spapr.c 59.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "sysemu/numa.h"
29
#include "hw/hw.h"
30
#include "hw/fw-path-provider.h"
31
#include "elf.h"
P
Paolo Bonzini 已提交
32
#include "net/net.h"
33
#include "sysemu/block-backend.h"
34 35
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
36
#include "kvm_ppc.h"
37
#include "mmu-hash64.h"
38
#include "qom/cpu.h"
39 40

#include "hw/boards.h"
P
Paolo Bonzini 已提交
41
#include "hw/ppc/ppc.h"
42 43
#include "hw/loader.h"

P
Paolo Bonzini 已提交
44 45 46 47
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
48
#include "hw/pci/msi.h"
49

50
#include "hw/pci/pci.h"
51 52
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
53

54
#include "exec/address-spaces.h"
55
#include "hw/usb.h"
56
#include "qemu/config-file.h"
57
#include "qemu/error-report.h"
58
#include "trace.h"
59
#include "hw/nmi.h"
A
Avi Kivity 已提交
60

61 62
#include "hw/compat.h"

63 64
#include <libfdt.h>

65 66 67 68 69 70 71 72 73 74
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
75
#define FDT_MAX_SIZE            0x40000
76
#define RTAS_MAX_SIZE           0x10000
77
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
78 79
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
80 81
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
82

83
#define MIN_RMA_SLOF            128UL
84 85 86

#define TIMEBASE_FREQ           512000000ULL

87
#define MAX_CPUS                255
88

89 90
#define PHANDLE_XICP            0x00001111

91 92
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

93
static XICSState *try_create_xics(const char *type, int nr_servers,
94
                                  int nr_irqs, Error **errp)
95
{
96
    Error *err = NULL;
97 98 99 100 101
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
102 103 104 105
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
106 107
        return NULL;
    }
108
    return XICS_COMMON(dev);
109 110
}

111 112
static XICSState *xics_system_init(MachineState *machine,
                                   int nr_servers, int nr_irqs)
113 114 115
{
    XICSState *icp = NULL;

116
    if (kvm_enabled()) {
117 118
        Error *err = NULL;

119
        if (machine_kernel_irqchip_allowed(machine)) {
120
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
121
        }
122
        if (machine_kernel_irqchip_required(machine) && !icp) {
123 124
            error_report("kernel_irqchip requested but unavailable: %s",
                         error_get_pretty(err));
125 126 127 128
        }
    }

    if (!icp) {
129
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
130 131 132 133 134
    }

    return icp;
}

135 136 137 138 139 140 141 142
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

143
    if (cpu->cpu_version) {
144
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
145 146 147 148 149
        if (ret < 0) {
            return ret;
        }
    }

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

168
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
169
{
170 171
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
172 173
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
174
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
175

176 177 178 179
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
180 181 182 183
        uint32_t associativity[] = {cpu_to_be32(0x5),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
184
                                    cpu_to_be32(cs->numa_node),
185
                                    cpu_to_be32(index)};
186

187
        if ((index % smt) != 0) {
188 189 190
            continue;
        }

191
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
192

193 194 195 196 197 198 199 200 201
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
202
        if (offset < 0) {
203 204 205 206
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
207 208
        }

209 210 211 212 213 214 215 216 217 218
        if (nb_numa_nodes > 1) {
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                              sizeof(associativity));
            if (ret < 0) {
                return ret;
            }
        }

        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
219 220 221
        if (ret < 0) {
            return ret;
        }
222

223
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
224
                                     ppc_get_compat_smt_threads(cpu));
225 226 227
        if (ret < 0) {
            return ret;
        }
228 229 230 231
    }
    return ret;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

266 267
static hwaddr spapr_node0_size(void)
{
268 269
    MachineState *machine = MACHINE(qdev_get_machine());

270 271 272 273
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
274 275
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
276 277 278
            }
        }
    }
279
    return machine->ram_size;
280 281
}

282 283 284 285 286 287 288 289 290 291
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

