cpu.h 37.9 KB
Newer Older
B
bellard 已提交
1 2
/*
 * ARM virtual CPU header
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18 19 20 21
 */
#ifndef CPU_ARM_H
#define CPU_ARM_H

22
#include "config.h"
B
bellard 已提交
23

24 25
#include "kvm-consts.h"

26 27 28 29 30 31 32 33
#if defined(TARGET_AARCH64)
  /* AArch64 definitions */
#  define TARGET_LONG_BITS 64
#  define ELF_MACHINE EM_AARCH64
#else
#  define TARGET_LONG_BITS 32
#  define ELF_MACHINE EM_ARM
#endif
34

35
#define CPUArchState struct CPUARMState
36

37
#include "qemu-common.h"
38
#include "exec/cpu-defs.h"
B
bellard 已提交
39

40
#include "fpu/softfloat.h"
B
bellard 已提交
41

B
bellard 已提交
42 43
#define TARGET_HAS_ICE 1

B
bellard 已提交
44 45 46 47
#define EXCP_UDEF            1   /* undefined instruction */
#define EXCP_SWI             2   /* software interrupt */
#define EXCP_PREFETCH_ABORT  3
#define EXCP_DATA_ABORT      4
B
bellard 已提交
48 49
#define EXCP_IRQ             5
#define EXCP_FIQ             6
P
pbrook 已提交
50
#define EXCP_BKPT            7
P
pbrook 已提交
51
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
P
Paul Brook 已提交
53
#define EXCP_STREX          10
P
pbrook 已提交
54 55 56 57 58 59 60 61 62 63 64

#define ARMV7M_EXCP_RESET   1
#define ARMV7M_EXCP_NMI     2
#define ARMV7M_EXCP_HARD    3
#define ARMV7M_EXCP_MEM     4
#define ARMV7M_EXCP_BUS     5
#define ARMV7M_EXCP_USAGE   6
#define ARMV7M_EXCP_SVC     11
#define ARMV7M_EXCP_DEBUG   12
#define ARMV7M_EXCP_PENDSV  14
#define ARMV7M_EXCP_SYSTICK 15
B
bellard 已提交
65

66 67 68
/* ARM-specific interrupt pending bits.  */
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1

69 70 71
/* Meanings of the ARMCPU object's two inbound GPIO lines */
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
72

73 74 75 76 77
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
                            int srcreg, int operand, uint32_t value);
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
                               int dstreg, int operand);

78 79
struct arm_boot_info;

80 81
#define NB_MMU_MODES 2

B
bellard 已提交
82 83 84 85
/* We currently assume float and double are IEEE single and double
   precision respectively.
   Doing runtime conversions is tricky because VFP registers may contain
   integer values (eg. as the result of a FTOSI instruction).
B
bellard 已提交
86 87 88
   s<2n> maps to the least significant half of d<n>
   s<2n+1> maps to the most significant half of d<n>
 */
B
bellard 已提交
89

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
    uint64_t cval; /* Timer CompareValue register */
    uint32_t ctl; /* Timer Control register */
} ARMGenericTimer;

#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
#define NUM_GTIMERS 2

/* Scale factor for generic timers, ie number of ns per tick.
 * This gives a 62.5MHz timer.
 */
#define GTIMER_SCALE 16

B
bellard 已提交
105
typedef struct CPUARMState {
B
bellard 已提交
106
    /* Regs for current mode.  */
B
bellard 已提交
107
    uint32_t regs[16];
108 109 110 111 112 113 114 115

    /* 32/64 switch only happens when taking and returning from
     * exceptions so the overlap semantics are taken care of then
     * instead of having a complicated union.
     */
    /* Regs for A64 mode.  */
    uint64_t xregs[32];
    uint64_t pc;
116 117 118 119 120 121 122 123 124
    /* PSTATE isn't an architectural register for ARMv8. However, it is
     * convenient for us to assemble the underlying state into a 32 bit format
     * identical to the architectural format used for the SPSR. (This is also
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
     * 'pstate' register are.) Of the PSTATE bits:
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
     *    semantics as for AArch32, as described in the comments on each field)
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
     *  all other bits are stored in their correct places in env->pstate
125 126 127 128
     */
    uint32_t pstate;
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */

129
    /* Frequently accessed CPSR bits are stored separately for efficiency.
P
pbrook 已提交
130
       This contains all the other bits.  Use cpsr_{read,write} to access
B
bellard 已提交
131 132 133 134 135 136 137 138
       the whole CPSR.  */
    uint32_t uncached_cpsr;
    uint32_t spsr;

    /* Banked registers.  */
    uint32_t banked_spsr[6];
    uint32_t banked_r13[6];
    uint32_t banked_r14[6];
139

B
bellard 已提交
140 141 142
    /* These hold r8-r12.  */
    uint32_t usr_regs[5];
    uint32_t fiq_regs[5];
143

B
bellard 已提交
144 145 146
    /* cpsr flag cache for faster execution */
    uint32_t CF; /* 0 or 1 */
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
P
pbrook 已提交
147 148
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
    uint32_t ZF; /* Z set if zero.  */
B
bellard 已提交
149
    uint32_t QF; /* 0 or 1 */
P
pbrook 已提交
150
    uint32_t GE; /* cpsr[19:16] */
P
pbrook 已提交
151
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
P
pbrook 已提交
152
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
B
bellard 已提交
153

B
bellard 已提交
154 155
    /* System control coprocessor (cp15) */
    struct {
P
pbrook 已提交
156
        uint32_t c0_cpuid;
P
pbrook 已提交
157
        uint32_t c0_cssel; /* Cache size selection.  */
B
bellard 已提交
158 159
        uint32_t c1_sys; /* System control register.  */
        uint32_t c1_coproc; /* Coprocessor access register.  */
160
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
161
        uint32_t c1_scr; /* secure config register.  */
P
pbrook 已提交
162
        uint32_t c2_base0; /* MMU translation table base 0.  */
163 164 165
        uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
        uint32_t c2_base1; /* MMU translation table base 0.  */
        uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
166 167 168
        uint32_t c2_control; /* MMU translation table base control.  */
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
P
pbrook 已提交
169 170 171 172
        uint32_t c2_data; /* MPU data cachable bits.  */
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
        uint32_t c3; /* MMU domain access control register
                        MPU write buffer control.  */
B
bellard 已提交
173 174
        uint32_t c5_insn; /* Fault status registers.  */
        uint32_t c5_data;
P
pbrook 已提交
175
        uint32_t c6_region[8]; /* MPU base/size registers.  */
B
bellard 已提交
176 177
        uint32_t c6_insn; /* Fault address registers.  */
        uint32_t c6_data;
178
        uint32_t c7_par;  /* Translation result. */
179
        uint32_t c7_par_hi;  /* Translation result, high 32 bits */
B
bellard 已提交
180 181
        uint32_t c9_insn; /* Cache lockdown registers.  */
        uint32_t c9_data;
182 183 184 185 186 187
        uint32_t c9_pmcr; /* performance monitor control register */
        uint32_t c9_pmcnten; /* perf monitor counter enables */
        uint32_t c9_pmovsr; /* perf monitor overflow status */
        uint32_t c9_pmxevtyper; /* perf monitor event type */
        uint32_t c9_pmuserenr; /* perf monitor user enable */
        uint32_t c9_pminten; /* perf monitor interrupt enables */
N
Nathan Rossi 已提交
188
        uint32_t c12_vbar; /* vector base address register */
B
bellard 已提交
189 190
        uint32_t c13_fcse; /* FCSE PID.  */
        uint32_t c13_context; /* Context ID.  */
P
pbrook 已提交
191 192 193
        uint32_t c13_tls1; /* User RW Thread register.  */
        uint32_t c13_tls2; /* User RO Thread register.  */
        uint32_t c13_tls3; /* Privileged Thread register.  */
194 195 196
        uint32_t c14_cntfrq; /* Counter Frequency register */
        uint32_t c14_cntkctl; /* Timer Control register */
        ARMGenericTimer c14_timer[NUM_GTIMERS];
197
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
198 199 200 201
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
202 203 204 205
        uint32_t c15_config_base_address; /* SCU base address.  */
        uint32_t c15_diagnostic; /* diagnostic register */
        uint32_t c15_power_diagnostic;
        uint32_t c15_power_control; /* power control */
B
bellard 已提交
206
    } cp15;
P
pbrook 已提交
207

