spapr.c 77.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
P
Peter Maydell 已提交
27
#include "qemu/osdep.h"
28
#include "sysemu/sysemu.h"
29
#include "sysemu/numa.h"
30
#include "hw/hw.h"
31
#include "hw/fw-path-provider.h"
32
#include "elf.h"
P
Paolo Bonzini 已提交
33
#include "net/net.h"
A
Andrew Jones 已提交
34
#include "sysemu/device_tree.h"
35
#include "sysemu/block-backend.h"
36 37
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
B
Bharata B Rao 已提交
38
#include "sysemu/device_tree.h"
39
#include "kvm_ppc.h"
40
#include "migration/migration.h"
41
#include "mmu-hash64.h"
42
#include "qom/cpu.h"
43 44

#include "hw/boards.h"
P
Paolo Bonzini 已提交
45
#include "hw/ppc/ppc.h"
46 47
#include "hw/loader.h"

P
Paolo Bonzini 已提交
48 49 50 51
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
52
#include "hw/pci/msi.h"
53

54
#include "hw/pci/pci.h"
55 56
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
57

58
#include "exec/address-spaces.h"
59
#include "hw/usb.h"
60
#include "qemu/config-file.h"
61
#include "qemu/error-report.h"
62
#include "trace.h"
63
#include "hw/nmi.h"
A
Avi Kivity 已提交
64

65
#include "hw/compat.h"
D
David Gibson 已提交
66
#include "qemu-common.h"
67

68 69
#include <libfdt.h>

70 71 72 73 74 75 76 77 78 79
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
80
#define FDT_MAX_SIZE            0x100000
81
#define RTAS_MAX_SIZE           0x10000
82
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
83 84
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
85 86
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
87

88
#define MIN_RMA_SLOF            128UL
89 90 91

#define TIMEBASE_FREQ           512000000ULL

92 93
#define PHANDLE_XICP            0x00001111

94 95
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

96
static XICSState *try_create_xics(const char *type, int nr_servers,
97
                                  int nr_irqs, Error **errp)
98
{
99
    Error *err = NULL;
100 101 102 103 104
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
105 106 107 108
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
109 110
        return NULL;
    }
111
    return XICS_COMMON(dev);
112 113
}

114 115
static XICSState *xics_system_init(MachineState *machine,
                                   int nr_servers, int nr_irqs)
116 117 118
{
    XICSState *icp = NULL;

119
    if (kvm_enabled()) {
120 121
        Error *err = NULL;

122
        if (machine_kernel_irqchip_allowed(machine)) {
123
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
124
        }
125
        if (machine_kernel_irqchip_required(machine) && !icp) {
126 127 128 129
            error_reportf_err(err,
                              "kernel_irqchip requested but unavailable: ");
        } else {
            error_free(err);
130 131 132 133
        }
    }

    if (!icp) {
134
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
135 136 137 138 139
    }

    return icp;
}

140 141 142 143 144 145 146 147
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

148
    if (cpu->cpu_version) {
149
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
150 151 152 153 154
        if (ret < 0) {
            return ret;
        }
    }

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

194
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
195
{
196 197
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
198 199
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
200
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
201

202 203 204 205
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
206

207
        if ((index % smt) != 0) {
208 209 210
            continue;
        }

211
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
212

213 214 215 216 217 218 219 220 221
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222
        if (offset < 0) {
223 224 225 226
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
227 228
        }

229 230
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
231 232 233
        if (ret < 0) {
            return ret;
        }
234

235 236 237 238 239
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

240
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
241
                                     ppc_get_compat_smt_threads(cpu));
242 243 244
        if (ret < 0) {
            return ret;
        }
245 246 247 248
    }
    return ret;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

283 284
static hwaddr spapr_node0_size(void)
{
285 286
    MachineState *machine = MACHINE(qdev_get_machine());

287 288 289 290
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
291 292
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
293 294 295
            }
        }
    }
296
    return machine->ram_size;
297 298
}

299 300 301 302 303 304 305 306 307 308
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

309 310 311 312
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
313

314
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
315 316
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
317
                                   bool little_endian,
318 319
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
320 321 322 323
{
    void *fdt;
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
324 325
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
326
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
327
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
328
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
329
    char *buf;
330