292 293 294 295
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
296

297
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
298 299
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
300
                                   bool little_endian,
301 302
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
303 304
{
    void *fdt;
305
    CPUState *cs;
306 307
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
308 309
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
310
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
311
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
312
    int smt = kvmppc_smt_threads();
313
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
314 315 316
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
    unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
    uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
317
    char *buf;
318

319 320 321 322 323 324 325 326 327 328 329
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

330
    fdt = g_malloc0(FDT_MAX_SIZE);
331 332
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

333 334 335 336 337 338
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
339 340 341 342 343
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
344
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
345
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
    g_free(buf);

370 371 372 373 374 375
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

376 377 378
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

379 380 381 382 383
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
384 385 386
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
387

388
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
389 390 391
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
392
    }
393 394 395
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
396 397 398
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
399

400 401 402 403 404 405 406 407
    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

A
Andreas Färber 已提交
408
    CPU_FOREACH(cs) {
409 410
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        CPUPPCState *env = &cpu->env;
411
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
412
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
413
        int index = ppc_get_vcpu_dt_id(cpu);
414 415 416
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};
417 418
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
419 420
        uint32_t page_sizes_prop[64];
        size_t page_sizes_prop_size;
421

422 423 424 425
        if ((index % smt) != 0) {
            continue;
        }

426
        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
427 428 429

        _FDT((fdt_begin_node(fdt, nodename)));

430
        g_free(nodename);
431

D
David Gibson 已提交
432
        _FDT((fdt_property_cell(fdt, "reg", index)));
433 434 435
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
436
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
437
                                env->dcache_line_size)));
438 439 440 441 442
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
443
                                env->icache_line_size)));
444 445 446 447 448 449 450 451 452 453 454 455

        if (pcc->l1_dcache_size) {
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
        }
        if (pcc->l1_icache_size) {
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
        }

456 457
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
458 459 460
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
461

462 463 464 465
        if (env->spr_cb[SPR_PURR].oea_read) {
            _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
        }

D
David Gibson 已提交
466
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
467 468 469 470
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

471 472 473 474
        /* Advertise VMX/VSX (vector extensions) if available
         *   0 / no property == no vector extensions
         *   1               == VMX / Altivec available
         *   2               == VSX available */
475 476 477
        if (env->insns_flags & PPC_ALTIVEC) {
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

478 479 480 481 482 483
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
        }

        /* Advertise DFP (Decimal Floating Point) if available
         *   0 / no property == no DFP
         *   1               == DFP available */
484 485
        if (env->insns_flags2 & PPC2_DFP) {
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
486 487
        }

488 489 490 491 492 493 494
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                      sizeof(page_sizes_prop));
        if (page_sizes_prop_size) {
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
                               page_sizes_prop, page_sizes_prop_size)));
        }

495 496 497
        _FDT((fdt_property_cell(fdt, "ibm,chip-id",
                                cs->cpu_index / cpus_per_socket)));

498 499 500 501 502
        _FDT((fdt_end_node(fdt)));
    }

    _FDT((fdt_end_node(fdt)));

503 504 505
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

506 507 508
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
509 510 511 512 513 514
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
515

516 517 518
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

519
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
520 521
    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
                            RTAS_EVENT_SCAN_RATE)));
522

523
    /*
524
     * According to PAPR, rtas ibm,os-term does not guarantee a return
525 526 527 528 529 530 531
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

532 533
    _FDT((fdt_end_node(fdt)));

534
    /* interrupt controller */
535
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
536 537 538 539 540 541 542 543

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
544 545 546
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
547 548 549

    _FDT((fdt_end_node(fdt)));

550 551 552 553 554 555 556
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
557 558
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
559 560 561

    _FDT((fdt_end_node(fdt)));

562 563 564
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

585 586 587
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

588 589 590
    return fdt;
}

591 592
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

609 610
    /* Fix skeleton up */
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

628 629 630 631 632 633
static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
634
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
}

653
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
654
{
655
    MachineState *machine = MACHINE(spapr);
656 657 658 659 660 661 662 663
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
664
        ramnode.node_mem = machine->ram_size;
665
        nodes = &ramnode;
666
    }
667

