spapr.c 75.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "sysemu/numa.h"
29
#include "hw/hw.h"
30
#include "hw/fw-path-provider.h"
31
#include "elf.h"
P
Paolo Bonzini 已提交
32
#include "net/net.h"
A
Andrew Jones 已提交
33
#include "sysemu/device_tree.h"
34
#include "sysemu/block-backend.h"
35 36
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
B
Bharata B Rao 已提交
37
#include "sysemu/device_tree.h"
38
#include "kvm_ppc.h"
39
#include "migration/migration.h"
40
#include "mmu-hash64.h"
41
#include "qom/cpu.h"
42 43

#include "hw/boards.h"
P
Paolo Bonzini 已提交
44
#include "hw/ppc/ppc.h"
45 46
#include "hw/loader.h"

P
Paolo Bonzini 已提交
47 48 49 50
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
51
#include "hw/pci/msi.h"
52

53
#include "hw/pci/pci.h"
54 55
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
56

57
#include "exec/address-spaces.h"
58
#include "hw/usb.h"
59
#include "qemu/config-file.h"
60
#include "qemu/error-report.h"
61
#include "trace.h"
62
#include "hw/nmi.h"
A
Avi Kivity 已提交
63

64
#include "hw/compat.h"
D
David Gibson 已提交
65
#include "qemu-common.h"
66

67 68
#include <libfdt.h>

69 70 71 72 73 74 75 76 77 78
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
79
#define FDT_MAX_SIZE            0x100000
80
#define RTAS_MAX_SIZE           0x10000
81
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
82 83
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
84 85
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
86

87
#define MIN_RMA_SLOF            128UL
88 89 90

#define TIMEBASE_FREQ           512000000ULL

91 92
#define PHANDLE_XICP            0x00001111

93 94
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

95
static XICSState *try_create_xics(const char *type, int nr_servers,
96
                                  int nr_irqs, Error **errp)
97
{
98
    Error *err = NULL;
99 100 101 102 103
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
104 105 106 107
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
108 109
        return NULL;
    }
110
    return XICS_COMMON(dev);
111 112
}

113 114
static XICSState *xics_system_init(MachineState *machine,
                                   int nr_servers, int nr_irqs)
115 116 117
{
    XICSState *icp = NULL;

118
    if (kvm_enabled()) {
119 120
        Error *err = NULL;

121
        if (machine_kernel_irqchip_allowed(machine)) {
122
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
123
        }
124
        if (machine_kernel_irqchip_required(machine) && !icp) {
125 126
            error_report("kernel_irqchip requested but unavailable: %s",
                         error_get_pretty(err));
127 128 129 130
        }
    }

    if (!icp) {
131
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
132 133 134 135 136
    }

    return icp;
}

137 138 139 140 141 142 143 144
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

145
    if (cpu->cpu_version) {
146
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
147 148 149 150 151
        if (ret < 0) {
            return ret;
        }
    }

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

191
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
192
{
193 194
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
195 196
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
197
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
198

199 200 201 202
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
203

204
        if ((index % smt) != 0) {
205 206 207
            continue;
        }

208
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
209

210 211 212 213 214 215 216 217 218
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
219
        if (offset < 0) {
220 221 222 223
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
224 225
        }

226 227
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
228 229 230
        if (ret < 0) {
            return ret;
        }
231

232 233 234 235 236
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

237
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
238
                                     ppc_get_compat_smt_threads(cpu));
239 240 241
        if (ret < 0) {
            return ret;
        }
242 243 244 245
    }
    return ret;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

280 281
static hwaddr spapr_node0_size(void)
{
282 283
    MachineState *machine = MACHINE(qdev_get_machine());

284 285 286 287
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
288 289
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
290 291 292
            }
        }
    }
293
    return machine->ram_size;
294 295
}

296 297 298 299 300 301 302 303 304 305
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

