cpu.h 50.2 KB
Newer Older
B
bellard 已提交
1 2
/*
 * ARM virtual CPU header
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18 19 20 21
 */
#ifndef CPU_ARM_H
#define CPU_ARM_H

22
#include "config.h"
B
bellard 已提交
23

24 25
#include "kvm-consts.h"

26 27 28 29 30 31 32 33
#if defined(TARGET_AARCH64)
  /* AArch64 definitions */
#  define TARGET_LONG_BITS 64
#  define ELF_MACHINE EM_AARCH64
#else
#  define TARGET_LONG_BITS 32
#  define ELF_MACHINE EM_ARM
#endif
34

35
#define CPUArchState struct CPUARMState
36

37
#include "qemu-common.h"
38
#include "exec/cpu-defs.h"
B
bellard 已提交
39

40
#include "fpu/softfloat.h"
B
bellard 已提交
41

B
bellard 已提交
42 43
#define TARGET_HAS_ICE 1

B
bellard 已提交
44 45 46 47
#define EXCP_UDEF            1   /* undefined instruction */
#define EXCP_SWI             2   /* software interrupt */
#define EXCP_PREFETCH_ABORT  3
#define EXCP_DATA_ABORT      4
B
bellard 已提交
48 49
#define EXCP_IRQ             5
#define EXCP_FIQ             6
P
pbrook 已提交
50
#define EXCP_BKPT            7
P
pbrook 已提交
51
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
P
Paul Brook 已提交
53
#define EXCP_STREX          10
P
pbrook 已提交
54 55 56 57 58 59 60 61 62 63 64

#define ARMV7M_EXCP_RESET   1
#define ARMV7M_EXCP_NMI     2
#define ARMV7M_EXCP_HARD    3
#define ARMV7M_EXCP_MEM     4
#define ARMV7M_EXCP_BUS     5
#define ARMV7M_EXCP_USAGE   6
#define ARMV7M_EXCP_SVC     11
#define ARMV7M_EXCP_DEBUG   12
#define ARMV7M_EXCP_PENDSV  14
#define ARMV7M_EXCP_SYSTICK 15
B
bellard 已提交
65

66 67 68
/* ARM-specific interrupt pending bits.  */
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1

69 70 71 72 73 74 75
/* The usual mapping for an AArch64 system register to its AArch32
 * counterpart is for the 32 bit world to have access to the lower
 * half only (with writes leaving the upper half untouched). It's
 * therefore useful to be able to pass TCG the offset of the least
 * significant half of a uint64_t struct member.
 */
#ifdef HOST_WORDS_BIGENDIAN
76
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77
#define offsetofhigh32(S, M) offsetof(S, M)
78 79
#else
#define offsetoflow32(S, M) offsetof(S, M)
80
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
81 82
#endif

83 84 85
/* Meanings of the ARMCPU object's two inbound GPIO lines */
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
86

87 88 89 90 91
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
                            int srcreg, int operand, uint32_t value);
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
                               int dstreg, int operand);

92 93
struct arm_boot_info;

94 95
#define NB_MMU_MODES 2

B
bellard 已提交
96 97 98 99
/* We currently assume float and double are IEEE single and double
   precision respectively.
   Doing runtime conversions is tricky because VFP registers may contain
   integer values (eg. as the result of a FTOSI instruction).
B
bellard 已提交
100 101 102
   s<2n> maps to the least significant half of d<n>
   s<2n+1> maps to the most significant half of d<n>
 */
B
bellard 已提交
103

104 105 106
/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
    uint64_t cval; /* Timer CompareValue register */
107
    uint64_t ctl; /* Timer Control register */
108 109 110 111 112 113
} ARMGenericTimer;

#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
#define NUM_GTIMERS 2

B
bellard 已提交
114
typedef struct CPUARMState {
B
bellard 已提交
115
    /* Regs for current mode.  */
B
bellard 已提交
116
    uint32_t regs[16];
117 118 119 120 121 122 123 124

    /* 32/64 switch only happens when taking and returning from
     * exceptions so the overlap semantics are taken care of then
     * instead of having a complicated union.
     */
    /* Regs for A64 mode.  */
    uint64_t xregs[32];
    uint64_t pc;
125 126 127 128 129 130 131 132
    /* PSTATE isn't an architectural register for ARMv8. However, it is
     * convenient for us to assemble the underlying state into a 32 bit format
     * identical to the architectural format used for the SPSR. (This is also
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
     * 'pstate' register are.) Of the PSTATE bits:
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
     *    semantics as for AArch32, as described in the comments on each field)
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
133
     *  DAIF (exception masks) are kept in env->daif
134
     *  all other bits are stored in their correct places in env->pstate
135 136 137 138
     */
    uint32_t pstate;
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */

139
    /* Frequently accessed CPSR bits are stored separately for efficiency.
P
pbrook 已提交
140
       This contains all the other bits.  Use cpsr_{read,write} to access
B
bellard 已提交
141 142 143 144 145
       the whole CPSR.  */
    uint32_t uncached_cpsr;
    uint32_t spsr;

    /* Banked registers.  */
146
    uint64_t banked_spsr[8];
B
bellard 已提交
147 148
    uint32_t banked_r13[6];
    uint32_t banked_r14[6];
149