668 669 670 671
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
672
        if (mem_start >= machine->ram_size) {
673 674
            node_size = 0;
        } else {
675
            node_size = nodes[i].node_mem;
676 677
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
678 679
            }
        }
680 681 682 683 684 685
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
686 687 688 689 690 691 692 693 694 695 696 697
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
698 699 700 701 702
    }

    return 0;
}

703
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
A
Avi Kivity 已提交
704 705 706
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
707
{
708 709
    MachineState *machine = MACHINE(qdev_get_machine());
    const char *boot_device = machine->boot_order;
710 711 712
    int ret, i;
    size_t cb = 0;
    char *bootlist;
713
    void *fdt;
714
    sPAPRPHBState *phb;
715

716
    fdt = g_malloc(FDT_MAX_SIZE);
717 718 719

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
720

721 722 723 724 725 726
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

727 728 729 730 731 732
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

733
    QLIST_FOREACH(phb, &spapr->phbs, list) {
734
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
735 736 737 738 739 740 741
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

742 743 744 745 746 747
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

748
    /* Advertise NUMA via ibm,associativity */
749 750 751
    ret = spapr_fixup_cpu_dt(fdt, spapr);
    if (ret < 0) {
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
752 753
    }

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

769 770 771 772 773 774 775 776 777
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

778
    if (!spapr->has_graphics) {
779 780
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
781

782 783
    _FDT((fdt_pack(fdt)));

784
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
785 786
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
787 788 789
        exit(1);
    }

790
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
791

G
Gonglei 已提交
792
    g_free(bootlist);
793
    g_free(fdt);
794 795 796 797 798 799 800
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

801
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
802
{
803 804
    CPUPPCState *env = &cpu->env;

805 806 807 808
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
809
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
810
    }
811 812
}

813 814 815 816 817 818
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

819
static void spapr_reset_htab(sPAPRMachineState *spapr)
820 821
{
    long shift;
822
    int index;
823 824 825 826 827 828 829 830 831 832

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
833
        kvmppc_kern_htab = true;
834 835 836 837 838

        /* Tell readers to update their file descriptor */
        if (spapr->htab_fd >= 0) {
            spapr->htab_fd_stale = true;
        }
839 840 841 842 843 844 845 846
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
847 848 849 850

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
851 852 853 854
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
855 856
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
857
    }
858 859
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

877 878 879 880
/*
 * A guest reset will cause spapr->htab_fd to become stale if being used.
 * Reopen the file descriptor to make sure the whole HTAB is properly read.
 */
881
static int spapr_check_htab_fd(sPAPRMachineState *spapr)
882 883 884 885 886 887 888 889
{
    int rc = 0;

    if (spapr->htab_fd_stale) {
        close(spapr->htab_fd);
        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            error_report("Unable to open fd for reading hash table from KVM: "
890
                         "%s", strerror(errno));
891 892 893 894 895 896 897 898
            rc = -1;
        }
        spapr->htab_fd_stale = false;
    }

    return rc;
}

899
static void ppc_spapr_reset(void)
900
{
901
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
902
    PowerPCCPU *first_ppc_cpu;
903
    uint32_t rtas_limit;
904

905 906 907
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

908 909
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
910

911
    qemu_devices_reset();
912

913 914 915 916 917 918 919 920 921
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

922 923 924 925
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

926 927 928 929
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

930
    /* Set up the entry state */
931 932 933 934
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
935
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
936 937 938

}

939 940
static void spapr_cpu_reset(void *opaque)
{
941
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
942
    PowerPCCPU *cpu = opaque;
943
    CPUState *cs = CPU(cpu);
944
    CPUPPCState *env = &cpu->env;
945

946
    cpu_reset(cs);
947 948 949 950

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
951
    cs->halted = 1;
952 953

    env->spr[SPR_HIOR] = 0;
954

955
    env->external_htab = (uint8_t *)spapr->htab;
956 957 958 959 960 961 962
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
963
    env->htab_base = -1;
964 965 966 967 968 969
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
970
    env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
971
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
972
        (spapr->htab_shift - 18);
973 974
}

975
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
976
{
977
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
978
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
979

P
Paolo Bonzini 已提交
980
    if (dinfo) {
981
        qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
D
David Gibson 已提交
982 983 984 985 986 987 988
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

