cpu.h 42.8 KB
Newer Older
B
bellard 已提交
1 2
/*
 * ARM virtual CPU header
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18 19 20 21
 */
#ifndef CPU_ARM_H
#define CPU_ARM_H

22
#include "config.h"
B
bellard 已提交
23

24 25
#include "kvm-consts.h"

26 27 28 29 30 31 32 33
#if defined(TARGET_AARCH64)
  /* AArch64 definitions */
#  define TARGET_LONG_BITS 64
#  define ELF_MACHINE EM_AARCH64
#else
#  define TARGET_LONG_BITS 32
#  define ELF_MACHINE EM_ARM
#endif
34

35
#define CPUArchState struct CPUARMState
36

37
#include "qemu-common.h"
38
#include "exec/cpu-defs.h"
B
bellard 已提交
39

40
#include "fpu/softfloat.h"
B
bellard 已提交
41

B
bellard 已提交
42 43
#define TARGET_HAS_ICE 1

B
bellard 已提交
44 45 46 47
#define EXCP_UDEF            1   /* undefined instruction */
#define EXCP_SWI             2   /* software interrupt */
#define EXCP_PREFETCH_ABORT  3
#define EXCP_DATA_ABORT      4
B
bellard 已提交
48 49
#define EXCP_IRQ             5
#define EXCP_FIQ             6
P
pbrook 已提交
50
#define EXCP_BKPT            7
P
pbrook 已提交
51
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
P
Paul Brook 已提交
53
#define EXCP_STREX          10
P
pbrook 已提交
54 55 56 57 58 59 60 61 62 63 64

#define ARMV7M_EXCP_RESET   1
#define ARMV7M_EXCP_NMI     2
#define ARMV7M_EXCP_HARD    3
#define ARMV7M_EXCP_MEM     4
#define ARMV7M_EXCP_BUS     5
#define ARMV7M_EXCP_USAGE   6
#define ARMV7M_EXCP_SVC     11
#define ARMV7M_EXCP_DEBUG   12
#define ARMV7M_EXCP_PENDSV  14
#define ARMV7M_EXCP_SYSTICK 15
B
bellard 已提交
65

66 67 68
/* ARM-specific interrupt pending bits.  */
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1

69 70 71 72 73 74 75
/* The usual mapping for an AArch64 system register to its AArch32
 * counterpart is for the 32 bit world to have access to the lower
 * half only (with writes leaving the upper half untouched). It's
 * therefore useful to be able to pass TCG the offset of the least
 * significant half of a uint64_t struct member.
 */
#ifdef HOST_WORDS_BIGENDIAN
76
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77
#define offsetofhigh32(S, M) offsetof(S, M)
78 79
#else
#define offsetoflow32(S, M) offsetof(S, M)
80
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 82
#endif

83 84 85
/* Meanings of the ARMCPU object's two inbound GPIO lines */
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
86

87 88 89 90 91
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
                            int srcreg, int operand, uint32_t value);
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
                               int dstreg, int operand);

92 93
struct arm_boot_info;

94 95
#define NB_MMU_MODES 2

B
bellard 已提交
96 97 98 99
/* We currently assume float and double are IEEE single and double
   precision respectively.
   Doing runtime conversions is tricky because VFP registers may contain
   integer values (eg. as the result of a FTOSI instruction).
B
bellard 已提交
100 101 102
   s<2n> maps to the least significant half of d<n>
   s<2n+1> maps to the most significant half of d<n>
 */
B
bellard 已提交
103

104 105 106
/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
    uint64_t cval; /* Timer CompareValue register */
107
    uint64_t ctl; /* Timer Control register */
108 109 110 111 112 113 114 115 116 117 118
} ARMGenericTimer;

#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
#define NUM_GTIMERS 2

/* Scale factor for generic timers, ie number of ns per tick.
 * This gives a 62.5MHz timer.
 */
#define GTIMER_SCALE 16

B
bellard 已提交
119
typedef struct CPUARMState {
B
bellard 已提交
120
    /* Regs for current mode.  */
B
bellard 已提交
121
    uint32_t regs[16];
122 123 124 125 126 127 128 129

    /* 32/64 switch only happens when taking and returning from
     * exceptions so the overlap semantics are taken care of then
     * instead of having a complicated union.
     */
    /* Regs for A64 mode.  */
    uint64_t xregs[32];
    uint64_t pc;
130 131 132 133 134 135 136 137
    /* PSTATE isn't an architectural register for ARMv8. However, it is
     * convenient for us to assemble the underlying state into a 32 bit format
     * identical to the architectural format used for the SPSR. (This is also
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
     * 'pstate' register are.) Of the PSTATE bits:
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
     *    semantics as for AArch32, as described in the comments on each field)
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
138
     *  DAIF (exception masks) are kept in env->daif
139
     *  all other bits are stored in their correct places in env->pstate
140 141 142 143
     */
    uint32_t pstate;
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */

144
    /* Frequently accessed CPSR bits are stored separately for efficiency.
P
pbrook 已提交
145
       This contains all the other bits.  Use cpsr_{read,write} to access
B
bellard 已提交
146 147 148 149 150 151 152 153
       the whole CPSR.  */
    uint32_t uncached_cpsr;
    uint32_t spsr;

    /* Banked registers.  */
    uint32_t banked_spsr[6];
    uint32_t banked_r13[6];
    uint32_t banked_r14[6];
154

B
bellard 已提交
155 156 157
    /* These hold r8-r12.  */
    uint32_t usr_regs[5];
    uint32_t fiq_regs[5];
158

B
bellard 已提交
159 160 161
    /* cpsr flag cache for faster execution */
    uint32_t CF; /* 0 or 1 */
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
P
pbrook 已提交
162 163
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
    uint32_t ZF; /* Z set if zero.  */
B
bellard 已提交
164
    uint32_t QF; /* 0 or 1 */
P
pbrook 已提交
165
    uint32_t GE; /* cpsr[19:16] */
P
pbrook 已提交
166
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
P
pbrook 已提交
167
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
168
    uint32_t daif; /* exception masks, in the bits they are in in PSTATE */
B
bellard 已提交
169

B
bellard 已提交
170 171
    /* System control coprocessor (cp15) */
    struct {
P
pbrook 已提交
172
        uint32_t c0_cpuid;
173
        uint64_t c0_cssel; /* Cache size selection.  */
174
        uint64_t c1_sys; /* System control register.  */
175
        uint64_t c1_coproc; /* Coprocessor access register.  */
176
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
177
        uint32_t c1_scr; /* secure config register.  */
178 179
        uint64_t ttbr0_el1; /* MMU translation table base 0. */
        uint64_t ttbr1_el1; /* MMU translation table base 1. */
180
        uint64_t c2_control; /* MMU translation table base control.  */
181 182
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
P
pbrook 已提交
183 184 185 186
        uint32_t c2_data; /* MPU data cachable bits.  */
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
        uint32_t c3; /* MMU domain access control register
                        MPU write buffer control.  */
B
bellard 已提交
187 188
        uint32_t c5_insn; /* Fault status registers.  */
        uint32_t c5_data;
P
pbrook 已提交
189
        uint32_t c6_region[8]; /* MPU base/size registers.  */
B
bellard 已提交
190 191
        uint32_t c6_insn; /* Fault address registers.  */
        uint32_t c6_data;
192
        uint32_t c7_par;  /* Translation result. */
193
        uint32_t c7_par_hi;  /* Translation result, high 32 bits */
B
bellard 已提交
194 195
        uint32_t c9_insn; /* Cache lockdown registers.  */
        uint32_t c9_data;
196 197 198 199 200 201
        uint32_t c9_pmcr; /* performance monitor control register */
        uint32_t c9_pmcnten; /* perf monitor counter enables */
        uint32_t c9_pmovsr; /* perf monitor overflow status */
        uint32_t c9_pmxevtyper; /* perf monitor event type */
        uint32_t c9_pmuserenr; /* perf monitor user enable */
        uint32_t c9_pminten; /* perf monitor interrupt enables */
202
        uint64_t mair_el1;
203
        uint64_t c12_vbar; /* vector base address register */
B
bellard 已提交
204 205
        uint32_t c13_fcse; /* FCSE PID.  */
        uint32_t c13_context; /* Context ID.  */
206 207 208
        uint64_t tpidr_el0; /* User RW Thread register.  */
        uint64_t tpidrro_el0; /* User RO Thread register.  */
        uint64_t tpidr_el1; /* Privileged Thread register.  */
209 210
        uint64_t c14_cntfrq; /* Counter Frequency register */
        uint64_t c14_cntkctl; /* Timer Control register */
211
        ARMGenericTimer c14_timer[NUM_GTIMERS];
212
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
213 214 215 216
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
217 218 219 220
        uint32_t c15_config_base_address; /* SCU base address.  */
        uint32_t c15_diagnostic; /* diagnostic register */
        uint32_t c15_power_diagnostic;
        uint32_t c15_power_control; /* power control */
221 222 223 224
        uint64_t dbgbvr[16]; /* breakpoint value registers */
        uint64_t dbgbcr[16]; /* breakpoint control registers */
        uint64_t dbgwvr[16]; /* watchpoint value registers */
        uint64_t dbgwcr[16]; /* watchpoint control registers */
B
bellard 已提交
225
    } cp15;
P
pbrook 已提交
226