306 307 308 309
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
310

311
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
312 313
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
314
                                   bool little_endian,
315 316
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
317 318 319 320
{
    void *fdt;
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
321 322
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
323
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
324
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
325
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
326
    char *buf;
327

328 329 330 331 332 333 334 335 336 337 338
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

339
    fdt = g_malloc0(FDT_MAX_SIZE);
340 341
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

342 343 344 345 346 347
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
348 349 350 351 352
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
353
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
354
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
    g_free(buf);

S
Sam Bobroff 已提交
379 380 381 382 383
    if (qemu_get_vm_name()) {
        _FDT((fdt_property_string(fdt, "ibm,partition-name",
                                  qemu_get_vm_name())));
    }

384 385 386 387 388 389
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

390 391 392
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

393 394 395 396 397
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
398 399 400
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
401

402
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
403 404 405
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
406
    }
407 408 409
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
410 411 412
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
413

414 415
    _FDT((fdt_end_node(fdt)));

416 417 418
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

419 420 421
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
422 423 424 425 426 427
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
428

429 430 431
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

432
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
433 434
    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
                            RTAS_EVENT_SCAN_RATE)));
435

436 437 438 439
    if (msi_supported) {
        _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
    }

440
    /*
441
     * According to PAPR, rtas ibm,os-term does not guarantee a return
442 443 444 445 446 447 448
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

449 450
    _FDT((fdt_end_node(fdt)));

451
    /* interrupt controller */
452
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
453 454 455 456 457 458 459 460

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
461 462 463
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
464 465 466

    _FDT((fdt_end_node(fdt)));

467 468 469 470 471 472 473
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
474 475
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
476 477 478

    _FDT((fdt_end_node(fdt)));

479 480 481
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

502 503 504
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

505 506 507
    return fdt;
}

508
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
509 510 511 512 513
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
514
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
531
    return off;
532 533
}

534
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
535
{
536
    MachineState *machine = MACHINE(spapr);
537 538 539 540 541 542 543 544
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
545
        ramnode.node_mem = machine->ram_size;
546
        nodes = &ramnode;
547
    }
548

549 550 551 552
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
553
        if (mem_start >= machine->ram_size) {
554 555
            node_size = 0;
        } else {
556
            node_size = nodes[i].node_mem;
557 558
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
559 560
            }
        }
561 562
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
563
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
564 565 566
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
567 568 569 570 571 572 573 574 575 576 577 578
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
579 580 581 582 583
    }

    return 0;
}

584 585 586 587 588 589 590 591 592 593 594 595 596
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
597
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
598 599
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    /* Note: we keep CI large pages off for now because a 64K capable guest
     * provisioned with large pages might otherwise try to map a qemu
     * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
     * even if that qemu runs on a 4k host.
     *
     * We can later add this bit back when we are confident this is not
     * an issue (!HV KVM or 64K host)
     */
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
    uint8_t *pa_features;
    size_t pa_size;

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
646
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

684 685 686 687 688 689 690 691 692 693 694 695 696
    /* Do the ibm,pa-features property, adjust it for ci-large-pages */
    if (env->mmu_model == POWERPC_MMU_2_06) {
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
    } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
    }
    if (env->ci_large_pages) {
        pa_features[3] |= 0x20;
    }
    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));

697
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
698
                           cs->cpu_index / vcpus_per_socket)));
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
                                ppc_get_compat_smt_threads(cpu)));
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

745 746 747 748 749 750 751 752 753 754 755
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
756
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
757
    uint32_t *int_buf, *cur_index, buf_len;
758
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
759

760 761 762 763 764 765
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        sPAPRDRConnectorClass *drck;
792
        uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
        uint32_t *dynamic_memory = cur_index;