989
static void spapr_rtc_create(sPAPRMachineState *spapr)
990 991 992 993 994
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
995 996 997

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
998 999
}

1000
/* Returns whether we want to use VGA or not */
1001 1002
static int spapr_vga_init(PCIBus *pci_bus)
{
1003 1004
    switch (vga_interface_type) {
    case VGA_NONE:
1005 1006 1007
        return false;
    case VGA_DEVICE:
        return true;
1008 1009
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
1010
    default:
1011 1012
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
1013
        exit(0);
1014 1015 1016
    }
}

1017 1018
static int spapr_post_load(void *opaque, int version_id)
{
1019
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1020 1021
    int err = 0;

S
Stefan Weil 已提交
1022
    /* In earlier versions, there was no separate qdev for the PAPR
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1038 1039
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1040
    .version_id = 3,
1041
    .minimum_version_id = 1,
1042
    .post_load = spapr_post_load,
1043
    .fields = (VMStateField[]) {
1044 1045
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1046 1047

        /* RTC offset */
1048
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1049

1050
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1051 1052 1053 1054 1055 1056
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1057
    sPAPRMachineState *spapr = opaque;
1058 1059 1060 1061

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1062 1063 1064 1065 1066 1067 1068
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
1069
        spapr->htab_fd_stale = false;
1070 1071 1072 1073 1074 1075 1076 1077
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


1078 1079 1080
    return 0;
}

1081
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1082 1083 1084 1085
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1086
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1102
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1117
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1131
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1132
                                int64_t max_ns)
1133 1134 1135 1136 1137
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1138
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1154
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1155 1156 1157 1158 1159 1160 1161 1162 1163
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1164
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1183
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1205
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1206 1207
}

1208 1209 1210
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1211 1212
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1213
    sPAPRMachineState *spapr = opaque;
1214
    int rc = 0;
1215 1216 1217 1218

    /* Iteration header */
    qemu_put_be32(f, 0);

1219 1220 1221
    if (!spapr->htab) {
        assert(kvm_enabled());

1222 1223 1224 1225 1226
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1227 1228 1229 1230 1231 1232
        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1233 1234
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1235
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1236 1237 1238 1239 1240 1241 1242
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1243
    return rc;
1244 1245 1246 1247
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1248
    sPAPRMachineState *spapr = opaque;
1249 1250 1251 1252

    /* Iteration header */
    qemu_put_be32(f, 0);

1253 1254 1255 1256 1257
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1258 1259 1260 1261 1262
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1263 1264 1265 1266 1267 1268 1269 1270 1271
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1283
    sPAPRMachineState *spapr = opaque;
1284
    uint32_t section_hdr;
1285
    int fd = -1;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1325
        if ((index + n_valid + n_invalid) >
1326 1327 1328
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1329 1330
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1331 1332 1333
            return -EINVAL;
        }

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1352 1353 1354
        }
    }

1355 1356 1357 1358 1359
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1370 1371 1372 1373 1374 1375 1376
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1377
/* pSeries LPAR / sPAPR hardware init */
1378
static void ppc_spapr_init(MachineState *machine)
1379
{
1380
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1381 1382 1383 1384
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1385
    PowerPCCPU *cpu;
A
Andreas Färber 已提交
1386
    CPUPPCState *env;
1387
    PCIHostState *phb;
1388
    int i;
A
Avi Kivity 已提交
1389 1390
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1391 1392
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1393
    hwaddr rma_alloc_size;
1394
    hwaddr node0_size = spapr_node0_size();
1395 1396
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1397
    long load_limit, fw_size;
1398
    bool kernel_le = false;
1399
    char *filename;
1400

1401 1402
    msi_supported = true;

1403 1404
    QLIST_INIT(&spapr->phbs);

1405 1406
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1407
    /* Allocate RMA if necessary */
1408
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1409 1410

    if (rma_alloc_size == -1) {
1411
        error_report("Unable to create RMA");
1412 1413
        exit(1);
    }
1414

1415
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1416
        spapr->rma_size = rma_alloc_size;
1417
    } else {
1418
        spapr->rma_size = node0_size;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1433 1434
    }