P
pbrook 已提交
227 228 229 230 231 232 233 234 235 236
    struct {
        uint32_t other_sp;
        uint32_t vecbase;
        uint32_t basepri;
        uint32_t control;
        int current_sp;
        int exception;
        int pending_exception;
    } v7m;

237 238 239 240
    /* Thumb-2 EE state.  */
    uint32_t teecr;
    uint32_t teehbr;

B
bellard 已提交
241 242
    /* VFP coprocessor state.  */
    struct {
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        /* VFP/Neon register state. Note that the mapping between S, D and Q
         * views of the register bank differs between AArch64 and AArch32:
         * In AArch32:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[n]
         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
         * (and regs[32] to regs[63] are inaccessible)
         * In AArch64:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[2n]
         *  Sn = regs[2n] bits 31..0
         * This corresponds to the architecturally defined mapping between
         * the two execution states, and means we do not need to explicitly
         * map these registers when changing states.
         */
        float64 regs[64];
B
bellard 已提交
259

P
pbrook 已提交
260
        uint32_t xregs[16];
B
bellard 已提交
261 262 263 264
        /* We store these fpcsr fields separately for convenience.  */
        int vec_len;
        int vec_stride;

P
pbrook 已提交
265 266
        /* scratch space when Tn are not sufficient.  */
        uint32_t scratch[8];
267

268 269 270 271 272 273 274 275 276 277 278 279
        /* fp_status is the "normal" fp status. standard_fp_status retains
         * values corresponding to the ARM "Standard FPSCR Value", ie
         * default-NaN, flush-to-zero, round-to-nearest and is used by
         * any operations (generally Neon) which the architecture defines
         * as controlled by the standard FPSCR value rather than the FPSCR.
         *
         * To avoid having to transfer exception bits around, we simply
         * say that the FPSCR cumulative exception flags are the logical
         * OR of the flags in the two fp statuses. This relies on the
         * only thing which needs to read the exception flags being
         * an explicit FPSCR read.
         */
B
bellard 已提交
280
        float_status fp_status;
281
        float_status standard_fp_status;
B
bellard 已提交
282
    } vfp;
283 284 285
    uint64_t exclusive_addr;
    uint64_t exclusive_val;
    uint64_t exclusive_high;
P
pbrook 已提交
286
#if defined(CONFIG_USER_ONLY)
287
    uint64_t exclusive_test;
P
Paul Brook 已提交
288
    uint32_t exclusive_info;
P
pbrook 已提交
289
#endif
B
bellard 已提交
290

291 292 293 294 295 296 297 298
    /* iwMMXt coprocessor state.  */
    struct {
        uint64_t regs[16];
        uint64_t val;

        uint32_t cregs[16];
    } iwmmxt;

P
Paul Brook 已提交
299 300 301
    /* For mixed endian mode.  */
    bool bswap_code;

P
pbrook 已提交
302 303 304 305 306
#if defined(CONFIG_USER_ONLY)
    /* For usermode syscall translation.  */
    int eabi;
#endif

307 308
    CPU_COMMON

309
    /* These fields after the common ones so they are preserved on reset.  */
L
Lars Munch 已提交
310

311
    /* Internal CPU feature flags.  */
312
    uint64_t features;
313

P
Paul Brook 已提交
314
    void *nvic;
315
    const struct arm_boot_info *boot_info;
B
bellard 已提交
316 317
} CPUARMState;

318 319 320
#include "cpu-qom.h"

ARMCPU *cpu_arm_init(const char *cpu_model);
P
pbrook 已提交
321
void arm_translate_init(void);
322
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
B
bellard 已提交
323
int cpu_arm_exec(CPUARMState *s);
324
int bank_number(int mode);
B
bellard 已提交
325
void switch_mode(CPUARMState *, int);
P
pbrook 已提交
326
uint32_t do_arm_semihosting(CPUARMState *env);
B
bellard 已提交
327

328 329 330 331 332
static inline bool is_a64(CPUARMState *env)
{
    return env->aarch64;
}