        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                       addr/lmb_size);
        g_assert(drc);
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

        dynamic_memory[0] = cpu_to_be32(addr >> 32);
        dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
        dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
        dynamic_memory[3] = cpu_to_be32(0); /* reserved */
        dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
        if (addr < machine->ram_size ||
                    memory_region_present(get_system_memory(), addr)) {
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
        } else {
            dynamic_memory[5] = cpu_to_be32(0);
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
821
    int_buf[0] = cpu_to_be32(nr_nodes);
822 823
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
824
    for (i = 0; i < nr_nodes; i++) {
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
                                 bool cpu_update, bool memory_update)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
    if (cpu_update) {
        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
    }

    /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
    if (memory_update && smc->dr_lmb_enabled) {
        _FDT((spapr_populate_drconf_memory(spapr, fdt)));
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

887
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
A
Avi Kivity 已提交
888 889 890
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
891
{
892
    MachineState *machine = MACHINE(qdev_get_machine());
B
Bharata B Rao 已提交
893
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
894
    const char *boot_device = machine->boot_order;
895 896 897
    int ret, i;
    size_t cb = 0;
    char *bootlist;
898
    void *fdt;
899
    sPAPRPHBState *phb;
900

901
    fdt = g_malloc(FDT_MAX_SIZE);
902 903 904

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
905

906 907 908 909
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
910 911
    }

912 913 914 915 916 917
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

918 919 920 921 922 923 924 925
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
            fprintf(stderr, "could not set up rng device in the fdt\n");
            exit(1);
        }
    }

926
    QLIST_FOREACH(phb, &spapr->phbs, list) {
927
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
928 929 930 931 932 933 934
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

935 936 937 938 939 940
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

941 942
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
943

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

959 960 961 962 963 964 965 966 967
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

968
    if (!spapr->has_graphics) {
969 970
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
971

B
Bharata B Rao 已提交
972 973 974 975
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

976 977
    _FDT((fdt_pack(fdt)));

978
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
979 980
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
981 982 983
        exit(1);
    }

A
Andrew Jones 已提交
984
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
985
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
986

G
Gonglei 已提交
987
    g_free(bootlist);
988
    g_free(fdt);
989 990 991 992 993 994 995
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

996
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
997
{
998 999
    CPUPPCState *env = &cpu->env;

1000 1001 1002 1003
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1004
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1005
    }
1006 1007
}

1008 1009 1010 1011 1012 1013
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1014
static void spapr_alloc_htab(sPAPRMachineState *spapr)
1015 1016
{
    long shift;
1017
    int index;
1018 1019 1020 1021 1022 1023 1024 1025 1026

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
1027 1028 1029 1030
        if (shift != spapr->htab_shift) {
            error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
        }

1031
        spapr->htab_shift = shift;
1032
        kvmppc_kern_htab = true;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    } else {
        /* Allocate htab */
        spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
    }
}

/*
 * Clear HTAB entries during reset.
 *
 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
 */
static void spapr_reset_htab(sPAPRMachineState *spapr)
{
    long shift;
    int index;
1056

1057 1058
    shift = kvmppc_reset_htab(spapr->htab_shift);
    if (shift > 0) {
1059 1060 1061 1062
        if (shift != spapr->htab_shift) {
            error_setg(&error_abort, "Requested HTAB allocation failed during reset");
        }

1063 1064 1065 1066
        /* Tell readers to update their file descriptor */
        if (spapr->htab_fd >= 0) {
            spapr->htab_fd_stale = true;
        }
1067 1068
    } else {
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
1069 1070 1071 1072

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
1073 1074 1075 1076
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
1077 1078
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
1079
    }
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