331 332 333 334 335 336 337 338 339 340 341
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

342
    fdt = g_malloc0(FDT_MAX_SIZE);
343 344
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

345 346 347 348 349 350
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
351 352 353 354 355
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
356
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
357
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
A
Alexey Kardashevskiy 已提交
380 381 382
    if (qemu_uuid_set) {
        _FDT((fdt_property_string(fdt, "system-id", buf)));
    }
383 384
    g_free(buf);

S
Sam Bobroff 已提交
385 386 387 388 389
    if (qemu_get_vm_name()) {
        _FDT((fdt_property_string(fdt, "ibm,partition-name",
                                  qemu_get_vm_name())));
    }

390 391 392 393 394 395
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

396 397 398
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

399 400 401 402 403
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
404 405 406
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
407

408
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
409 410 411
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
412
    }
413 414 415
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
416 417 418
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
419

420 421
    _FDT((fdt_end_node(fdt)));

422 423 424
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

425 426 427
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
428 429 430 431 432 433
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
434

435 436 437
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

438
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
439 440
    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
                            RTAS_EVENT_SCAN_RATE)));
441

442 443 444 445
    if (msi_supported) {
        _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
    }

446
    /*
447
     * According to PAPR, rtas ibm,os-term does not guarantee a return
448 449 450 451 452 453 454
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

455 456
    _FDT((fdt_end_node(fdt)));

457
    /* interrupt controller */
458
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
459 460 461 462 463 464 465 466

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
467 468 469
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
470 471 472

    _FDT((fdt_end_node(fdt)));

473 474 475 476 477 478 479
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
480 481
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
482 483 484

    _FDT((fdt_end_node(fdt)));

485 486 487
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

508 509 510
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

511 512 513
    return fdt;
}

514
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
515 516 517 518 519
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
520
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
537
    return off;
538 539
}

540
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
541
{
542
    MachineState *machine = MACHINE(spapr);
543 544 545 546 547 548 549 550
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
551
        ramnode.node_mem = machine->ram_size;
552
        nodes = &ramnode;
553
    }
554

555 556 557 558
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
559
        if (mem_start >= machine->ram_size) {
560 561
            node_size = 0;
        } else {
562
            node_size = nodes[i].node_mem;
563 564
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
565 566
            }
        }
567 568
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
569
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
570 571 572
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
573 574 575 576 577 578 579 580 581 582 583 584
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
585 586 587 588 589
    }

    return 0;
}

590 591 592 593 594 595 596 597 598 599 600 601 602
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
603
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
604 605
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    /* Note: we keep CI large pages off for now because a 64K capable guest
     * provisioned with large pages might otherwise try to map a qemu
     * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
     * even if that qemu runs on a 4k host.
     *
     * We can later add this bit back when we are confident this is not
     * an issue (!HV KVM or 64K host)
     */
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
    uint8_t *pa_features;
    size_t pa_size;

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
652
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

690 691 692 693 694 695 696 697 698 699 700 701 702
    /* Do the ibm,pa-features property, adjust it for ci-large-pages */
    if (env->mmu_model == POWERPC_MMU_2_06) {
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
    } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
    }
    if (env->ci_large_pages) {
        pa_features[3] |= 0x20;
    }
    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));

703
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
704
                           cs->cpu_index / vcpus_per_socket)));
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
                                ppc_get_compat_smt_threads(cpu)));
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

751 752 753 754 755 756 757 758 759 760 761
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
762
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
763
    uint32_t *int_buf, *cur_index, buf_len;
764
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
765

766 767 768 769 770 771
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        sPAPRDRConnectorClass *drck;
798
        uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
        uint32_t *dynamic_memory = cur_index;

        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                       addr/lmb_size);
        g_assert(drc);
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

        dynamic_memory[0] = cpu_to_be32(addr >> 32);
        dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
        dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
        dynamic_memory[3] = cpu_to_be32(0); /* reserved */
        dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
        if (addr < machine->ram_size ||
                    memory_region_present(get_system_memory(), addr)) {
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
        } else {
            dynamic_memory[5] = cpu_to_be32(0);
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
827
    int_buf[0] = cpu_to_be32(nr_nodes);
828 829
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
830
    for (i = 0; i < nr_nodes; i++) {
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
                                 bool cpu_update, bool memory_update)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
    if (cpu_update) {
        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
    }