B
bellard 已提交
333 334 335
/* you can call this signal handler from your SIGBUS and SIGSEGV
   signal handlers to inform the virtual CPU of exceptions. non zero
   is returned if the signal was handled by the virtual CPU.  */
336
int cpu_arm_signal_handler(int host_signum, void *pinfo,
B
bellard 已提交
337
                           void *puc);
A
aurel32 已提交
338
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
339
                              int mmu_idx);
340
#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
B
bellard 已提交
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
/* SCTLR bit meanings. Several bits have been reused in newer
 * versions of the architecture; in that case we define constants
 * for both old and new bit meanings. Code which tests against those
 * bits should probably check or otherwise arrange that the CPU
 * is the architectural version it expects.
 */
#define SCTLR_M       (1U << 0)
#define SCTLR_A       (1U << 1)
#define SCTLR_C       (1U << 2)
#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
#define SCTLR_SA      (1U << 3)
#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
#define SCTLR_ITD     (1U << 7) /* v8 onward */
#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
#define SCTLR_SED     (1U << 8) /* v8 onward */
#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
#define SCTLR_F       (1U << 10) /* up to v6 */
#define SCTLR_SW      (1U << 10) /* v7 onward */
#define SCTLR_Z       (1U << 11)
#define SCTLR_I       (1U << 12)
#define SCTLR_V       (1U << 13)
#define SCTLR_RR      (1U << 14) /* up to v7 */
#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWI    (1U << 16) /* v8 onward */
#define SCTLR_HA      (1U << 17)
#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWE    (1U << 18) /* v8 onward */
#define SCTLR_WXN     (1U << 19)
#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
#define SCTLR_UWXN    (1U << 20) /* v7 onward */
#define SCTLR_FI      (1U << 21)
#define SCTLR_U       (1U << 22)
#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
#define SCTLR_VE      (1U << 24) /* up to v7 */
#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
#define SCTLR_EE      (1U << 25)
#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
#define SCTLR_NMFI    (1U << 27)
#define SCTLR_TRE     (1U << 28)
#define SCTLR_AFE     (1U << 29)
#define SCTLR_TE      (1U << 30)

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
#define CPSR_RESERVED (0xfU << 20)
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
P
pbrook 已提交
410
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
411
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
P
pbrook 已提交
412 413

#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
414 415
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
    | CPSR_NZCV)
P
pbrook 已提交
416 417 418 419
/* Bits writable in user mode.  */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
B
bellard 已提交
420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 * Only these are valid when in AArch64 mode; in
 * AArch32 mode SPSRs are basically CPSR-format.
 */
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
438 439
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0

/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 * interprocessing, so we don't attempt to sync with the cpsr state used by
 * the 32 bit decoder.
 */
static inline uint32_t pstate_read(CPUARMState *env)
{
    int ZF;

    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
460
        | env->pstate | env->daif;
461 462 463 464 465 466 467 468
}

static inline void pstate_write(CPUARMState *env, uint32_t val)
{
    env->ZF = (~val) & PSTATE_Z;
    env->NF = val;
    env->CF = (val >> 29) & 1;
    env->VF = (val << 3) & 0x80000000;
469
    env->daif = val & PSTATE_DAIF;
470 471 472
    env->pstate = val & ~CACHED_PSTATE_BITS;
}

B
bellard 已提交
473
/* Return the current CPSR value.  */
474 475 476
uint32_t cpsr_read(CPUARMState *env);
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
P
pbrook 已提交
477 478 479 480 481

/* Return the current xPSR value.  */
static inline uint32_t xpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
482 483
    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
P
pbrook 已提交
484 485 486 487
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | env->v7m.exception;
B
bellard 已提交
488 489
}

P
pbrook 已提交
490 491 492 493
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
494 495
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
P
pbrook 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & (1 << 24))
        env->thumb = ((val & (1 << 24)) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & 0x1ff) {
        env->v7m.exception = val & 0x1ff;
    }
}

516 517 518 519
/* Return the current FPSCR value.  */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/* For A64 the FPSCR is split into two logically distinct registers,
 * FPCR and FPSR. However since they still use non-overlapping bits
 * we store the underlying state in fpscr and just mask on read/write.
 */
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07f79f00
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPSR_MASK;
}

static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPCR_MASK;
}

static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

548 549 550 551 552 553 554 555 556
enum arm_fprounding {
    FPROUNDING_TIEEVEN,
    FPROUNDING_POSINF,
    FPROUNDING_NEGINF,
    FPROUNDING_ZERO,
    FPROUNDING_TIEAWAY,
    FPROUNDING_ODD
};

557 558
int arm_rmode_to_sf(int rmode);