1099 1100 1101 1102
/*
 * A guest reset will cause spapr->htab_fd to become stale if being used.
 * Reopen the file descriptor to make sure the whole HTAB is properly read.
 */
1103
static int spapr_check_htab_fd(sPAPRMachineState *spapr)
1104 1105 1106 1107 1108 1109 1110 1111
{
    int rc = 0;

    if (spapr->htab_fd_stale) {
        close(spapr->htab_fd);
        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            error_report("Unable to open fd for reading hash table from KVM: "
1112
                         "%s", strerror(errno));
1113 1114 1115 1116 1117 1118 1119 1120
            rc = -1;
        }
        spapr->htab_fd_stale = false;
    }

    return rc;
}

1121
static void ppc_spapr_reset(void)
1122
{
1123
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1124
    PowerPCCPU *first_ppc_cpu;
1125
    uint32_t rtas_limit;
1126

1127 1128 1129
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1130 1131
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
1132

1133
    qemu_devices_reset();
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

1144 1145 1146 1147
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

1148 1149 1150 1151
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

1152
    /* Set up the entry state */
1153 1154 1155 1156
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1157
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1158 1159 1160

}

1161 1162
static void spapr_cpu_reset(void *opaque)
{
1163
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1164
    PowerPCCPU *cpu = opaque;
1165
    CPUState *cs = CPU(cpu);
1166
    CPUPPCState *env = &cpu->env;
1167

1168
    cpu_reset(cs);
1169 1170 1171 1172

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
1173
    cs->halted = 1;
1174 1175

    env->spr[SPR_HIOR] = 0;
1176

1177
    env->external_htab = (uint8_t *)spapr->htab;
1178 1179 1180 1181 1182 1183 1184
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
1185
    env->htab_base = -1;
1186 1187 1188 1189 1190 1191
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
1192
    env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1193
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1194
        (spapr->htab_shift - 18);
1195 1196
}

1197
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1198
{
1199
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1200
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1201

P
Paolo Bonzini 已提交
1202
    if (dinfo) {
1203
        qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
D
David Gibson 已提交
1204 1205 1206 1207 1208 1209 1210
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1211
static void spapr_rtc_create(sPAPRMachineState *spapr)
1212 1213 1214 1215 1216
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1217 1218 1219

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1220 1221
}

1222
/* Returns whether we want to use VGA or not */
1223 1224
static int spapr_vga_init(PCIBus *pci_bus)
{
1225 1226
    switch (vga_interface_type) {
    case VGA_NONE:
1227 1228 1229
        return false;
    case VGA_DEVICE:
        return true;
1230
    case VGA_STD:
1231
    case VGA_VIRTIO:
1232
        return pci_vga_init(pci_bus) != NULL;
1233
    default:
1234 1235
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
1236
        exit(0);
1237 1238 1239
    }
}

1240 1241
static int spapr_post_load(void *opaque, int version_id)
{
1242
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1243 1244
    int err = 0;

S
Stefan Weil 已提交
1245
    /* In earlier versions, there was no separate qdev for the PAPR
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1261 1262
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1263
    .version_id = 3,
1264
    .minimum_version_id = 1,
1265
    .post_load = spapr_post_load,
1266
    .fields = (VMStateField[]) {
1267 1268
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1269 1270

        /* RTC offset */
1271
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1272

1273
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1274 1275 1276 1277 1278 1279
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1280
    sPAPRMachineState *spapr = opaque;
1281 1282 1283 1284

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1285 1286 1287 1288 1289 1290 1291
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
1292
        spapr->htab_fd_stale = false;
1293 1294 1295 1296 1297 1298 1299 1300
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


1301 1302 1303
    return 0;
}

1304
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1305 1306 1307 1308
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1309
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1325
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1340
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1354
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1355
                                int64_t max_ns)
1356 1357 1358 1359 1360
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1361
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1377
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1378 1379 1380 1381 1382 1383 1384 1385 1386
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1387
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1406
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1428
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1429 1430
}

1431 1432 1433
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1434 1435
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1436
    sPAPRMachineState *spapr = opaque;
1437
    int rc = 0;
1438 1439 1440 1441

    /* Iteration header */
    qemu_put_be32(f, 0);

1442 1443 1444
    if (!spapr->htab) {
        assert(kvm_enabled());