    /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
    if (memory_update && smc->dr_lmb_enabled) {
        _FDT((spapr_populate_drconf_memory(spapr, fdt)));
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

893
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
A
Avi Kivity 已提交
894 895 896
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
897
{
898
    MachineState *machine = MACHINE(qdev_get_machine());
B
Bharata B Rao 已提交
899
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
900
    const char *boot_device = machine->boot_order;
901 902 903
    int ret, i;
    size_t cb = 0;
    char *bootlist;
904
    void *fdt;
905
    sPAPRPHBState *phb;
906

907
    fdt = g_malloc(FDT_MAX_SIZE);
908 909 910

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
911

912 913 914 915
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
916 917
    }

918 919 920 921 922 923
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

924 925 926 927 928 929 930 931
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
            fprintf(stderr, "could not set up rng device in the fdt\n");
            exit(1);
        }
    }

932
    QLIST_FOREACH(phb, &spapr->phbs, list) {
933
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
934 935 936 937 938 939 940
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

941 942 943 944 945 946
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

947 948
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
949

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

965 966 967 968 969 970 971 972 973
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

974
    if (!spapr->has_graphics) {
975 976
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
977

B
Bharata B Rao 已提交
978 979 980 981
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

982 983
    _FDT((fdt_pack(fdt)));

984
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
985 986
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
987 988 989
        exit(1);
    }

A
Andrew Jones 已提交
990
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
991
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
992

G
Gonglei 已提交
993
    g_free(bootlist);
994
    g_free(fdt);
995 996 997 998 999 1000 1001
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

1002
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1003
{
1004 1005
    CPUPPCState *env = &cpu->env;

1006 1007 1008 1009
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1010
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1011
    }
1012 1013
}

1014 1015 1016 1017 1018 1019
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1020
static void spapr_alloc_htab(sPAPRMachineState *spapr)
1021 1022
{
    long shift;
1023
    int index;
1024 1025 1026 1027 1028 1029

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    if (shift < 0) {
        /*
         * For HV KVM, host kernel will return -ENOMEM when requested
         * HTAB size can't be allocated.
         */
        error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
    } else if (shift > 0) {
        /*
         * Kernel handles htab, we don't need to allocate one
         *
         * Older kernels can fall back to lower HTAB shift values,
         * but we don't allow booting of such guests.
         */
1043 1044 1045 1046
        if (shift != spapr->htab_shift) {
            error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
        }

1047
        spapr->htab_shift = shift;
1048
        kvmppc_kern_htab = true;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    } else {
        /* Allocate htab */
        spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
    }
}

/*
 * Clear HTAB entries during reset.
 *
 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
 */
static void spapr_reset_htab(sPAPRMachineState *spapr)
{
    long shift;
    int index;
1072

1073
    shift = kvmppc_reset_htab(spapr->htab_shift);
1074 1075 1076
    if (shift < 0) {
        error_setg(&error_abort, "Failed to reset HTAB");
    } else if (shift > 0) {
1077 1078 1079 1080
        if (shift != spapr->htab_shift) {
            error_setg(&error_abort, "Requested HTAB allocation failed during reset");
        }

1081 1082 1083 1084
        /* Tell readers to update their file descriptor */
        if (spapr->htab_fd >= 0) {
            spapr->htab_fd_stale = true;
        }
1085 1086
    } else {
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
1087 1088 1089 1090

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
1091 1092 1093 1094
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
1095 1096
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
1097
    }
1098 1099
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