208 209 210 211 212
    /* System registers (AArch64) */
    struct {
        uint64_t tpidr_el0;
    } sr;

P
pbrook 已提交
213 214 215 216 217 218 219 220 221 222
    struct {
        uint32_t other_sp;
        uint32_t vecbase;
        uint32_t basepri;
        uint32_t control;
        int current_sp;
        int exception;
        int pending_exception;
    } v7m;

223 224 225 226
    /* Thumb-2 EE state.  */
    uint32_t teecr;
    uint32_t teehbr;

B
bellard 已提交
227 228
    /* VFP coprocessor state.  */
    struct {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        /* VFP/Neon register state. Note that the mapping between S, D and Q
         * views of the register bank differs between AArch64 and AArch32:
         * In AArch32:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[n]
         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
         * (and regs[32] to regs[63] are inaccessible)
         * In AArch64:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[2n]
         *  Sn = regs[2n] bits 31..0
         * This corresponds to the architecturally defined mapping between
         * the two execution states, and means we do not need to explicitly
         * map these registers when changing states.
         */
        float64 regs[64];
B
bellard 已提交
245

P
pbrook 已提交
246
        uint32_t xregs[16];
B
bellard 已提交
247 248 249 250
        /* We store these fpcsr fields separately for convenience.  */
        int vec_len;
        int vec_stride;

P
pbrook 已提交
251 252
        /* scratch space when Tn are not sufficient.  */
        uint32_t scratch[8];
253

254 255 256 257 258 259 260 261 262 263 264 265
        /* fp_status is the "normal" fp status. standard_fp_status retains
         * values corresponding to the ARM "Standard FPSCR Value", ie
         * default-NaN, flush-to-zero, round-to-nearest and is used by
         * any operations (generally Neon) which the architecture defines
         * as controlled by the standard FPSCR value rather than the FPSCR.
         *
         * To avoid having to transfer exception bits around, we simply
         * say that the FPSCR cumulative exception flags are the logical
         * OR of the flags in the two fp statuses. This relies on the
         * only thing which needs to read the exception flags being
         * an explicit FPSCR read.
         */
B
bellard 已提交
266
        float_status fp_status;
267
        float_status standard_fp_status;
B
bellard 已提交
268
    } vfp;
P
Paul Brook 已提交
269 270 271
    uint32_t exclusive_addr;
    uint32_t exclusive_val;
    uint32_t exclusive_high;
P
pbrook 已提交
272
#if defined(CONFIG_USER_ONLY)
P
Paul Brook 已提交
273 274
    uint32_t exclusive_test;
    uint32_t exclusive_info;
P
pbrook 已提交
275
#endif
B
bellard 已提交
276

277 278 279 280 281 282 283 284
    /* iwMMXt coprocessor state.  */
    struct {
        uint64_t regs[16];
        uint64_t val;

        uint32_t cregs[16];
    } iwmmxt;

P
Paul Brook 已提交
285 286 287
    /* For mixed endian mode.  */
    bool bswap_code;

P
pbrook 已提交
288 289 290 291 292
#if defined(CONFIG_USER_ONLY)
    /* For usermode syscall translation.  */
    int eabi;
#endif

293 294
    CPU_COMMON

295
    /* These fields after the common ones so they are preserved on reset.  */
L
Lars Munch 已提交
296

297
    /* Internal CPU feature flags.  */
298
    uint64_t features;
299

P
Paul Brook 已提交
300
    void *nvic;
301
    const struct arm_boot_info *boot_info;
B
bellard 已提交
302 303
} CPUARMState;