1445 1446 1447 1448 1449
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1450 1451 1452 1453 1454 1455
        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1456 1457
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1458
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1459 1460 1461 1462 1463 1464 1465
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1466
    return rc;
1467 1468 1469 1470
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1471
    sPAPRMachineState *spapr = opaque;
1472 1473 1474 1475

    /* Iteration header */
    qemu_put_be32(f, 0);

1476 1477 1478 1479 1480
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1481 1482 1483 1484 1485
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1486 1487 1488 1489 1490 1491 1492 1493 1494
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1506
    sPAPRMachineState *spapr = opaque;
1507
    uint32_t section_hdr;
1508
    int fd = -1;
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
1520 1521
            error_report("htab_shift mismatch: source %d target %d",
                         section_hdr, spapr->htab_shift);
1522 1523 1524 1525 1526
            return -EINVAL;
        }
        return 0;
    }

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1550
        if ((index + n_valid + n_invalid) >
1551 1552 1553
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1554 1555
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1556 1557 1558
            return -EINVAL;
        }

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1577 1578 1579
        }
    }

1580 1581 1582 1583 1584
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1595 1596 1597 1598 1599 1600 1601
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;

    /* Set time-base frequency to 512 MHz */
    cpu_ppc_tb_init(env, TIMEBASE_FREQ);

    /* PAPR always has exception vectors in RAM not ROM. To ensure this,
     * MSR[IP] should never be set.
     */
    env->msr_mask &= ~(1 << 6);

    /* Tell KVM that we're in PAPR mode */
    if (kvm_enabled()) {
        kvmppc_set_papr(cpu);
    }

    if (cpu->max_compat) {
        if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
            exit(1);
        }
    }

    xics_cpu_setup(spapr->icp, cpu);

    qemu_register_reset(spapr_cpu_reset, cpu);
}

D
David Gibson 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1652
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1653 1654 1655 1656 1657 1658
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1659
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
static void spapr_validate_node_memory(MachineState *machine)
{
    int i;

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
        machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_report("Can't support memory configuration where RAM size "
                     "0x" RAM_ADDR_FMT " or maxmem size "
                     "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
                     machine->ram_size, machine->maxram_size,
                     SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        exit(EXIT_FAILURE);
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
            error_report("Can't support memory configuration where memory size"
                         " %" PRIx64 " of node %d isn't aligned to %llu MB",
                         numa_info[i].node_mem, i,
                         SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
            exit(EXIT_FAILURE);
        }
    }
}

1696
/* pSeries LPAR / sPAPR hardware init */
1697
static void ppc_spapr_init(MachineState *machine)
1698
{
1699
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
D
David Gibson 已提交
1700
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1701 1702 1703
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1704
    PowerPCCPU *cpu;
1705
    PCIHostState *phb;
1706
    int i;
A
Avi Kivity 已提交
1707 1708
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1709 1710
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1711
    hwaddr rma_alloc_size;
1712
    hwaddr node0_size = spapr_node0_size();
1713 1714
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1715
    long load_limit, fw_size;
1716
    bool kernel_le = false;
1717
    char *filename;
1718

1719 1720
    msi_supported = true;

1721 1722
    QLIST_INIT(&spapr->phbs);

1723 1724
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1725
    /* Allocate RMA if necessary */
1726
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1727 1728

    if (rma_alloc_size == -1) {
1729
        error_report("Unable to create RMA");
1730 1731
        exit(1);
    }
1732

1733
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1734
        spapr->rma_size = rma_alloc_size;
1735
    } else {
1736
        spapr->rma_size = node0_size;
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1751 1752
    }

1753 1754 1755 1756 1757 1758
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1759 1760
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1761

1762 1763 1764 1765 1766
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
1767
        if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
1768 1769 1770 1771
            break;
        }
        spapr->htab_shift++;
    }
1772
    spapr_alloc_htab(spapr);
1773