1117 1118 1119 1120
/*
 * A guest reset will cause spapr->htab_fd to become stale if being used.
 * Reopen the file descriptor to make sure the whole HTAB is properly read.
 */
1121
static int spapr_check_htab_fd(sPAPRMachineState *spapr)
1122 1123 1124 1125 1126 1127 1128 1129
{
    int rc = 0;

    if (spapr->htab_fd_stale) {
        close(spapr->htab_fd);
        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            error_report("Unable to open fd for reading hash table from KVM: "
1130
                         "%s", strerror(errno));
1131 1132 1133 1134 1135 1136 1137 1138
            rc = -1;
        }
        spapr->htab_fd_stale = false;
    }

    return rc;
}

1139
static void ppc_spapr_reset(void)
1140
{
1141
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1142
    PowerPCCPU *first_ppc_cpu;
1143
    uint32_t rtas_limit;
1144

1145 1146 1147
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1148 1149
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
1150

1151
    qemu_devices_reset();
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

1162 1163 1164 1165
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

1166 1167 1168 1169
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

1170
    /* Set up the entry state */
1171 1172 1173 1174
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1175
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1176 1177 1178

}

1179 1180
static void spapr_cpu_reset(void *opaque)
{
1181
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1182
    PowerPCCPU *cpu = opaque;
1183
    CPUState *cs = CPU(cpu);
1184
    CPUPPCState *env = &cpu->env;
1185

1186
    cpu_reset(cs);
1187 1188 1189 1190

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
1191
    cs->halted = 1;
1192 1193

    env->spr[SPR_HIOR] = 0;
1194

1195
    env->external_htab = (uint8_t *)spapr->htab;
1196 1197 1198 1199 1200 1201 1202
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
1203
    env->htab_base = -1;
1204 1205 1206 1207 1208 1209
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
1210
    env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1211
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1212
        (spapr->htab_shift - 18);
1213 1214
}

1215
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1216
{
1217
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1218
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1219

P
Paolo Bonzini 已提交
1220
    if (dinfo) {
1221 1222
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_fatal);
D
David Gibson 已提交
1223 1224 1225 1226 1227 1228 1229
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1230
static void spapr_rtc_create(sPAPRMachineState *spapr)
1231 1232 1233 1234 1235
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1236 1237 1238

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1239 1240
}

1241
/* Returns whether we want to use VGA or not */
1242 1243
static int spapr_vga_init(PCIBus *pci_bus)
{
1244 1245
    switch (vga_interface_type) {
    case VGA_NONE:
1246 1247 1248
        return false;
    case VGA_DEVICE:
        return true;
1249
    case VGA_STD:
1250
    case VGA_VIRTIO:
1251
        return pci_vga_init(pci_bus) != NULL;
1252
    default:
1253 1254
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
1255
        exit(0);
1256 1257 1258
    }
}

1259 1260
static int spapr_post_load(void *opaque, int version_id)
{
1261
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1262 1263
    int err = 0;

S
Stefan Weil 已提交
1264
    /* In earlier versions, there was no separate qdev for the PAPR
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1280 1281
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1282
    .version_id = 3,
1283
    .minimum_version_id = 1,
1284
    .post_load = spapr_post_load,
1285
    .fields = (VMStateField[]) {
1286 1287
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1288 1289

        /* RTC offset */
1290
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1291

1292
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1293 1294 1295 1296 1297 1298
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1299
    sPAPRMachineState *spapr = opaque;
1300 1301 1302 1303

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1304 1305 1306 1307 1308 1309 1310
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
1311
        spapr->htab_fd_stale = false;
1312 1313 1314 1315 1316 1317 1318 1319
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


1320 1321 1322
    return 0;
}

1323
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1324 1325 1326 1327
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1328
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1344
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1359
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1373
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1374
                                int64_t max_ns)
1375 1376 1377 1378 1379
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1380
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1396
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1397 1398 1399 1400 1401 1402 1403 1404 1405
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1406
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1425
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1447
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1448 1449
}

1450 1451 1452
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1453 1454
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1455
    sPAPRMachineState *spapr = opaque;
1456
    int rc = 0;
1457 1458 1459 1460

    /* Iteration header */
    qemu_put_be32(f, 0);

1461 1462 1463
    if (!spapr->htab) {
        assert(kvm_enabled());