304 305 306
#include "cpu-qom.h"

ARMCPU *cpu_arm_init(const char *cpu_model);
P
pbrook 已提交
307
void arm_translate_init(void);
308
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
B
bellard 已提交
309
int cpu_arm_exec(CPUARMState *s);
310
int bank_number(int mode);
B
bellard 已提交
311
void switch_mode(CPUARMState *, int);
P
pbrook 已提交
312
uint32_t do_arm_semihosting(CPUARMState *env);
B
bellard 已提交
313

314 315 316 317 318
static inline bool is_a64(CPUARMState *env)
{
    return env->aarch64;
}

B
bellard 已提交
319 320 321
/* you can call this signal handler from your SIGBUS and SIGSEGV
   signal handlers to inform the virtual CPU of exceptions. non zero
   is returned if the signal was handled by the virtual CPU.  */
322
int cpu_arm_signal_handler(int host_signum, void *pinfo,
B
bellard 已提交
323
                           void *puc);
A
aurel32 已提交
324
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
325
                              int mmu_idx);
326
#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
B
bellard 已提交
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
#define CPSR_RESERVED (0xfU << 20)
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
P
pbrook 已提交
344 345 346 347 348 349 350 351
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)

#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
/* Bits writable in user mode.  */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
B
bellard 已提交
352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 * Only these are valid when in AArch64 mode; in
 * AArch32 mode SPSRs are basically CPSR-format.
 */
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
#define CACHED_PSTATE_BITS (PSTATE_NZCV)
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0

/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 * interprocessing, so we don't attempt to sync with the cpsr state used by
 * the 32 bit decoder.
 */
static inline uint32_t pstate_read(CPUARMState *env)
{
    int ZF;

    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
        | env->pstate;
}

static inline void pstate_write(CPUARMState *env, uint32_t val)
{
    env->ZF = (~val) & PSTATE_Z;
    env->NF = val;
    env->CF = (val >> 29) & 1;
    env->VF = (val << 3) & 0x80000000;
    env->pstate = val & ~CACHED_PSTATE_BITS;
}

B
bellard 已提交
403
/* Return the current CPSR value.  */
404 405 406
uint32_t cpsr_read(CPUARMState *env);
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
P
pbrook 已提交
407 408 409 410 411

/* Return the current xPSR value.  */
static inline uint32_t xpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
412 413
    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
P
pbrook 已提交
414 415 416 417
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | env->v7m.exception;
B
bellard 已提交
418 419
}

P
pbrook 已提交
420 421 422 423
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
424 425
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
P
pbrook 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & (1 << 24))
        env->thumb = ((val & (1 << 24)) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & 0x1ff) {
        env->v7m.exception = val & 0x1ff;
    }
}

446 447 448 449
/* Return the current FPSCR value.  */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/* For A64 the FPSCR is split into two logically distinct registers,
 * FPCR and FPSR. However since they still use non-overlapping bits
 * we store the underlying state in fpscr and just mask on read/write.
 */
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07f79f00
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPSR_MASK;
}

static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPCR_MASK;
}

static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

B
bellard 已提交
478 479 480 481 482 483 484 485 486 487
enum arm_cpu_mode {
  ARM_CPU_MODE_USR = 0x10,
  ARM_CPU_MODE_FIQ = 0x11,
  ARM_CPU_MODE_IRQ = 0x12,
  ARM_CPU_MODE_SVC = 0x13,
  ARM_CPU_MODE_ABT = 0x17,
  ARM_CPU_MODE_UND = 0x1b,
  ARM_CPU_MODE_SYS = 0x1f
};

P
pbrook 已提交
488 489 490
/* VFP system registers.  */
#define ARM_VFP_FPSID   0
#define ARM_VFP_FPSCR   1
P
pbrook 已提交
491 492
#define ARM_VFP_MVFR1   6
#define ARM_VFP_MVFR0   7
P
pbrook 已提交
493 494 495 496
#define ARM_VFP_FPEXC   8
#define ARM_VFP_FPINST  9
#define ARM_VFP_FPINST2 10