1774
    /* Set up Interrupt Controller before we create the VCPUs */
1775
    spapr->icp = xics_system_init(machine,
1776
                                  DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1777
                                               smp_threads),
1778 1779
                                  XICS_IRQS);

D
David Gibson 已提交
1780 1781 1782 1783
    if (smc->dr_lmb_enabled) {
        spapr_validate_node_memory(machine);
    }

1784
    /* init CPUs */
1785 1786
    if (machine->cpu_model == NULL) {
        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1787 1788
    }
    for (i = 0; i < smp_cpus; i++) {
1789
        cpu = cpu_ppc_init(machine->cpu_model);
1790
        if (cpu == NULL) {
1791 1792 1793
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1794
        spapr_cpu_init(spapr, cpu);
1795 1796
    }

1797 1798 1799
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
1800
        kvmppc_enable_set_mode_hcall();
1801 1802
    }

1803
    /* allocate RAM */
1804
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1805
                                         machine->ram_size);
1806
    memory_region_add_subregion(sysmem, 0, ram);
1807

1808 1809 1810 1811 1812 1813 1814 1815
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1816 1817 1818 1819 1820
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;

        if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1821 1822
            error_report("Specified number of memory slots %"PRIu64" exceeds max supported %d\n",
                         machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
            exit(EXIT_FAILURE);
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
1834 1835 1836 1837
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

1838
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1839
    if (!filename) {
1840
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1841 1842
        exit(1);
    }
1843 1844 1845
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1846
        error_report("Could not load LPAR rtas '%s'", filename);
1847 1848
        exit(1);
    }
1849
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1850 1851
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1852 1853
        exit(1);
    }
1854
    g_free(filename);
1855

1856 1857 1858
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1859
    /* Set up the RTC RTAS interfaces */
1860
    spapr_rtc_create(spapr);
1861

1862
    /* Set up VIO bus */
1863 1864
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1865
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1866
        if (serial_hds[i]) {
1867
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1868 1869
        }
    }
1870

D
David Gibson 已提交
1871 1872 1873
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1874
    /* Set up PCI */
1875 1876
    spapr_pci_rtas_init();

1877
    phb = spapr_create_phb(spapr, 0);
1878

P
Paolo Bonzini 已提交
1879
    for (i = 0; i < nb_nics; i++) {
1880 1881 1882
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1883
            nd->model = g_strdup("ibmveth");
1884 1885 1886
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1887
            spapr_vlan_create(spapr->vio_bus, nd);
1888
        } else {
1889
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1890 1891 1892
        }
    }

1893
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1894
        spapr_vscsi_create(spapr->vio_bus);
1895 1896
    }

1897
    /* Graphics */
1898
    if (spapr_vga_init(phb->bus)) {
1899
        spapr->has_graphics = true;
1900
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1901 1902
    }

1903
    if (machine->usb) {
1904
        pci_create_simple(phb->bus, -1, "pci-ohci");
1905

1906
        if (spapr->has_graphics) {
1907 1908 1909 1910
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1911 1912 1913
        }
    }

1914
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1915 1916 1917 1918 1919
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1920 1921 1922 1923
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1924
                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
1925
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1926 1927
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
1928
                                   NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
1929 1930
            kernel_le = kernel_size > 0;
        }
1931
        if (kernel_size < 0) {
1932 1933
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1934 1935 1936 1937 1938
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1939 1940 1941 1942
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1943
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1944
                                              load_limit - initrd_base);
1945 1946 1947 1948 1949 1950 1951 1952 1953
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1954
    }
1955

1956 1957 1958 1959
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1960
    if (!filename) {
1961
        error_report("Could not find LPAR firmware '%s'", bios_name);
1962 1963
        exit(1);
    }
1964
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1965 1966
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1967 1968 1969 1970
        exit(1);
    }
    g_free(filename);