B
bellard 已提交
150 151 152
    /* These hold r8-r12.  */
    uint32_t usr_regs[5];
    uint32_t fiq_regs[5];
153

B
bellard 已提交
154 155 156
    /* cpsr flag cache for faster execution */
    uint32_t CF; /* 0 or 1 */
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
P
pbrook 已提交
157 158
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
    uint32_t ZF; /* Z set if zero.  */
B
bellard 已提交
159
    uint32_t QF; /* 0 or 1 */
P
pbrook 已提交
160
    uint32_t GE; /* cpsr[19:16] */
P
pbrook 已提交
161
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
P
pbrook 已提交
162
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
163
    uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
B
bellard 已提交
164

165
    uint64_t elr_el[4]; /* AArch64 exception link regs  */
166
    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
167

B
bellard 已提交
168 169
    /* System control coprocessor (cp15) */
    struct {
P
pbrook 已提交
170
        uint32_t c0_cpuid;
171
        uint64_t c0_cssel; /* Cache size selection.  */
172
        uint64_t c1_sys; /* System control register.  */
173
        uint64_t c1_coproc; /* Coprocessor access register.  */
174
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
175
        uint32_t c1_scr; /* secure config register.  */
176 177
        uint64_t ttbr0_el1; /* MMU translation table base 0. */
        uint64_t ttbr1_el1; /* MMU translation table base 1. */
178
        uint64_t c2_control; /* MMU translation table base control.  */
179 180
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
P
pbrook 已提交
181 182 183 184
        uint32_t c2_data; /* MPU data cachable bits.  */
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
        uint32_t c3; /* MMU domain access control register
                        MPU write buffer control.  */
185 186
        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
187
        uint32_t ifsr_el2; /* Fault status registers.  */
188
        uint64_t esr_el[4];
P
pbrook 已提交
189
        uint32_t c6_region[8]; /* MPU base/size registers.  */
190
        uint64_t far_el[4]; /* Fault address registers.  */
191
        uint64_t par_el1;  /* Translation result. */
B
bellard 已提交
192 193
        uint32_t c9_insn; /* Cache lockdown registers.  */
        uint32_t c9_data;
194 195
        uint64_t c9_pmcr; /* performance monitor control register */
        uint64_t c9_pmcnten; /* perf monitor counter enables */
196 197 198 199
        uint32_t c9_pmovsr; /* perf monitor overflow status */
        uint32_t c9_pmxevtyper; /* perf monitor event type */
        uint32_t c9_pmuserenr; /* perf monitor user enable */
        uint32_t c9_pminten; /* perf monitor interrupt enables */
200
        uint64_t mair_el1;
201
        uint64_t vbar_el[4]; /* vector base address register */
B
bellard 已提交
202
        uint32_t c13_fcse; /* FCSE PID.  */
203
        uint64_t contextidr_el1; /* Context ID.  */
204 205 206
        uint64_t tpidr_el0; /* User RW Thread register.  */
        uint64_t tpidrro_el0; /* User RO Thread register.  */
        uint64_t tpidr_el1; /* Privileged Thread register.  */
207 208
        uint64_t c14_cntfrq; /* Counter Frequency register */
        uint64_t c14_cntkctl; /* Timer Control register */
209
        ARMGenericTimer c14_timer[NUM_GTIMERS];
210
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
211 212 213 214
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
215 216 217 218
        uint32_t c15_config_base_address; /* SCU base address.  */
        uint32_t c15_diagnostic; /* diagnostic register */
        uint32_t c15_power_diagnostic;
        uint32_t c15_power_control; /* power control */
219 220 221 222
        uint64_t dbgbvr[16]; /* breakpoint value registers */
        uint64_t dbgbcr[16]; /* breakpoint control registers */
        uint64_t dbgwvr[16]; /* watchpoint value registers */
        uint64_t dbgwcr[16]; /* watchpoint control registers */
223
        uint64_t mdscr_el1;
224 225 226
        /* If the counter is enabled, this stores the last time the counter
         * was reset. Otherwise it stores the counter value
         */
227
        uint64_t c15_ccnt;
228
        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
B
bellard 已提交
229
    } cp15;
P
pbrook 已提交
230

P
pbrook 已提交
231 232 233 234 235 236 237 238 239 240
    struct {
        uint32_t other_sp;
        uint32_t vecbase;
        uint32_t basepri;
        uint32_t control;
        int current_sp;
        int exception;
        int pending_exception;
    } v7m;

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    /* Information associated with an exception about to be taken:
     * code which raises an exception must set cs->exception_index and
     * the relevant parts of this structure; the cpu_do_interrupt function
     * will then set the guest-visible registers as part of the exception
     * entry process.
     */
    struct {
        uint32_t syndrome; /* AArch64 format syndrome register */
        uint32_t fsr; /* AArch32 format fault status register info */
        uint64_t vaddress; /* virtual addr associated with exception, if any */
        /* If we implement EL2 we will also need to store information
         * about the intermediate physical address for stage 2 faults.
         */
    } exception;

256 257 258 259
    /* Thumb-2 EE state.  */
    uint32_t teecr;
    uint32_t teehbr;