B
bellard 已提交
559 560 561 562 563 564 565 566 567 568
enum arm_cpu_mode {
  ARM_CPU_MODE_USR = 0x10,
  ARM_CPU_MODE_FIQ = 0x11,
  ARM_CPU_MODE_IRQ = 0x12,
  ARM_CPU_MODE_SVC = 0x13,
  ARM_CPU_MODE_ABT = 0x17,
  ARM_CPU_MODE_UND = 0x1b,
  ARM_CPU_MODE_SYS = 0x1f
};

P
pbrook 已提交
569 570 571
/* VFP system registers.  */
#define ARM_VFP_FPSID   0
#define ARM_VFP_FPSCR   1
P
pbrook 已提交
572 573
#define ARM_VFP_MVFR1   6
#define ARM_VFP_MVFR0   7
P
pbrook 已提交
574 575 576 577
#define ARM_VFP_FPEXC   8
#define ARM_VFP_FPINST  9
#define ARM_VFP_FPINST2 10

578 579 580 581 582 583 584 585 586 587
/* iwMMXt coprocessor control registers.  */
#define ARM_IWMMXT_wCID		0
#define ARM_IWMMXT_wCon		1
#define ARM_IWMMXT_wCSSF	2
#define ARM_IWMMXT_wCASF	3
#define ARM_IWMMXT_wCGR0	8
#define ARM_IWMMXT_wCGR1	9
#define ARM_IWMMXT_wCGR2	10
#define ARM_IWMMXT_wCGR3	11

588 589 590 591
/* If adding a feature bit which corresponds to a Linux ELF
 * HWCAP bit, remember to update the feature-bit-to-hwcap
 * mapping in linux-user/elfload.c:get_elf_hwcap().
 */
P
pbrook 已提交
592 593
enum arm_features {
    ARM_FEATURE_VFP,
594 595
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
P
pbrook 已提交
596
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
P
pbrook 已提交
597 598 599 600
    ARM_FEATURE_V6,
    ARM_FEATURE_V6K,
    ARM_FEATURE_V7,
    ARM_FEATURE_THUMB2,
601
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
P
pbrook 已提交
602
    ARM_FEATURE_VFP3,
P
Paul Brook 已提交
603
    ARM_FEATURE_VFP_FP16,
P
pbrook 已提交
604
    ARM_FEATURE_NEON,
605
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
P
pbrook 已提交
606
    ARM_FEATURE_M, /* Microcontroller profile.  */
607
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
608
    ARM_FEATURE_THUMB2EE,
609 610 611
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
    ARM_FEATURE_V4T,
    ARM_FEATURE_V5,
612
    ARM_FEATURE_STRONGARM,
613
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
614
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
615
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
616
    ARM_FEATURE_GENERIC_TIMER,
617
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
618
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
619 620 621
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
P
Peter Maydell 已提交
622
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
623 624
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
625
    ARM_FEATURE_V8,
626
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
627
    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
628
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
P
pbrook 已提交
629 630 631 632
};

static inline int arm_feature(CPUARMState *env, int feature)
{
633
    return (env->features & (1ULL << feature)) != 0;
P
pbrook 已提交
634 635
}

636
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
P
pbrook 已提交
637

P
pbrook 已提交
638 639 640 641 642
/* Interface between CPU and Interrupt controller.  */
void armv7m_nvic_set_pending(void *opaque, int irq);
int armv7m_nvic_acknowledge_irq(void *opaque);
void armv7m_nvic_complete_irq(void *opaque, int irq);

643 644 645 646 647 648 649 650 651 652 653 654 655
/* Interface for defining coprocessor registers.
 * Registers are defined in tables of arm_cp_reginfo structs
 * which are passed to define_arm_cp_regs().
 */

/* When looking up a coprocessor register we look for it
 * via an integer which encodes all of:
 *  coprocessor number
 *  Crn, Crm, opc1, opc2 fields
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
 *    or via MRRC/MCRR?)
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 * (In this case crn and opc2 should be zero.)
656 657 658 659 660 661 662
 * For AArch64, there is no 32/64 bit size distinction;
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 * and 4 bit CRn and CRm. The encoding patterns are chosen
 * to be easy to convert to and from the KVM encodings, and also
 * so that the hashtable can contain both AArch32 and AArch64
 * registers (to allow for interprocessing where we might run
 * 32 bit code on a 64 bit core).
663
 */
664 665 666 667 668 669 670
/* This bit is private to our hashtable cpreg; in KVM register
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 * in the upper bits of the 64 bit ID.
 */
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)

671 672 673 674
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
     ((crm) << 7) | ((opc1) << 3) | (opc2))