1464 1465 1466 1467 1468
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1469 1470 1471 1472 1473 1474
        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1475 1476
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1477
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1478 1479 1480 1481 1482 1483 1484
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1485
    return rc;
1486 1487 1488 1489
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1490
    sPAPRMachineState *spapr = opaque;
1491 1492 1493 1494

    /* Iteration header */
    qemu_put_be32(f, 0);

1495 1496 1497 1498 1499
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1500 1501 1502 1503 1504
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1505 1506 1507 1508 1509 1510 1511 1512 1513
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1525
    sPAPRMachineState *spapr = opaque;
1526
    uint32_t section_hdr;
1527
    int fd = -1;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
1539 1540
            error_report("htab_shift mismatch: source %d target %d",
                         section_hdr, spapr->htab_shift);
1541 1542 1543 1544 1545
            return -EINVAL;
        }
        return 0;
    }

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1569
        if ((index + n_valid + n_invalid) >
1570 1571 1572
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1573 1574
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1575 1576 1577
            return -EINVAL;
        }

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1596 1597 1598
        }
    }

1599 1600 1601 1602 1603
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1604 1605 1606 1607 1608 1609
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
1610
    .save_live_complete_precopy = htab_save_complete,
1611 1612 1613
    .load_state = htab_load,
};

1614 1615 1616 1617 1618 1619 1620
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;

    /* Set time-base frequency to 512 MHz */
    cpu_ppc_tb_init(env, TIMEBASE_FREQ);

    /* PAPR always has exception vectors in RAM not ROM. To ensure this,
     * MSR[IP] should never be set.
     */
    env->msr_mask &= ~(1 << 6);

    /* Tell KVM that we're in PAPR mode */
    if (kvm_enabled()) {
        kvmppc_set_papr(cpu);
    }

    if (cpu->max_compat) {
        if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
            exit(1);
        }
    }

    xics_cpu_setup(spapr->icp, cpu);

    qemu_register_reset(spapr_cpu_reset, cpu);
}

D
David Gibson 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1671
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1672 1673 1674 1675 1676 1677
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1678
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
static void spapr_validate_node_memory(MachineState *machine)
{
    int i;

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
        machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_report("Can't support memory configuration where RAM size "
                     "0x" RAM_ADDR_FMT " or maxmem size "
                     "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
                     machine->ram_size, machine->maxram_size,
                     SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        exit(EXIT_FAILURE);
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
            error_report("Can't support memory configuration where memory size"
                         " %" PRIx64 " of node %d isn't aligned to %llu MB",
                         numa_info[i].node_mem, i,
                         SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
            exit(EXIT_FAILURE);
        }
    }
}

1715
/* pSeries LPAR / sPAPR hardware init */
1716
static void ppc_spapr_init(MachineState *machine)
1717
{
1718
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
D
David Gibson 已提交
1719
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1720 1721 1722
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1723
    PowerPCCPU *cpu;
1724
    PCIHostState *phb;
1725
    int i;
A
Avi Kivity 已提交
1726 1727
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1728 1729
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1730
    hwaddr rma_alloc_size;
1731
    hwaddr node0_size = spapr_node0_size();
1732 1733
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1734
    long load_limit, fw_size;
1735
    bool kernel_le = false;
1736
    char *filename;
1737

1738 1739
    msi_supported = true;

1740 1741
    QLIST_INIT(&spapr->phbs);

1742 1743
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1744
    /* Allocate RMA if necessary */
1745
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1746 1747

    if (rma_alloc_size == -1) {
1748
        error_report("Unable to create RMA");
1749 1750
        exit(1);
    }
1751

1752
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1753
        spapr->rma_size = rma_alloc_size;
1754
    } else {
1755
        spapr->rma_size = node0_size;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1770 1771
    }

1772 1773 1774 1775 1776 1777
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1778 1779
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1780

1781 1782 1783 1784 1785
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
1786
        if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
1787 1788 1789 1790
            break;
        }
        spapr->htab_shift++;
    }
1791
    spapr_alloc_htab(spapr);
1792

1793
    /* Set up Interrupt Controller before we create the VCPUs */
1794
    spapr->icp = xics_system_init(machine,
1795
                                  DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1796
                                               smp_threads),
1797 1798
                                  XICS_IRQS);