B
bellard 已提交
260 261
    /* VFP coprocessor state.  */
    struct {
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        /* VFP/Neon register state. Note that the mapping between S, D and Q
         * views of the register bank differs between AArch64 and AArch32:
         * In AArch32:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[n]
         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
         * (and regs[32] to regs[63] are inaccessible)
         * In AArch64:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[2n]
         *  Sn = regs[2n] bits 31..0
         * This corresponds to the architecturally defined mapping between
         * the two execution states, and means we do not need to explicitly
         * map these registers when changing states.
         */
        float64 regs[64];
B
bellard 已提交
278

P
pbrook 已提交
279
        uint32_t xregs[16];
B
bellard 已提交
280 281 282 283
        /* We store these fpcsr fields separately for convenience.  */
        int vec_len;
        int vec_stride;

P
pbrook 已提交
284 285
        /* scratch space when Tn are not sufficient.  */
        uint32_t scratch[8];
286

287 288 289 290 291 292 293 294 295 296 297 298
        /* fp_status is the "normal" fp status. standard_fp_status retains
         * values corresponding to the ARM "Standard FPSCR Value", ie
         * default-NaN, flush-to-zero, round-to-nearest and is used by
         * any operations (generally Neon) which the architecture defines
         * as controlled by the standard FPSCR value rather than the FPSCR.
         *
         * To avoid having to transfer exception bits around, we simply
         * say that the FPSCR cumulative exception flags are the logical
         * OR of the flags in the two fp statuses. This relies on the
         * only thing which needs to read the exception flags being
         * an explicit FPSCR read.
         */
B
bellard 已提交
299
        float_status fp_status;
300
        float_status standard_fp_status;
B
bellard 已提交
301
    } vfp;
302 303 304
    uint64_t exclusive_addr;
    uint64_t exclusive_val;
    uint64_t exclusive_high;
P
pbrook 已提交
305
#if defined(CONFIG_USER_ONLY)
306
    uint64_t exclusive_test;
P
Paul Brook 已提交
307
    uint32_t exclusive_info;
P
pbrook 已提交
308
#endif
B
bellard 已提交
309

310 311 312 313 314 315 316 317
    /* iwMMXt coprocessor state.  */
    struct {
        uint64_t regs[16];
        uint64_t val;

        uint32_t cregs[16];
    } iwmmxt;

P
Paul Brook 已提交
318 319 320
    /* For mixed endian mode.  */
    bool bswap_code;

P
pbrook 已提交
321 322 323 324 325
#if defined(CONFIG_USER_ONLY)
    /* For usermode syscall translation.  */
    int eabi;
#endif

326 327
    struct CPUWatchpoint *cpu_watchpoint[16];

328 329
    CPU_COMMON

330
    /* These fields after the common ones so they are preserved on reset.  */
L
Lars Munch 已提交
331

332
    /* Internal CPU feature flags.  */
333
    uint64_t features;
334

P
Paul Brook 已提交
335
    void *nvic;
336
    const struct arm_boot_info *boot_info;
B
bellard 已提交
337 338
} CPUARMState;

339 340 341
#include "cpu-qom.h"

ARMCPU *cpu_arm_init(const char *cpu_model);
B
bellard 已提交
342
int cpu_arm_exec(CPUARMState *s);
P
pbrook 已提交
343
uint32_t do_arm_semihosting(CPUARMState *env);
B
bellard 已提交
344

345 346 347 348 349
static inline bool is_a64(CPUARMState *env)
{
    return env->aarch64;
}

B
bellard 已提交
350 351 352
/* you can call this signal handler from your SIGBUS and SIGSEGV
   signal handlers to inform the virtual CPU of exceptions. non zero
   is returned if the signal was handled by the virtual CPU.  */
353
int cpu_arm_signal_handler(int host_signum, void *pinfo,
B
bellard 已提交
354
                           void *puc);
355 356
int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
                             int mmu_idx);
B
bellard 已提交
357

358 359 360 361 362 363 364 365 366 367 368
/**
 * pmccntr_sync
 * @env: CPUARMState
 *
 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 * once before any action that might affect the timer and again afterwards.
 * The function is used to swap the state of the register if required.
 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 */
void pmccntr_sync(CPUARMState *env);

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/* SCTLR bit meanings. Several bits have been reused in newer
 * versions of the architecture; in that case we define constants
 * for both old and new bit meanings. Code which tests against those
 * bits should probably check or otherwise arrange that the CPU
 * is the architectural version it expects.
 */
#define SCTLR_M       (1U << 0)
#define SCTLR_A       (1U << 1)
#define SCTLR_C       (1U << 2)
#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
#define SCTLR_SA      (1U << 3)
#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
#define SCTLR_ITD     (1U << 7) /* v8 onward */
#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
#define SCTLR_SED     (1U << 8) /* v8 onward */
#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
#define SCTLR_F       (1U << 10) /* up to v6 */
#define SCTLR_SW      (1U << 10) /* v7 onward */
#define SCTLR_Z       (1U << 11)
#define SCTLR_I       (1U << 12)
#define SCTLR_V       (1U << 13)
#define SCTLR_RR      (1U << 14) /* up to v7 */
#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWI    (1U << 16) /* v8 onward */
#define SCTLR_HA      (1U << 17)
#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWE    (1U << 18) /* v8 onward */
#define SCTLR_WXN     (1U << 19)
#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
#define SCTLR_UWXN    (1U << 20) /* v7 onward */
#define SCTLR_FI      (1U << 21)
#define SCTLR_U       (1U << 22)
#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
#define SCTLR_VE      (1U << 24) /* up to v7 */
#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
#define SCTLR_EE      (1U << 25)
#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
#define SCTLR_NMFI    (1U << 27)
#define SCTLR_TRE     (1U << 28)
#define SCTLR_AFE     (1U << 29)
#define SCTLR_TE      (1U << 30)