675 676 677 678 679 680 681 682 683
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
    (CP_REG_AA64_MASK |                                 \
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))

684 685 686 687 688 689
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
 * version used as a key for the coprocessor register hashtable
 */
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
    uint32_t cpregid = kvmid;
690 691 692
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
        cpregid |= CP_REG_AA64_MASK;
    } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
693 694 695 696 697 698 699 700 701 702
        cpregid |= (1 << 15);
    }
    return cpregid;
}

/* Convert a truncated 32 bit hashtable key into the full
 * 64 bit KVM register ID.
 */
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
703 704 705 706 707
    uint64_t kvmid;

    if (cpregid & CP_REG_AA64_MASK) {
        kvmid = cpregid & ~CP_REG_AA64_MASK;
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
708
    } else {
709 710 711 712 713 714
        kvmid = cpregid & ~(1 << 15);
        if (cpregid & (1 << 15)) {
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
        } else {
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
        }
715 716 717 718
    }
    return kvmid;
}

719 720 721 722 723 724 725 726 727 728
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
 * TCG can assume the value to be constant (ie load at translate time)
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 * indicates that the TB should not be ended after a write to this register
 * (the default is that the TB ends after cp writes). OVERRIDE permits
 * a register definition to override a previous definition for the
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 * old must have the OVERRIDE bit set.
729 730
 * NO_MIGRATE indicates that this register should be ignored for migration;
 * (eg because any state is accessed via some other coprocessor register).
731 732 733
 * IO indicates that this register does I/O and therefore its accesses
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 * registers which implement clocks or timers require this.
734 735 736 737 738 739
 */
#define ARM_CP_SPECIAL 1
#define ARM_CP_CONST 2
#define ARM_CP_64BIT 4
#define ARM_CP_SUPPRESS_TB_END 8
#define ARM_CP_OVERRIDE 16
740
#define ARM_CP_NO_MIGRATE 32
741
#define ARM_CP_IO 64
742 743
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
744
#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
745 746
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
#define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
747 748 749
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL 0xffff
/* Mask of only the flag bits in a type field */
750
#define ARM_CP_FLAG_MASK 0x7f
751

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/* Valid values for ARMCPRegInfo state field, indicating which of
 * the AArch32 and AArch64 execution states this register is visible in.
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
 * If the reginfo is declared to be visible in both states then a second
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 * Note that we rely on the values of these enums as we iterate through
 * the various states in some places.
 */
enum {
    ARM_CP_STATE_AA32 = 0,
    ARM_CP_STATE_AA64 = 1,
    ARM_CP_STATE_BOTH = 2,
};

767 768 769 770 771 772 773 774
/* Return true if cptype is a valid type field. This is used to try to
 * catch errors where the sentinel has been accidentally left off the end
 * of a list of registers.
 */
static inline bool cptype_valid(int cptype)
{
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
        || ((cptype & ARM_CP_SPECIAL) &&
775
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
776 777 778 779 780 781 782 783 784 785 786 787
}

/* Access rights:
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 * (ie any of the privileged modes in Secure state, or Monitor mode).
 * If a register is accessible in one privilege level it's always accessible
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 * terminology a little and call this PL3.
788 789
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 * with the ELx exception levels.
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
 *
 * If access permissions for a register are more complex than can be
 * described with these bits, then use a laxer set of restrictions, and
 * do the more restrictive/complex check inside a helper function.
 */
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)

#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)

static inline int arm_current_pl(CPUARMState *env)
{
811 812 813 814
    if (env->aarch64) {
        return extract32(env->pstate, 2, 2);
    }

815 816 817 818 819 820 821 822 823 824 825
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
        return 0;
    }
    /* We don't currently implement the Virtualization or TrustZone
     * extensions, so PL2 and PL3 don't exist for us.
     */
    return 1;
}

typedef struct ARMCPRegInfo ARMCPRegInfo;

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
typedef enum CPAccessResult {
    /* Access is permitted */
    CP_ACCESS_OK = 0,
    /* Access fails due to a configurable trap or enable which would
     * result in a categorized exception syndrome giving information about
     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
     * 0xc or 0x18).
     */
    CP_ACCESS_TRAP = 1,
    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
     * Note that this is not a catch-all case -- the set of cases which may
     * result in this failure is specifically defined by the architecture.
     */
    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
} CPAccessResult;

842 843 844 845 846 847
/* Access functions for coprocessor registers. These cannot fail and
 * may not raise exceptions.
 */
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                       uint64_t value);
848 849
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);