D
David Gibson 已提交
1799 1800 1801 1802
    if (smc->dr_lmb_enabled) {
        spapr_validate_node_memory(machine);
    }

1803
    /* init CPUs */
1804 1805
    if (machine->cpu_model == NULL) {
        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1806 1807
    }
    for (i = 0; i < smp_cpus; i++) {
1808
        cpu = cpu_ppc_init(machine->cpu_model);
1809
        if (cpu == NULL) {
1810 1811 1812
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1813
        spapr_cpu_init(spapr, cpu);
1814 1815
    }

1816 1817 1818
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
1819
        kvmppc_enable_set_mode_hcall();
1820 1821
    }

1822
    /* allocate RAM */
1823
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1824
                                         machine->ram_size);
1825
    memory_region_add_subregion(sysmem, 0, ram);
1826

1827 1828 1829 1830 1831 1832 1833 1834
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1835 1836 1837 1838 1839
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;

        if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1840 1841
            error_report("Specified number of memory slots %" PRIu64
                         " exceeds max supported %d",
1842
                         machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
            exit(EXIT_FAILURE);
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
1854 1855 1856 1857
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

1858
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1859
    if (!filename) {
1860
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1861 1862
        exit(1);
    }
1863 1864 1865
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1866
        error_report("Could not load LPAR rtas '%s'", filename);
1867 1868
        exit(1);
    }
1869
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1870 1871
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1872 1873
        exit(1);
    }
1874
    g_free(filename);
1875

1876 1877 1878
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1879
    /* Set up the RTC RTAS interfaces */
1880
    spapr_rtc_create(spapr);
1881

1882
    /* Set up VIO bus */
1883 1884
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1885
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1886
        if (serial_hds[i]) {
1887
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1888 1889
        }
    }
1890

D
David Gibson 已提交
1891 1892 1893
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1894
    /* Set up PCI */
1895 1896
    spapr_pci_rtas_init();

1897
    phb = spapr_create_phb(spapr, 0);
1898

P
Paolo Bonzini 已提交
1899
    for (i = 0; i < nb_nics; i++) {
1900 1901 1902
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1903
            nd->model = g_strdup("ibmveth");
1904 1905 1906
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1907
            spapr_vlan_create(spapr->vio_bus, nd);
1908
        } else {
1909
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1910 1911 1912
        }
    }

1913
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1914
        spapr_vscsi_create(spapr->vio_bus);
1915 1916
    }

1917
    /* Graphics */
1918
    if (spapr_vga_init(phb->bus)) {
1919
        spapr->has_graphics = true;
1920
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1921 1922
    }

1923
    if (machine->usb) {
1924 1925 1926 1927 1928
        if (smc->use_ohci_by_default) {
            pci_create_simple(phb->bus, -1, "pci-ohci");
        } else {
            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
        }
1929

1930
        if (spapr->has_graphics) {
1931 1932 1933 1934
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1935 1936 1937
        }
    }

1938
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1939 1940 1941 1942 1943
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1944 1945 1946 1947
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1948
                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
1949
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1950 1951
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
1952
                                   NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
1953 1954
            kernel_le = kernel_size > 0;
        }
1955
        if (kernel_size < 0) {
1956 1957
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1958 1959 1960 1961 1962
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1963 1964 1965 1966
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1967
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1968
                                              load_limit - initrd_base);
1969 1970 1971 1972 1973 1974 1975 1976 1977
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1978
    }
1979

1980 1981 1982 1983
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1984
    if (!filename) {
1985
        error_report("Could not find LPAR firmware '%s'", bios_name);
1986 1987
        exit(1);
    }
1988
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1989 1990
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1991 1992 1993 1994
        exit(1);
    }
    g_free(filename);

1995 1996 1997
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
1998 1999 2000 2001
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

2002
    /* Prepare the device tree */
2003
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2004
                                            kernel_size, kernel_le,
2005 2006
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
2007
    assert(spapr->fdt_skel != NULL);
2008

2009 2010 2011 2012
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

2013
    qemu_register_boot_set(spapr_boot_set, spapr);
2014 2015
}

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2034
/*
2035
 * Implementation of an interface to adjust firmware path
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2091 2092
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2093
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2094