421 422 423 424 425 426 427 428
#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
429 430 431 432 433 434 435
#define CPSR_IL (1U << 20)
/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 * where it is live state but not accessible to the AArch32 code.
 */
#define CPSR_RESERVED (0x7U << 21)
436 437 438 439 440 441 442
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
P
pbrook 已提交
443
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
444
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
P
pbrook 已提交
445 446

#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
447 448
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
    | CPSR_NZCV)
P
pbrook 已提交
449 450 451
/* Bits writable in user mode.  */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
452 453 454
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
/* Mask of bits which may be set by exception return copying them from SPSR */
#define CPSR_ERET_MASK (~CPSR_RESERVED)
B
bellard 已提交
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
#define TTBCR_PD0    (1U << 4)
#define TTBCR_PD1    (1U << 5)
#define TTBCR_EPD0   (1U << 7)
#define TTBCR_IRGN0  (3U << 8)
#define TTBCR_ORGN0  (3U << 10)
#define TTBCR_SH0    (3U << 12)
#define TTBCR_T1SZ   (3U << 16)
#define TTBCR_A1     (1U << 22)
#define TTBCR_EPD1   (1U << 23)
#define TTBCR_IRGN1  (3U << 24)
#define TTBCR_ORGN1  (3U << 26)
#define TTBCR_SH1    (1U << 28)
#define TTBCR_EAE    (1U << 31)

472 473 474 475
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 * Only these are valid when in AArch64 mode; in
 * AArch32 mode SPSRs are basically CPSR-format.
 */
476
#define PSTATE_SP (1U)
477 478 479 480 481 482 483 484 485 486 487 488 489
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
490 491
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0

/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 * interprocessing, so we don't attempt to sync with the cpsr state used by
 * the 32 bit decoder.
 */
static inline uint32_t pstate_read(CPUARMState *env)
{
    int ZF;

    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
512
        | env->pstate | env->daif;
513 514 515 516 517 518 519 520
}

static inline void pstate_write(CPUARMState *env, uint32_t val)
{
    env->ZF = (~val) & PSTATE_Z;
    env->NF = val;
    env->CF = (val >> 29) & 1;
    env->VF = (val << 3) & 0x80000000;
521
    env->daif = val & PSTATE_DAIF;
522 523 524
    env->pstate = val & ~CACHED_PSTATE_BITS;
}

B
bellard 已提交
525
/* Return the current CPSR value.  */
526 527 528
uint32_t cpsr_read(CPUARMState *env);
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
P
pbrook 已提交
529 530 531 532 533

/* Return the current xPSR value.  */
static inline uint32_t xpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
534 535
    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
P
pbrook 已提交
536 537 538 539
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | env->v7m.exception;
B
bellard 已提交
540 541
}

P
pbrook 已提交
542 543 544 545
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
546 547
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
P
pbrook 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & (1 << 24))
        env->thumb = ((val & (1 << 24)) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & 0x1ff) {
        env->v7m.exception = val & 0x1ff;
    }
}

568 569 570 571
/* Return the current FPSCR value.  */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/* For A64 the FPSCR is split into two logically distinct registers,
 * FPCR and FPSR. However since they still use non-overlapping bits
 * we store the underlying state in fpscr and just mask on read/write.
 */
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07f79f00
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPSR_MASK;
}

static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPCR_MASK;
}

static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

B
bellard 已提交
600 601 602 603 604
enum arm_cpu_mode {
  ARM_CPU_MODE_USR = 0x10,
  ARM_CPU_MODE_FIQ = 0x11,
  ARM_CPU_MODE_IRQ = 0x12,
  ARM_CPU_MODE_SVC = 0x13,
605
  ARM_CPU_MODE_MON = 0x16,
B
bellard 已提交
606
  ARM_CPU_MODE_ABT = 0x17,
607
  ARM_CPU_MODE_HYP = 0x1a,
B
bellard 已提交
608 609 610 611
  ARM_CPU_MODE_UND = 0x1b,
  ARM_CPU_MODE_SYS = 0x1f
};

P
pbrook 已提交
612 613 614
/* VFP system registers.  */
#define ARM_VFP_FPSID   0
#define ARM_VFP_FPSCR   1
615
#define ARM_VFP_MVFR2   5
P
pbrook 已提交
616 617
#define ARM_VFP_MVFR1   6
#define ARM_VFP_MVFR0   7
P
pbrook 已提交
618 619 620 621
#define ARM_VFP_FPEXC   8
#define ARM_VFP_FPINST  9
#define ARM_VFP_FPINST2 10