1971 1972 1973
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
1974 1975 1976 1977
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1978
    /* Prepare the device tree */
1979
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1980
                                            kernel_size, kernel_le,
1981 1982
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
1983
    assert(spapr->fdt_skel != NULL);
1984

1985 1986 1987 1988
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

1989
    qemu_register_boot_set(spapr_boot_set, spapr);
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2010
/*
2011
 * Implementation of an interface to adjust firmware path
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2067 2068
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2069
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2070

2071
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2072 2073 2074 2075
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2076
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2077

2078 2079
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2080 2081 2082 2083 2084 2085
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2086 2087 2088
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
2089 2090
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

B
Bharata B Rao 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
                           uint32_t node, Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;

    /*
     * Check for DRC connectors and send hotplug notification to the
     * guest only in case of hotplugged memory. This allows cold plugged
     * memory to be specified at boot time.
     */
    if (!dev->hotplugged) {
        return;
    }

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }
2139
    spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
B
Bharata B Rao 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2160
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, false, &local_err);
B
Bharata B Rao 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

    spapr_add_lmbs(dev, addr, size, node, &error_abort);

out:
    error_propagate(errp, local_err);
}

static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2183
        int node;
B
Bharata B Rao 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
        spapr_memory_plug(hotplug_dev, dev, node, errp);
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        error_setg(errp, "Memory hot unplug not supported by sPAPR");
    }
}

static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
                                             DeviceState *dev)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

2237 2238 2239 2240 2241 2242 2243
static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
{
    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
     * socket means much for the paravirtualized PAPR platform) */
    return cpu_index / smp_threads / smp_cores;
}

2244 2245 2246
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
2247
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2248
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2249
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
2250
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2251 2252 2253 2254

    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
2255
    mc->max_cpus = MAX_CPUMASK_BITS;
2256
    mc->no_parallel = 1;
2257
    mc->default_boot_order = "";
2258
    mc->default_ram_size = 512 * M_BYTE;
2259
    mc->kvm_type = spapr_kvm_type;
2260
    mc->has_dynamic_sysbus = true;
2261
    mc->pci_allow_0_address = true;
B
Bharata B Rao 已提交
2262 2263 2264
    mc->get_hotplug_handler = spapr_get_hotpug_handler;
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
2265
    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2266

D
David Gibson 已提交
2267
    smc->dr_lmb_enabled = false;
2268
    fwc->get_dev_path = spapr_get_fw_dev_path;
2269
    nc->nmi_monitor_handler = spapr_nmi;
2270 2271 2272 2273 2274
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
2275
    .abstract      = true,
2276
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
2277
    .instance_init = spapr_machine_initfn,
D
David Gibson 已提交
2278
    .class_size    = sizeof(sPAPRMachineClass),
2279
    .class_init    = spapr_machine_class_init,
2280 2281
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
2282
        { TYPE_NMI },
B
Bharata B Rao 已提交
2283
        { TYPE_HOTPLUG_HANDLER },
2284 2285
        { }
    },
2286 2287
};

E
Eduardo Habkost 已提交
2288
#define SPAPR_COMPAT_2_3 \
2289 2290 2291 2292 2293 2294
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
2295

2296
#define SPAPR_COMPAT_2_2 \
E
Eduardo Habkost 已提交
2297
        SPAPR_COMPAT_2_3 \
2298
        HW_COMPAT_2_2 \
2299 2300 2301 2302
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
2303
        },
2304 2305

#define SPAPR_COMPAT_2_1 \
2306 2307
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
2308

J
Jason Wang 已提交
2309 2310
static void spapr_compat_2_3(Object *obj)
{
2311
    savevm_skip_section_footers();
2312
    global_state_set_optional();
J
Jason Wang 已提交
2313 2314
}