497 498 499 500 501 502 503 504 505 506
/* iwMMXt coprocessor control registers.  */
#define ARM_IWMMXT_wCID		0
#define ARM_IWMMXT_wCon		1
#define ARM_IWMMXT_wCSSF	2
#define ARM_IWMMXT_wCASF	3
#define ARM_IWMMXT_wCGR0	8
#define ARM_IWMMXT_wCGR1	9
#define ARM_IWMMXT_wCGR2	10
#define ARM_IWMMXT_wCGR3	11

507 508 509 510
/* If adding a feature bit which corresponds to a Linux ELF
 * HWCAP bit, remember to update the feature-bit-to-hwcap
 * mapping in linux-user/elfload.c:get_elf_hwcap().
 */
P
pbrook 已提交
511 512
enum arm_features {
    ARM_FEATURE_VFP,
513 514
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
P
pbrook 已提交
515
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
P
pbrook 已提交
516 517 518 519
    ARM_FEATURE_V6,
    ARM_FEATURE_V6K,
    ARM_FEATURE_V7,
    ARM_FEATURE_THUMB2,
520
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
P
pbrook 已提交
521
    ARM_FEATURE_VFP3,
P
Paul Brook 已提交
522
    ARM_FEATURE_VFP_FP16,
P
pbrook 已提交
523
    ARM_FEATURE_NEON,
524
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
P
pbrook 已提交
525
    ARM_FEATURE_M, /* Microcontroller profile.  */
526
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
527
    ARM_FEATURE_THUMB2EE,
528 529 530
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
    ARM_FEATURE_V4T,
    ARM_FEATURE_V5,
531
    ARM_FEATURE_STRONGARM,
532
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
533
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
534
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
535
    ARM_FEATURE_GENERIC_TIMER,
536
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
537
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
538 539 540
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
P
Peter Maydell 已提交
541
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
542 543
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
544
    ARM_FEATURE_V8,
545
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
546
    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
547
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
P
pbrook 已提交
548 549 550 551
};

static inline int arm_feature(CPUARMState *env, int feature)
{
552
    return (env->features & (1ULL << feature)) != 0;
P
pbrook 已提交
553 554
}

555
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
P
pbrook 已提交
556

P
pbrook 已提交
557 558 559 560 561
/* Interface between CPU and Interrupt controller.  */
void armv7m_nvic_set_pending(void *opaque, int irq);
int armv7m_nvic_acknowledge_irq(void *opaque);
void armv7m_nvic_complete_irq(void *opaque, int irq);

562 563 564 565 566 567 568 569 570 571 572 573 574
/* Interface for defining coprocessor registers.
 * Registers are defined in tables of arm_cp_reginfo structs
 * which are passed to define_arm_cp_regs().
 */

/* When looking up a coprocessor register we look for it
 * via an integer which encodes all of:
 *  coprocessor number
 *  Crn, Crm, opc1, opc2 fields
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
 *    or via MRRC/MCRR?)
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 * (In this case crn and opc2 should be zero.)
575 576 577 578 579 580 581
 * For AArch64, there is no 32/64 bit size distinction;
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 * and 4 bit CRn and CRm. The encoding patterns are chosen
 * to be easy to convert to and from the KVM encodings, and also
 * so that the hashtable can contain both AArch32 and AArch64
 * registers (to allow for interprocessing where we might run
 * 32 bit code on a 64 bit core).
582
 */
583 584 585 586 587 588 589
/* This bit is private to our hashtable cpreg; in KVM register
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 * in the upper bits of the 64 bit ID.
 */
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)

590 591 592 593
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
     ((crm) << 7) | ((opc1) << 3) | (opc2))

594 595 596 597 598 599 600 601 602
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
    (CP_REG_AA64_MASK |                                 \
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))

603 604 605 606 607 608
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
 * version used as a key for the coprocessor register hashtable
 */
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
    uint32_t cpregid = kvmid;
609 610 611
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
        cpregid |= CP_REG_AA64_MASK;
    } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
612 613 614 615 616 617 618 619 620 621
        cpregid |= (1 << 15);
    }
    return cpregid;
}