622 623 624 625 626 627 628 629 630 631
/* iwMMXt coprocessor control registers.  */
#define ARM_IWMMXT_wCID		0
#define ARM_IWMMXT_wCon		1
#define ARM_IWMMXT_wCSSF	2
#define ARM_IWMMXT_wCASF	3
#define ARM_IWMMXT_wCGR0	8
#define ARM_IWMMXT_wCGR1	9
#define ARM_IWMMXT_wCGR2	10
#define ARM_IWMMXT_wCGR3	11

632 633 634 635
/* If adding a feature bit which corresponds to a Linux ELF
 * HWCAP bit, remember to update the feature-bit-to-hwcap
 * mapping in linux-user/elfload.c:get_elf_hwcap().
 */
P
pbrook 已提交
636 637
enum arm_features {
    ARM_FEATURE_VFP,
638 639
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
P
pbrook 已提交
640
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
P
pbrook 已提交
641 642 643 644
    ARM_FEATURE_V6,
    ARM_FEATURE_V6K,
    ARM_FEATURE_V7,
    ARM_FEATURE_THUMB2,
645
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
P
pbrook 已提交
646
    ARM_FEATURE_VFP3,
P
Paul Brook 已提交
647
    ARM_FEATURE_VFP_FP16,
P
pbrook 已提交
648
    ARM_FEATURE_NEON,
649
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
P
pbrook 已提交
650
    ARM_FEATURE_M, /* Microcontroller profile.  */
651
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
652
    ARM_FEATURE_THUMB2EE,
653 654 655
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
    ARM_FEATURE_V4T,
    ARM_FEATURE_V5,
656
    ARM_FEATURE_STRONGARM,
657
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
658
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
659
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
660
    ARM_FEATURE_GENERIC_TIMER,
661
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
662
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
663 664 665
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
P
Peter Maydell 已提交
666
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
667 668
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
669
    ARM_FEATURE_V8,
670
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
671
    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
672
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
673
    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
674
    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
675
    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
676
    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
677 678
    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
679
    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
P
pbrook 已提交
680 681 682 683
};

static inline int arm_feature(CPUARMState *env, int feature)
{
684
    return (env->features & (1ULL << feature)) != 0;
P
pbrook 已提交
685 686
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/* Return true if the specified exception level is running in AArch64 state. */
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
{
    /* We don't currently support EL2 or EL3, and this isn't valid for EL0
     * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
     * then the state of EL0 isn't well defined.)
     */
    assert(el == 1);
    /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
     * is a QEMU-imposed simplification which we may wish to change later.
     * If we in future support EL2 and/or EL3, then the state of lower
     * exception levels is controlled by the HCR.RW and SCR.RW bits.
     */
    return arm_feature(env, ARM_FEATURE_AARCH64);
}

703
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
P
pbrook 已提交
704

P
pbrook 已提交
705 706 707 708 709
/* Interface between CPU and Interrupt controller.  */
void armv7m_nvic_set_pending(void *opaque, int irq);
int armv7m_nvic_acknowledge_irq(void *opaque);
void armv7m_nvic_complete_irq(void *opaque, int irq);

710 711 712 713 714 715 716 717 718 719 720 721 722
/* Interface for defining coprocessor registers.
 * Registers are defined in tables of arm_cp_reginfo structs
 * which are passed to define_arm_cp_regs().
 */

/* When looking up a coprocessor register we look for it
 * via an integer which encodes all of:
 *  coprocessor number
 *  Crn, Crm, opc1, opc2 fields
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
 *    or via MRRC/MCRR?)
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 * (In this case crn and opc2 should be zero.)
723 724 725 726 727 728 729
 * For AArch64, there is no 32/64 bit size distinction;
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 * and 4 bit CRn and CRm. The encoding patterns are chosen
 * to be easy to convert to and from the KVM encodings, and also
 * so that the hashtable can contain both AArch32 and AArch64
 * registers (to allow for interprocessing where we might run
 * 32 bit code on a 64 bit core).
730
 */
731 732 733 734 735 736 737
/* This bit is private to our hashtable cpreg; in KVM register
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 * in the upper bits of the 64 bit ID.
 */
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)

738 739 740 741
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
     ((crm) << 7) | ((opc1) << 3) | (opc2))

742 743 744 745 746 747 748 749 750
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
    (CP_REG_AA64_MASK |                                 \
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))

751 752 753 754 755 756
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
 * version used as a key for the coprocessor register hashtable
 */
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
    uint32_t cpregid = kvmid;
757 758 759
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
        cpregid |= CP_REG_AA64_MASK;
    } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
760 761 762 763 764 765 766 767 768 769
        cpregid |= (1 << 15);
    }
    return cpregid;
}

/* Convert a truncated 32 bit hashtable key into the full
 * 64 bit KVM register ID.
 */
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
770 771 772 773 774
    uint64_t kvmid;

    if (cpregid & CP_REG_AA64_MASK) {
        kvmid = cpregid & ~CP_REG_AA64_MASK;
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
775
    } else {
776 777 778 779 780 781
        kvmid = cpregid & ~(1 << 15);
        if (cpregid & (1 << 15)) {
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
        } else {
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
        }
782 783 784 785
    }
    return kvmid;
}