2095
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2096 2097 2098 2099
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2100
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2101

2102 2103
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2104 2105 2106 2107 2108 2109
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2110 2111 2112
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
2113 2114
}

2115 2116 2117 2118 2119 2120 2121
static void spapr_machine_finalizefn(Object *obj)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    g_free(spapr->kvm_type);
}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

B
Bharata B Rao 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
                           uint32_t node, Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;

    /*
     * Check for DRC connectors and send hotplug notification to the
     * guest only in case of hotplugged memory. This allows cold plugged
     * memory to be specified at boot time.
     */
    if (!dev->hotplugged) {
        return;
    }

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }
2170
    spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
B
Bharata B Rao 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2191
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
B
Bharata B Rao 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

    spapr_add_lmbs(dev, addr, size, node, &error_abort);

out:
    error_propagate(errp, local_err);
}

static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2214
        int node;
B
Bharata B Rao 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
        spapr_memory_plug(hotplug_dev, dev, node, errp);
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        error_setg(errp, "Memory hot unplug not supported by sPAPR");
    }
}

static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
                                             DeviceState *dev)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

2268 2269 2270 2271 2272 2273 2274
static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
{
    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
     * socket means much for the paravirtualized PAPR platform) */
    return cpu_index / smp_threads / smp_cores;
}

2275 2276 2277
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
2278
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2279
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2280
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
2281
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2282

2283
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
2284 2285 2286 2287 2288 2289

    /*
     * We set up the default / latest behaviour here.  The class_init
     * functions for the specific versioned machine types can override
     * these details for backwards compatibility
     */
2290 2291 2292
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
2293
    mc->max_cpus = MAX_CPUMASK_BITS;
2294
    mc->no_parallel = 1;
2295
    mc->default_boot_order = "";
2296
    mc->default_ram_size = 512 * M_BYTE;
2297
    mc->kvm_type = spapr_kvm_type;
2298
    mc->has_dynamic_sysbus = true;
2299
    mc->pci_allow_0_address = true;
B
Bharata B Rao 已提交
2300 2301 2302
    mc->get_hotplug_handler = spapr_get_hotpug_handler;
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
2303
    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2304

2305
    smc->dr_lmb_enabled = true;
2306
    fwc->get_dev_path = spapr_get_fw_dev_path;
2307
    nc->nmi_monitor_handler = spapr_nmi;
2308 2309 2310 2311 2312
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
2313
    .abstract      = true,
2314
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
2315
    .instance_init = spapr_machine_initfn,
2316
    .instance_finalize = spapr_machine_finalizefn,
D
David Gibson 已提交
2317
    .class_size    = sizeof(sPAPRMachineClass),
2318
    .class_init    = spapr_machine_class_init,
2319 2320
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
2321
        { TYPE_NMI },
B
Bharata B Rao 已提交
2322
        { TYPE_HOTPLUG_HANDLER },
2323 2324
        { }
    },
2325 2326
};

2327
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
D
David Gibson 已提交
2328 2329 2330 2331 2332
    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
                                                    void *data)      \
    {                                                                \
        MachineClass *mc = MACHINE_CLASS(oc);                        \
        spapr_machine_##suffix##_class_options(mc);                  \
2333 2334 2335 2336
        if (latest) {                                                \
            mc->alias = "pseries";                                   \
            mc->is_default = 1;                                      \
        }                                                            \
D
David Gibson 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
    }                                                                \
    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
    {                                                                \
        MachineState *machine = MACHINE(obj);                        \
        spapr_machine_##suffix##_instance_options(machine);          \
    }                                                                \
    static const TypeInfo spapr_machine_##suffix##_info = {          \
        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
        .parent = TYPE_SPAPR_MACHINE,                                \
        .class_init = spapr_machine_##suffix##_class_init,           \
        .instance_init = spapr_machine_##suffix##_instance_init,     \
    };                                                               \
    static void spapr_machine_register_##suffix(void)                \
    {                                                                \
        type_register(&spapr_machine_##suffix##_info);               \
    }                                                                \
    machine_init(spapr_machine_register_##suffix)