/* Convert a truncated 32 bit hashtable key into the full
 * 64 bit KVM register ID.
 */
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
622 623 624 625 626
    uint64_t kvmid;

    if (cpregid & CP_REG_AA64_MASK) {
        kvmid = cpregid & ~CP_REG_AA64_MASK;
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
627
    } else {
628 629 630 631 632 633
        kvmid = cpregid & ~(1 << 15);
        if (cpregid & (1 << 15)) {
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
        } else {
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
        }
634 635 636 637
    }
    return kvmid;
}

638 639 640 641 642 643 644 645 646 647
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
 * TCG can assume the value to be constant (ie load at translate time)
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 * indicates that the TB should not be ended after a write to this register
 * (the default is that the TB ends after cp writes). OVERRIDE permits
 * a register definition to override a previous definition for the
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 * old must have the OVERRIDE bit set.
648 649
 * NO_MIGRATE indicates that this register should be ignored for migration;
 * (eg because any state is accessed via some other coprocessor register).
650 651 652
 * IO indicates that this register does I/O and therefore its accesses
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 * registers which implement clocks or timers require this.
653 654 655 656 657 658
 */
#define ARM_CP_SPECIAL 1
#define ARM_CP_CONST 2
#define ARM_CP_64BIT 4
#define ARM_CP_SUPPRESS_TB_END 8
#define ARM_CP_OVERRIDE 16
659
#define ARM_CP_NO_MIGRATE 32
660
#define ARM_CP_IO 64
661 662 663 664 665 666
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
#define ARM_LAST_SPECIAL ARM_CP_WFI
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL 0xffff
/* Mask of only the flag bits in a type field */
667
#define ARM_CP_FLAG_MASK 0x7f
668

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/* Valid values for ARMCPRegInfo state field, indicating which of
 * the AArch32 and AArch64 execution states this register is visible in.
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
 * If the reginfo is declared to be visible in both states then a second
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 * Note that we rely on the values of these enums as we iterate through
 * the various states in some places.
 */
enum {
    ARM_CP_STATE_AA32 = 0,
    ARM_CP_STATE_AA64 = 1,
    ARM_CP_STATE_BOTH = 2,
};

684 685 686 687 688 689 690 691
/* Return true if cptype is a valid type field. This is used to try to
 * catch errors where the sentinel has been accidentally left off the end
 * of a list of registers.
 */
static inline bool cptype_valid(int cptype)
{
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
        || ((cptype & ARM_CP_SPECIAL) &&
692
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
693 694 695 696 697 698 699 700 701 702 703 704
}

/* Access rights:
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 * (ie any of the privileged modes in Secure state, or Monitor mode).
 * If a register is accessible in one privilege level it's always accessible
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 * terminology a little and call this PL3.
705 706
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 * with the ELx exception levels.
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
 *
 * If access permissions for a register are more complex than can be
 * described with these bits, then use a laxer set of restrictions, and
 * do the more restrictive/complex check inside a helper function.
 */
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)

#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)

static inline int arm_current_pl(CPUARMState *env)
{
728 729 730 731
    if (env->aarch64) {
        return extract32(env->pstate, 2, 2);
    }

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
        return 0;
    }
    /* We don't currently implement the Virtualization or TrustZone
     * extensions, so PL2 and PL3 don't exist for us.
     */
    return 1;
}

typedef struct ARMCPRegInfo ARMCPRegInfo;

/* Access functions for coprocessor registers. These should return
 * 0 on success, or one of the EXCP_* constants if access should cause
 * an exception (in which case *value is not written).
 */
typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                     uint64_t *value);
typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                      uint64_t value);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);