786 787 788 789 790 791 792 793 794 795
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
 * TCG can assume the value to be constant (ie load at translate time)
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 * indicates that the TB should not be ended after a write to this register
 * (the default is that the TB ends after cp writes). OVERRIDE permits
 * a register definition to override a previous definition for the
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 * old must have the OVERRIDE bit set.
796 797
 * NO_MIGRATE indicates that this register should be ignored for migration;
 * (eg because any state is accessed via some other coprocessor register).
798 799 800
 * IO indicates that this register does I/O and therefore its accesses
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 * registers which implement clocks or timers require this.
801 802 803 804 805 806
 */
#define ARM_CP_SPECIAL 1
#define ARM_CP_CONST 2
#define ARM_CP_64BIT 4
#define ARM_CP_SUPPRESS_TB_END 8
#define ARM_CP_OVERRIDE 16
807
#define ARM_CP_NO_MIGRATE 32
808
#define ARM_CP_IO 64
809 810
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
811
#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
812
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
813 814
#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
815 816 817
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL 0xffff
/* Mask of only the flag bits in a type field */
818
#define ARM_CP_FLAG_MASK 0x7f
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/* Valid values for ARMCPRegInfo state field, indicating which of
 * the AArch32 and AArch64 execution states this register is visible in.
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
 * If the reginfo is declared to be visible in both states then a second
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 * Note that we rely on the values of these enums as we iterate through
 * the various states in some places.
 */
enum {
    ARM_CP_STATE_AA32 = 0,
    ARM_CP_STATE_AA64 = 1,
    ARM_CP_STATE_BOTH = 2,
};

835 836 837 838 839 840 841 842
/* Return true if cptype is a valid type field. This is used to try to
 * catch errors where the sentinel has been accidentally left off the end
 * of a list of registers.
 */
static inline bool cptype_valid(int cptype)
{
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
        || ((cptype & ARM_CP_SPECIAL) &&
843
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
844 845 846 847 848 849 850 851 852 853 854 855
}

/* Access rights:
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 * (ie any of the privileged modes in Secure state, or Monitor mode).
 * If a register is accessible in one privilege level it's always accessible
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 * terminology a little and call this PL3.
856 857
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 * with the ELx exception levels.
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
 *
 * If access permissions for a register are more complex than can be
 * described with these bits, then use a laxer set of restrictions, and
 * do the more restrictive/complex check inside a helper function.
 */
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)

#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)

static inline int arm_current_pl(CPUARMState *env)
{
879 880 881 882
    if (env->aarch64) {
        return extract32(env->pstate, 2, 2);
    }

883 884 885 886 887 888 889 890 891 892 893
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
        return 0;
    }
    /* We don't currently implement the Virtualization or TrustZone
     * extensions, so PL2 and PL3 don't exist for us.
     */
    return 1;
}

typedef struct ARMCPRegInfo ARMCPRegInfo;

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
typedef enum CPAccessResult {
    /* Access is permitted */
    CP_ACCESS_OK = 0,
    /* Access fails due to a configurable trap or enable which would
     * result in a categorized exception syndrome giving information about
     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
     * 0xc or 0x18).
     */
    CP_ACCESS_TRAP = 1,
    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
     * Note that this is not a catch-all case -- the set of cases which may
     * result in this failure is specifically defined by the architecture.
     */
    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
} CPAccessResult;

910 911 912 913 914 915
/* Access functions for coprocessor registers. These cannot fail and
 * may not raise exceptions.
 */
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                       uint64_t value);
916 917
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);

#define CP_ANY 0xff

/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
    /* Name of register (useful mainly for debugging, need not be unique) */
    const char *name;
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
     * will be decoded to this register. The register read and write
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
     * used by the program, so it is possible to register a wildcard and
     * then behave differently on read/write if necessary.
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
     * must both be zero.
936 937 938 939 940 941 942
     * For AArch64-visible registers, opc0 is also used.
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
     * way to distinguish (for KVM's benefit) guest-visible system registers
     * from demuxed ones provided to preserve the "no side effects on
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
     * visible (to match KVM's encoding); cp==0 will be converted to
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
943 944 945 946
     */
    uint8_t cp;
    uint8_t crn;
    uint8_t crm;
947
    uint8_t opc0;
948 949
    uint8_t opc1;
    uint8_t opc2;
950 951
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
    int state;
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
    /* Register type: ARM_CP_* bits/values */
    int type;
    /* Access rights: PL*_[RW] */
    int access;
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
     * this register was defined: can be used to hand data through to the
     * register read/write functions, since they are passed the ARMCPRegInfo*.
     */
    void *opaque;
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
     * fieldoffset is non-zero, the reset value of the register.
     */
    uint64_t resetvalue;
    /* Offset of the field in CPUARMState for this register. This is not
     * needed if either:
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
     *  2. both readfn and writefn are specified
     */
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
971 972 973 974 975 976
    /* Function for making any access checks for this register in addition to
     * those specified by the 'access' permissions bits. If NULL, no extra
     * checks required. The access check is performed at runtime, not at
     * translate time.
     */
    CPAccessFn *accessfn;
977 978 979 980 981 982 983 984 985 986
    /* Function for handling reads of this register. If NULL, then reads
     * will be done by loading from the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPReadFn *readfn;
    /* Function for handling writes of this register. If NULL, then writes
     * will be done by writing to the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPWriteFn *writefn;
987 988 989
    /* Function for doing a "raw" read; used when we need to copy
     * coprocessor state to the kernel for KVM or out for
     * migration. This only needs to be provided if there is also a
990
     * readfn and it has side effects (for instance clear-on-read bits).
991 992 993 994 995
     */
    CPReadFn *raw_readfn;
    /* Function for doing a "raw" write; used when we need to copy KVM
     * kernel coprocessor state into userspace, or for inbound
     * migration. This only needs to be provided if there is also a
996 997
     * writefn and it masks out "unwritable" bits or has write-one-to-clear
     * or similar behaviour.
998 999
     */
    CPWriteFn *raw_writefn;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    /* Function for resetting the register. If NULL, then reset will be done
     * by writing resetvalue to the field specified in fieldoffset. If
     * fieldoffset is 0 then no reset will be done.
     */
    CPResetFn *resetfn;
};

