CONDUIT_SMC = 1,
    QEMU_PSCI_CONDUIT_HVC = 2,
};

B
bellard 已提交
1716
#endif