#define CP_ANY 0xff

/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
    /* Name of register (useful mainly for debugging, need not be unique) */
    const char *name;
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
     * will be decoded to this register. The register read and write
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
     * used by the program, so it is possible to register a wildcard and
     * then behave differently on read/write if necessary.
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
     * must both be zero.
868 869 870 871 872 873 874
     * For AArch64-visible registers, opc0 is also used.
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
     * way to distinguish (for KVM's benefit) guest-visible system registers
     * from demuxed ones provided to preserve the "no side effects on
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
     * visible (to match KVM's encoding); cp==0 will be converted to
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
875 876 877 878
     */
    uint8_t cp;
    uint8_t crn;
    uint8_t crm;
879
    uint8_t opc0;
880 881
    uint8_t opc1;
    uint8_t opc2;
882 883
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
    int state;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    /* Register type: ARM_CP_* bits/values */
    int type;
    /* Access rights: PL*_[RW] */
    int access;
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
     * this register was defined: can be used to hand data through to the
     * register read/write functions, since they are passed the ARMCPRegInfo*.
     */
    void *opaque;
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
     * fieldoffset is non-zero, the reset value of the register.
     */
    uint64_t resetvalue;
    /* Offset of the field in CPUARMState for this register. This is not
     * needed if either:
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
     *  2. both readfn and writefn are specified
     */
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
903 904 905 906 907 908
    /* Function for making any access checks for this register in addition to
     * those specified by the 'access' permissions bits. If NULL, no extra
     * checks required. The access check is performed at runtime, not at
     * translate time.
     */
    CPAccessFn *accessfn;
909 910 911 912 913 914 915 916 917 918
    /* Function for handling reads of this register. If NULL, then reads
     * will be done by loading from the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPReadFn *readfn;
    /* Function for handling writes of this register. If NULL, then writes
     * will be done by writing to the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPWriteFn *writefn;
919 920 921
    /* Function for doing a "raw" read; used when we need to copy
     * coprocessor state to the kernel for KVM or out for
     * migration. This only needs to be provided if there is also a
922
     * readfn and it has side effects (for instance clear-on-read bits).
923 924 925 926 927
     */
    CPReadFn *raw_readfn;
    /* Function for doing a "raw" write; used when we need to copy KVM
     * kernel coprocessor state into userspace, or for inbound
     * migration. This only needs to be provided if there is also a
928 929
     * writefn and it masks out "unwritable" bits or has write-one-to-clear
     * or similar behaviour.
930 931
     */
    CPWriteFn *raw_writefn;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
    /* Function for resetting the register. If NULL, then reset will be done
     * by writing resetvalue to the field specified in fieldoffset. If
     * fieldoffset is 0 then no reset will be done.
     */
    CPResetFn *resetfn;
};

/* Macros which are lvalues for the field in CPUARMState for the
 * ARMCPRegInfo *ri.
 */
#define CPREG_FIELD32(env, ri) \
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))

#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
961
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
962 963

/* CPWriteFn that can be used to implement writes-ignored behaviour */
964 965
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value);
966
/* CPReadFn that can be used for read-as-zero behaviour */
967
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
968

969 970 971 972 973
/* CPResetFn that does nothing, for use if no reset is required even
 * if fieldoffset is non zero.
 */
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);

974 975 976 977 978 979 980 981
/* Return true if this reginfo struct's field in the cpu state struct
 * is 64 bits wide.
 */
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}

982
static inline bool cp_access_ok(int current_pl,
983 984
                                const ARMCPRegInfo *ri, int isread)
{
985
    return (ri->access >> ((current_pl * 2) + isread)) & 1;
986 987
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * write_list_to_cpustate
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the cpreg_values list into the ARMCPUState structure.
 * This updates TCG's working data structures from KVM data or
 * from incoming migration state.
 *
 * Returns: true if all register values were updated correctly,
 * false if some register was unknown or could not be written.
 * Note that we do not stop early on failure -- we will attempt
 * writing all registers in the list.
 */
bool write_list_to_cpustate(ARMCPU *cpu);

/**
 * write_cpustate_to_list:
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the ARMCPUState structure into the cpreg_values list.
 * This is used to copy info from TCG's working data structures into
 * KVM or for outbound migration.
 *
 * Returns: true if all register values were read correctly,
 * false if some register was unknown or could not be read.
 * Note that we do not stop early on failure -- we will attempt
 * reading all registers in the list.
 */
bool write_cpustate_to_list(ARMCPU *cpu);

P
pbrook 已提交
1020 1021 1022 1023 1024 1025 1026 1027
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
   conventional cores (ie. Application or Realtime profile).  */