/* Macros which are lvalues for the field in CPUARMState for the
 * ARMCPRegInfo *ri.
 */
#define CPREG_FIELD32(env, ri) \
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))

#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
1029
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1030 1031

/* CPWriteFn that can be used to implement writes-ignored behaviour */
1032 1033
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value);
1034
/* CPReadFn that can be used for read-as-zero behaviour */
1035
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1036

1037 1038 1039 1040 1041
/* CPResetFn that does nothing, for use if no reset is required even
 * if fieldoffset is non zero.
 */
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);

1042 1043 1044 1045 1046 1047 1048 1049
/* Return true if this reginfo struct's field in the cpu state struct
 * is 64 bits wide.
 */
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}

1050
static inline bool cp_access_ok(int current_pl,
1051 1052
                                const ARMCPRegInfo *ri, int isread)
{
1053
    return (ri->access >> ((current_pl * 2) + isread)) & 1;
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/**
 * write_list_to_cpustate
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the cpreg_values list into the ARMCPUState structure.
 * This updates TCG's working data structures from KVM data or
 * from incoming migration state.
 *
 * Returns: true if all register values were updated correctly,
 * false if some register was unknown or could not be written.
 * Note that we do not stop early on failure -- we will attempt
 * writing all registers in the list.
 */
bool write_list_to_cpustate(ARMCPU *cpu);

/**
 * write_cpustate_to_list:
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the ARMCPUState structure into the cpreg_values list.
 * This is used to copy info from TCG's working data structures into
 * KVM or for outbound migration.
 *
 * Returns: true if all register values were read correctly,
 * false if some register was unknown or could not be read.
 * Note that we do not stop early on failure -- we will attempt
 * reading all registers in the list.
 */
bool write_cpustate_to_list(ARMCPU *cpu);

P
pbrook 已提交
1088 1089 1090 1091 1092 1093 1094 1095
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
   conventional cores (ie. Application or Realtime profile).  */

#define IS_M(env) arm_feature(env, ARM_FEATURE_M)

#define ARM_CPUID_TI915T      0x54029152
#define ARM_CPUID_TI925T      0x54029252
P
pbrook 已提交
1096

B
bellard 已提交
1097
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
1098
#define TARGET_PAGE_BITS 12
B
bellard 已提交
1099 1100 1101
#else
/* The ARM MMU allows 1k pages.  */
/* ??? Linux doesn't actually use these, and they're deprecated in recent
B
balrog 已提交
1102
   architecture revisions.  Maybe a configure option to disable them.  */
B
bellard 已提交
1103 1104
#define TARGET_PAGE_BITS 10
#endif
1105

1106 1107 1108 1109 1110 1111 1112
#if defined(TARGET_AARCH64)
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
#else
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122
static inline CPUARMState *cpu_init(const char *cpu_model)
{
    ARMCPU *cpu = cpu_arm_init(cpu_model);
    if (cpu) {
        return &cpu->env;
    }
    return NULL;
}

1123 1124 1125
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_signal_handler cpu_arm_signal_handler
J
j_mayer 已提交
1126
#define cpu_list arm_cpu_list
1127

1128
/* MMU modes definitions */
1129 1130 1131
#define MMU_MODE0_SUFFIX _user
#define MMU_MODE1_SUFFIX _kernel
#define MMU_USER_IDX 0
1132
static inline int cpu_mmu_index (CPUARMState *env)
1133
{
1134
    return arm_current_pl(env);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/* Return the Exception Level targeted by debug exceptions;
 * currently always EL1 since we don't implement EL2 or EL3.
 */
static inline int arm_debug_target_el(CPUARMState *env)
{
    return 1;
}

static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
    if (arm_current_pl(env) == arm_debug_target_el(env)) {
        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
            || (env->daif & PSTATE_D)) {
            return false;
        }
    }
    return true;
}

static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
    if (arm_current_pl(env) == 0 && arm_el_is_aa64(env, 1)) {
        return aa64_generate_debug_exceptions(env);
    }
    return arm_current_pl(env) != 2;
}