2315 2316
static void spapr_compat_2_2(Object *obj)
{
J
Jason Wang 已提交
2317
    spapr_compat_2_3(obj);
2318 2319 2320 2321 2322 2323 2324
}

static void spapr_compat_2_1(Object *obj)
{
    spapr_compat_2_2(obj);
}

J
Jason Wang 已提交
2325 2326 2327 2328 2329 2330
static void spapr_machine_2_3_instance_init(Object *obj)
{
    spapr_compat_2_3(obj);
    spapr_machine_initfn(obj);
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
static void spapr_machine_2_2_instance_init(Object *obj)
{
    spapr_compat_2_2(obj);
    spapr_machine_initfn(obj);
}

static void spapr_machine_2_1_instance_init(Object *obj)
{
    spapr_compat_2_1(obj);
    spapr_machine_initfn(obj);
}

2343 2344 2345
static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
2346
    static GlobalProperty compat_props[] = {
2347
        SPAPR_COMPAT_2_1
2348 2349
        { /* end of list */ }
    };
2350 2351

    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
2352
    mc->compat_props = compat_props;
2353 2354 2355
}

static const TypeInfo spapr_machine_2_1_info = {
2356
    .name          = MACHINE_TYPE_NAME("pseries-2.1"),
2357 2358
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_1_class_init,
2359
    .instance_init = spapr_machine_2_1_instance_init,
2360 2361
};

2362 2363
static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
{
2364
    static GlobalProperty compat_props[] = {
2365
        SPAPR_COMPAT_2_2
2366 2367
        { /* end of list */ }
    };
2368 2369 2370
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
2371
    mc->compat_props = compat_props;
2372 2373 2374
}

static const TypeInfo spapr_machine_2_2_info = {
2375
    .name          = MACHINE_TYPE_NAME("pseries-2.2"),
2376 2377
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_2_class_init,
2378
    .instance_init = spapr_machine_2_2_instance_init,
2379 2380
};

2381 2382
static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
{
2383
    static GlobalProperty compat_props[] = {
2384
        SPAPR_COMPAT_2_3
2385 2386
        { /* end of list */ }
    };
2387 2388 2389
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
2390
    mc->compat_props = compat_props;
2391 2392 2393
}

static const TypeInfo spapr_machine_2_3_info = {
2394
    .name          = MACHINE_TYPE_NAME("pseries-2.3"),
2395 2396
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_3_class_init,
J
Jason Wang 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405
    .instance_init = spapr_machine_2_3_instance_init,
};

static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
    mc->alias = "pseries";
D
David Gibson 已提交
2406
    mc->is_default = 0;
J
Jason Wang 已提交
2407 2408 2409
}

static const TypeInfo spapr_machine_2_4_info = {
2410
    .name          = MACHINE_TYPE_NAME("pseries-2.4"),
J
Jason Wang 已提交
2411 2412
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_4_class_init,
2413 2414
};

D
David Gibson 已提交
2415 2416 2417
static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
2418
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
D
David Gibson 已提交
2419 2420 2421 2422 2423

    mc->name = "pseries-2.5";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
    mc->alias = "pseries";
    mc->is_default = 1;
D
David Gibson 已提交
2424
    smc->dr_lmb_enabled = true;
D
David Gibson 已提交
2425 2426 2427 2428 2429 2430 2431 2432
}

static const TypeInfo spapr_machine_2_5_info = {
    .name          = MACHINE_TYPE_NAME("pseries-2.5"),
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_5_class_init,
};

2433
static void spapr_machine_register_types(void)
2434
{
2435
    type_register_static(&spapr_machine_info);
2436
    type_register_static(&spapr_machine_2_1_info);
2437
    type_register_static(&spapr_machine_2_2_info);
2438
    type_register_static(&spapr_machine_2_3_info);
J
Jason Wang 已提交
2439
    type_register_static(&spapr_machine_2_4_info);
D
David Gibson 已提交
2440
    type_register_static(&spapr_machine_2_5_info);
2441 2442
}

2443
type_init(spapr_machine_register_types)