#define IS_M(env) arm_feature(env, ARM_FEATURE_M)

#define ARM_CPUID_TI915T      0x54029152
#define ARM_CPUID_TI925T      0x54029252
P
pbrook 已提交
1028

B
bellard 已提交
1029
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
1030
#define TARGET_PAGE_BITS 12
B
bellard 已提交
1031 1032 1033
#else
/* The ARM MMU allows 1k pages.  */
/* ??? Linux doesn't actually use these, and they're deprecated in recent
B
balrog 已提交
1034
   architecture revisions.  Maybe a configure option to disable them.  */
B
bellard 已提交
1035 1036
#define TARGET_PAGE_BITS 10
#endif
1037

1038 1039 1040 1041 1042 1043 1044
#if defined(TARGET_AARCH64)
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
#else
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054
static inline CPUARMState *cpu_init(const char *cpu_model)
{
    ARMCPU *cpu = cpu_arm_init(cpu_model);
    if (cpu) {
        return &cpu->env;
    }
    return NULL;
}

1055 1056 1057
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_signal_handler cpu_arm_signal_handler
J
j_mayer 已提交
1058
#define cpu_list arm_cpu_list
1059

1060 1061 1062 1063
/* MMU modes definitions */
#define MMU_MODE0_SUFFIX _kernel
#define MMU_MODE1_SUFFIX _user
#define MMU_USER_IDX 1
1064
static inline int cpu_mmu_index (CPUARMState *env)
1065
{
1066
    return arm_current_pl(env) ? 0 : 1;
1067 1068
}

1069
#include "exec/cpu-all.h"
1070

1071 1072 1073 1074 1075 1076 1077
/* Bit usage in the TB flags field: bit 31 indicates whether we are
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 */
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)

/* Bit usage when in AArch32 state: */
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
#define ARM_TBFLAG_THUMB_SHIFT      0
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN_SHIFT     1
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV_SHIFT       6
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN_SHIFT      7
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
P
Paul Brook 已提交
1090 1091
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1092

1093 1094 1095
/* Bit usage when in AArch64 state */
#define ARM_TBFLAG_AA64_EL_SHIFT    0
#define ARM_TBFLAG_AA64_EL_MASK     (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1096 1097

/* some convenience accessor macros */
1098 1099
#define ARM_TBFLAG_AARCH64_STATE(F) \
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
#define ARM_TBFLAG_THUMB(F) \
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN(F) \
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE(F) \
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV(F) \
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN(F) \
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC(F) \
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
P
Paul Brook 已提交
1112 1113
#define ARM_TBFLAG_BSWAP_CODE(F) \
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1114 1115
#define ARM_TBFLAG_AA64_EL(F) \
    (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1116

1117
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1118 1119
                                        target_ulong *cs_base, int *flags)
{
1120 1121
    if (is_a64(env)) {
        *pc = env->pc;
1122 1123
        *flags = ARM_TBFLAG_AARCH64_STATE_MASK
            | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1124
    } else {
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        int privmode;
        *pc = env->regs[15];
        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
        if (arm_feature(env, ARM_FEATURE_M)) {
            privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
        } else {
            privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
        }
        if (privmode) {
            *flags |= ARM_TBFLAG_PRIV_MASK;
        }
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
            *flags |= ARM_TBFLAG_VFPEN_MASK;
        }
1143
    }
1144 1145

    *cs_base = 0;
1146 1147
}

1148
static inline bool cpu_has_work(CPUState *cpu)
1149
{
1150
    return cpu->interrupt_request &
1151 1152 1153
        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
}

1154
#include "exec/exec-all.h"
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
{
    if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
        env->pc = tb->pc;
    } else {
        env->regs[15] = tb->pc;
    }
}

P
Paul Brook 已提交
1165
/* Load an instruction and return it in the standard little-endian order */
1166
static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
1167
                                    bool do_swap)
P
Paul Brook 已提交
1168
{
1169
    uint32_t insn = cpu_ldl_code(env, addr);
P
Paul Brook 已提交
1170 1171 1172 1173 1174 1175 1176
    if (do_swap) {
        return bswap32(insn);
    }
    return insn;
}

/* Ditto, for a halfword (Thumb) instruction */
1177
static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
1178
                                     bool do_swap)
P
Paul Brook 已提交
1179
{
1180
    uint16_t insn = cpu_lduw_code(env, addr);
P
Paul Brook 已提交
1181 1182 1183 1184 1185 1186
    if (do_swap) {
        return bswap16(insn);
    }
    return insn;
}

B
bellard 已提交
1187
#endif