/* Return true if debugging exceptions are currently enabled.
 * This corresponds to what in ARM ARM pseudocode would be
 *    if UsingAArch32() then
 *        return AArch32.GenerateDebugExceptions()
 *    else
 *        return AArch64.GenerateDebugExceptions()
 * We choose to push the if() down into this function for clarity,
 * since the pseudocode has it at all callsites except for the one in
 * CheckSoftwareStep(), where it is elided because both branches would
 * always return the same value.
 *
 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
 * don't yet implement those exception levels or their associated trap bits.
 */
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
{
    if (env->aarch64) {
        return aa64_generate_debug_exceptions(env);
    } else {
        return aa32_generate_debug_exceptions(env);
    }
}

/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
 * implicitly means this always returns false in pre-v8 CPUs.)
 */
static inline bool arm_singlestep_active(CPUARMState *env)
{
    return extract32(env->cp15.mdscr_el1, 0, 1)
        && arm_el_is_aa64(env, arm_debug_target_el(env))
        && arm_generate_debug_exceptions(env);
}

1197
#include "exec/cpu-all.h"
1198

1199 1200 1201 1202 1203 1204 1205
/* Bit usage in the TB flags field: bit 31 indicates whether we are
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 */
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)

/* Bit usage when in AArch32 state: */
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
#define ARM_TBFLAG_THUMB_SHIFT      0
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN_SHIFT     1
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV_SHIFT       6
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN_SHIFT      7
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
P
Paul Brook 已提交
1218 1219
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1220 1221
#define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
#define ARM_TBFLAG_CPACR_FPEN_MASK  (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1222 1223 1224 1225
#define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS_SHIFT 19
#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1226

1227 1228 1229
/* Bit usage when in AArch64 state */
#define ARM_TBFLAG_AA64_EL_SHIFT    0
#define ARM_TBFLAG_AA64_EL_MASK     (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1230 1231
#define ARM_TBFLAG_AA64_FPEN_SHIFT  2
#define ARM_TBFLAG_AA64_FPEN_MASK   (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1232 1233 1234 1235
#define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
#define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
#define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1236 1237

/* some convenience accessor macros */
1238 1239
#define ARM_TBFLAG_AARCH64_STATE(F) \
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
#define ARM_TBFLAG_THUMB(F) \
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN(F) \
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE(F) \
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_PRIV(F) \
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
#define ARM_TBFLAG_VFPEN(F) \
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC(F) \
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
P
Paul Brook 已提交
1252 1253
#define ARM_TBFLAG_BSWAP_CODE(F) \
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1254 1255
#define ARM_TBFLAG_CPACR_FPEN(F) \
    (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1256 1257 1258 1259
#define ARM_TBFLAG_SS_ACTIVE(F) \
    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS(F) \
    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1260 1261
#define ARM_TBFLAG_AA64_EL(F) \
    (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1262 1263
#define ARM_TBFLAG_AA64_FPEN(F) \
    (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1264 1265 1266 1267
#define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
    (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_AA64_PSTATE_SS(F) \
    (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1268

1269
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1270 1271
                                        target_ulong *cs_base, int *flags)
{
1272 1273 1274 1275 1276 1277 1278 1279
    int fpen;

    if (arm_feature(env, ARM_FEATURE_V6)) {
        fpen = extract32(env->cp15.c1_coproc, 20, 2);
    } else {
        /* CPACR doesn't exist before v6, so VFP is always accessible */
        fpen = 3;
    }
1280

1281 1282
    if (is_a64(env)) {
        *pc = env->pc;
1283 1284
        *flags = ARM_TBFLAG_AARCH64_STATE_MASK
            | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1285 1286 1287
        if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
            *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
        }
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
         * states defined in the ARM ARM for software singlestep:
         *  SS_ACTIVE   PSTATE.SS   State
         *     0            x       Inactive (the TB flag for SS is always 0)
         *     1            0       Active-pending
         *     1            1       Active-not-pending
         */
        if (arm_singlestep_active(env)) {
            *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
            if (env->pstate & PSTATE_SS) {
                *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
            }
        }
1301
    } else {
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        int privmode;
        *pc = env->regs[15];
        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
        if (arm_feature(env, ARM_FEATURE_M)) {
            privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
        } else {
            privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
        }
        if (privmode) {
            *flags |= ARM_TBFLAG_PRIV_MASK;
        }
1317 1318
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
            || arm_el_is_aa64(env, 1)) {
1319 1320
            *flags |= ARM_TBFLAG_VFPEN_MASK;
        }
1321 1322 1323
        if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
            *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
        }
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
         * states defined in the ARM ARM for software singlestep:
         *  SS_ACTIVE   PSTATE.SS   State
         *     0            x       Inactive (the TB flag for SS is always 0)
         *     1            0       Active-pending
         *     1            1       Active-not-pending
         */
        if (arm_singlestep_active(env)) {
            *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
            if (env->uncached_cpsr & PSTATE_SS) {
                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
            }
        }
1337
    }
1338 1339

    *cs_base = 0;
1340 1341
}

1342
#include "exec/exec-all.h"
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
{
    if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
        env->pc = tb->pc;
    } else {
        env->regs[15] = tb->pc;
    }
}

B
bellard 已提交
1353
#endif