#define CP_ANY 0xff

/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
    /* Name of register (useful mainly for debugging, need not be unique) */
    const char *name;
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
     * will be decoded to this register. The register read and write
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
     * used by the program, so it is possible to register a wildcard and
     * then behave differently on read/write if necessary.
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
     * must both be zero.
769 770 771 772 773 774 775
     * For AArch64-visible registers, opc0 is also used.
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
     * way to distinguish (for KVM's benefit) guest-visible system registers
     * from demuxed ones provided to preserve the "no side effects on
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
     * visible (to match KVM's encoding); cp==0 will be converted to
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
776 777 778 779
     */
    uint8_t cp;
    uint8_t crn;
    uint8_t crm;
780
    uint8_t opc0;
781 782
    uint8_t opc1;
    uint8_t opc2;
783 784
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
    int state;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    /* Register type: ARM_CP_* bits/values */
    int type;
    /* Access rights: PL*_[RW] */
    int access;
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
     * this register was defined: can be used to hand data through to the
     * register read/write functions, since they are passed the ARMCPRegInfo*.
     */
    void *opaque;
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
     * fieldoffset is non-zero, the reset value of the register.
     */
    uint64_t resetvalue;
    /* Offset of the field in CPUARMState for this register. This is not
     * needed if either:
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
     *  2. both readfn and writefn are specified
     */
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
    /* Function for handling reads of this register. If NULL, then reads
     * will be done by loading from the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPReadFn *readfn;
    /* Function for handling writes of this register. If NULL, then writes
     * will be done by writing to the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPWriteFn *writefn;
814 815 816 817 818 819 820 821 822 823 824 825 826
    /* Function for doing a "raw" read; used when we need to copy
     * coprocessor state to the kernel for KVM or out for
     * migration. This only needs to be provided if there is also a
     * readfn and it makes an access permission check.
     */
    CPReadFn *raw_readfn;
    /* Function for doing a "raw" write; used when we need to copy KVM
     * kernel coprocessor state into userspace, or for inbound
     * migration. This only needs to be provided if there is also a
     * writefn and it makes an access permission check or masks out
     * "unwritable" bits or has write-one-to-clear or similar behaviour.
     */
    CPWriteFn *raw_writefn;
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    /* Function for resetting the register. If NULL, then reset will be done
     * by writing resetvalue to the field specified in fieldoffset. If
     * fieldoffset is 0 then no reset will be done.
     */
    CPResetFn *resetfn;
};

/* Macros which are lvalues for the field in CPUARMState for the
 * ARMCPRegInfo *ri.
 */
#define CPREG_FIELD32(env, ri) \
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))

#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);

/* CPWriteFn that can be used to implement writes-ignored behaviour */
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);

864 865 866 867 868
/* CPResetFn that does nothing, for use if no reset is required even
 * if fieldoffset is non zero.
 */
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);

869 870 871 872 873 874
static inline bool cp_access_ok(CPUARMState *env,
                                const ARMCPRegInfo *ri, int isread)
{
    return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/**
 * write_list_to_cpustate
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the cpreg_values list into the ARMCPUState structure.
 * This updates TCG's working data structures from KVM data or
 * from incoming migration state.
 *
 * Returns: true if all register values were updated correctly,
 * false if some register was unknown or could not be written.
 * Note that we do not stop early on failure -- we will attempt
 * writing all registers in the list.
 */
bool write_list_to_cpustate(ARMCPU *cpu);

/**
 * write_cpustate_to_list:
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the ARMCPUState structure into the cpreg_values list.
 * This is used to copy info from TCG's working data structures into
 * KVM or for outbound migration.
 *
 * Returns: true if all register values were read correctly,
 * false if some register was unknown or could not be read.
 * Note that we do not stop early on failure -- we will attempt
 * reading all registers in the list.
 */
bool write_cpustate_to_list(ARMCPU *cpu);

P
pbrook 已提交
907 908 909 910 911 912 913 914
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
   conventional cores (ie. Application or Realtime profile).  */

#define IS_M(env) arm_feature(env, ARM_FEATURE_M)

#define ARM_CPUID_TI915T      0x54029152
#define ARM_CPUID_TI925T      0x54029252
P
pbrook 已提交
915