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
/*
 * pseries-2.6
 */
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
}

static void spapr_machine_2_6_class_options(MachineClass *mc)
{
    /* Defaults for the latest behaviour inherited from the base class */
}

DEFINE_SPAPR_MACHINE(2_6, "2.6", true);

2369 2370 2371
/*
 * pseries-2.5
 */
2372 2373 2374
#define SPAPR_COMPAT_2_5 \
        HW_COMPAT_2_5

D
David Gibson 已提交
2375
static void spapr_machine_2_5_instance_options(MachineState *machine)
2376
{
D
David Gibson 已提交
2377 2378 2379 2380
}

static void spapr_machine_2_5_class_options(MachineClass *mc)
{
2381 2382
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

2383
    spapr_machine_2_6_class_options(mc);
2384
    smc->use_ohci_by_default = true;
2385
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2386 2387
}

2388
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2389 2390 2391 2392

/*
 * pseries-2.4
 */
C
Cornelia Huck 已提交
2393 2394 2395
#define SPAPR_COMPAT_2_4 \
        HW_COMPAT_2_4

D
David Gibson 已提交
2396
static void spapr_machine_2_4_instance_options(MachineState *machine)
2397
{
D
David Gibson 已提交
2398 2399
    spapr_machine_2_5_instance_options(machine);
}
2400

D
David Gibson 已提交
2401 2402
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
2403 2404 2405 2406
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

    spapr_machine_2_5_class_options(mc);
    smc->dr_lmb_enabled = false;
D
David Gibson 已提交
2407
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2408 2409
}

2410
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2411 2412 2413 2414

/*
 * pseries-2.3
 */
E
Eduardo Habkost 已提交
2415
#define SPAPR_COMPAT_2_3 \
C
Cornelia Huck 已提交
2416
        SPAPR_COMPAT_2_4 \
2417 2418 2419 2420 2421 2422
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
2423

D
David Gibson 已提交
2424
static void spapr_machine_2_3_instance_options(MachineState *machine)
J
Jason Wang 已提交
2425
{
D
David Gibson 已提交
2426
    spapr_machine_2_4_instance_options(machine);
2427
    savevm_skip_section_footers();
2428
    global_state_set_optional();
J
Jason Wang 已提交
2429 2430
}

D
David Gibson 已提交
2431
static void spapr_machine_2_3_class_options(MachineClass *mc)
2432
{
2433
    spapr_machine_2_4_class_options(mc);
D
David Gibson 已提交
2434
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2435
}
2436
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2437

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
/*
 * pseries-2.2
 */

#define SPAPR_COMPAT_2_2 \
        SPAPR_COMPAT_2_3 \
        HW_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        },

D
David Gibson 已提交
2451
static void spapr_machine_2_2_instance_options(MachineState *machine)
2452
{
D
David Gibson 已提交
2453
    spapr_machine_2_3_instance_options(machine);
2454 2455
}

D
David Gibson 已提交
2456
static void spapr_machine_2_2_class_options(MachineClass *mc)
2457
{
2458
    spapr_machine_2_3_class_options(mc);
D
David Gibson 已提交
2459
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2460
}
2461
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2462

2463 2464 2465 2466 2467 2468
/*
 * pseries-2.1
 */
#define SPAPR_COMPAT_2_1 \
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
2469

D
David Gibson 已提交
2470
static void spapr_machine_2_1_instance_options(MachineState *machine)
2471
{
D
David Gibson 已提交
2472
    spapr_machine_2_2_instance_options(machine);
2473
}
J
Jason Wang 已提交
2474

D
David Gibson 已提交
2475
static void spapr_machine_2_1_class_options(MachineClass *mc)
J
Jason Wang 已提交
2476
{
2477
    spapr_machine_2_2_class_options(mc);
D
David Gibson 已提交
2478
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
J
Jason Wang 已提交
2479
}
2480
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
D
David Gibson 已提交
2481

2482
static void spapr_machine_register_types(void)
2483
{
2484
    type_register_static(&spapr_machine_info);
2485 2486
}

2487
type_init(spapr_machine_register_types)