B
bellard 已提交
916
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
917
#define TARGET_PAGE_BITS 12
B
bellard 已提交
918 919 920
#else
/* The ARM MMU allows 1k pages.  */
/* ??? Linux doesn't actually use these, and they're deprecated in recent
B
balrog 已提交
921
   architecture revisions.  Maybe a configure option to disable them.  */
B
bellard 已提交
922 923
#define TARGET_PAGE_BITS 10
#endif
924

925 926 927 928 929 930 931
#if defined(TARGET_AARCH64)
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
#else
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif
932

933 934 935 936 937 938 939 940 941
static inline CPUARMState *cpu_init(const char *cpu_model)
{
    ARMCPU *cpu = cpu_arm_init(cpu_model);
    if (cpu) {
        return &cpu->env;
    }
    return NULL;
}

942 943 944
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_signal_handler cpu_arm_signal_handler
J
j_mayer 已提交
945
#define cpu_list arm_cpu_list
946

947 948 949 950
/* MMU modes definitions */
#define MMU_MODE0_SUFFIX _kernel
#define MMU_MODE1_SUFFIX _user
#define MMU_USER_IDX 1
951
static inline int cpu_mmu_index (CPUARMState *env)
952 953 954 955
{
    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
}

956
#include "exec/cpu-all.h"
957

958 959 960 961 962 963 964
/* Bit usage in the TB flags field: bit 31 indicates whether we are
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 */
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)

/* Bit usage when in AArch32 state: */
965 966 967 968 969 970 971 972 973 974 975 976
#define ARM_TBFLAG_THUMB_SHIFT      0
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN_SHIFT     1
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV_SHIFT       6
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN_SHIFT      7
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
P
Paul Brook 已提交
977 978
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
979 980

/* Bit usage when in AArch64 state: currently no bits defined */
981 982

/* some convenience accessor macros */
983 984
#define ARM_TBFLAG_AARCH64_STATE(F) \
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
985 986 987 988 989 990 991 992 993 994 995 996
#define ARM_TBFLAG_THUMB(F) \
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN(F) \
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE(F) \
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV(F) \
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN(F) \
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC(F) \
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
P
Paul Brook 已提交
997 998
#define ARM_TBFLAG_BSWAP_CODE(F) \
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
999

1000
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1001 1002
                                        target_ulong *cs_base, int *flags)
{
1003 1004 1005
    if (is_a64(env)) {
        *pc = env->pc;
        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1006
    } else {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        int privmode;
        *pc = env->regs[15];
        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
        if (arm_feature(env, ARM_FEATURE_M)) {
            privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
        } else {
            privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
        }
        if (privmode) {
            *flags |= ARM_TBFLAG_PRIV_MASK;
        }
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
            *flags |= ARM_TBFLAG_VFPEN_MASK;
        }
1025
    }
1026 1027

    *cs_base = 0;
1028 1029
}

1030
static inline bool cpu_has_work(CPUState *cpu)
1031
{
1032
    return cpu->interrupt_request &
1033 1034 1035
        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
}

1036
#include "exec/exec-all.h"
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
{
    if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
        env->pc = tb->pc;
    } else {
        env->regs[15] = tb->pc;
    }
}

P
Paul Brook 已提交
1047
/* Load an instruction and return it in the standard little-endian order */
1048
static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
1049
                                    bool do_swap)
P
Paul Brook 已提交
1050
{
1051
    uint32_t insn = cpu_ldl_code(env, addr);
P
Paul Brook 已提交
1052 1053 1054 1055 1056 1057 1058
    if (do_swap) {
        return bswap32(insn);
    }
    return insn;
}

/* Ditto, for a halfword (Thumb) instruction */
1059
static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
1060
                                     bool do_swap)
P
Paul Brook 已提交
1061
{
1062
    uint16_t insn = cpu_lduw_code(env, addr);
P
Paul Brook 已提交
1063 1064 1065 1066 1067 1068
    if (do_swap) {
        return bswap16(insn);
    }
    return insn;
}

B
bellard 已提交
1069
#endif