1435 1436 1437 1438 1439 1440
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1441 1442
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1443

1444 1445 1446 1447 1448
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
1449
        if ((1ULL << (spapr->htab_shift + 7)) >= machine->ram_size) {
1450 1451 1452 1453
            break;
        }
        spapr->htab_shift++;
    }
1454

1455
    /* Set up Interrupt Controller before we create the VCPUs */
1456
    spapr->icp = xics_system_init(machine,
1457 1458
                                  DIV_ROUND_UP(smp_cpus * kvmppc_smt_threads(),
                                               smp_threads),
1459 1460
                                  XICS_IRQS);

1461 1462
    /* init CPUs */
    if (cpu_model == NULL) {
1463
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1464 1465
    }
    for (i = 0; i < smp_cpus; i++) {
1466 1467
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
1468 1469 1470
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1471 1472
        env = &cpu->env;

1473 1474 1475
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1476 1477 1478 1479
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
         * MSR[IP] should never be set.
         */
        env->msr_mask &= ~(1 << 6);
1480 1481 1482

        /* Tell KVM that we're in PAPR mode */
        if (kvm_enabled()) {
1483
            kvmppc_set_papr(cpu);
1484 1485
        }

1486 1487 1488 1489 1490 1491
        if (cpu->max_compat) {
            if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
                exit(1);
            }
        }

1492 1493
        xics_cpu_setup(spapr->icp, cpu);

1494
        qemu_register_reset(spapr_cpu_reset, cpu);
1495 1496
    }

1497 1498 1499 1500 1501
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
    }

1502
    /* allocate RAM */
1503
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1504
                                         machine->ram_size);
1505
    memory_region_add_subregion(sysmem, 0, ram);
1506

1507 1508 1509 1510 1511 1512 1513 1514
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1515
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1516
    if (!filename) {
1517
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1518 1519
        exit(1);
    }
1520 1521 1522
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1523
        error_report("Could not load LPAR rtas '%s'", filename);
1524 1525
        exit(1);
    }
1526
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1527 1528
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1529 1530
        exit(1);
    }
1531
    g_free(filename);
1532

1533 1534 1535
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1536
    /* Set up the RTC RTAS interfaces */
1537
    spapr_rtc_create(spapr);
1538

1539
    /* Set up VIO bus */
1540 1541
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1542
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1543
        if (serial_hds[i]) {
1544
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1545 1546
        }
    }
1547

D
David Gibson 已提交
1548 1549 1550
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1551
    /* Set up PCI */
1552 1553
    spapr_pci_rtas_init();

1554
    phb = spapr_create_phb(spapr, 0);
1555

P
Paolo Bonzini 已提交
1556
    for (i = 0; i < nb_nics; i++) {
1557 1558 1559
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1560
            nd->model = g_strdup("ibmveth");
1561 1562 1563
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1564
            spapr_vlan_create(spapr->vio_bus, nd);
1565
        } else {
1566
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1567 1568 1569
        }
    }

1570
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1571
        spapr_vscsi_create(spapr->vio_bus);
1572 1573
    }

1574
    /* Graphics */
1575
    if (spapr_vga_init(phb->bus)) {
1576
        spapr->has_graphics = true;
1577
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1578 1579
    }

1580
    if (machine->usb) {
1581
        pci_create_simple(phb->bus, -1, "pci-ohci");
1582

1583
        if (spapr->has_graphics) {
1584 1585 1586 1587
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1588 1589 1590
        }
    }

1591
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1592 1593 1594 1595 1596
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1597 1598 1599 1600 1601
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1602
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1603 1604 1605 1606 1607
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1608
        if (kernel_size < 0) {
1609 1610
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1611 1612 1613 1614 1615
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1616 1617 1618 1619
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1620
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1621
                                              load_limit - initrd_base);
1622 1623 1624 1625 1626 1627 1628 1629 1630
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1631
    }
1632

1633 1634 1635 1636
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1637
    if (!filename) {
1638
        error_report("Could not find LPAR firmware '%s'", bios_name);
1639 1640
        exit(1);
    }
1641
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1642 1643
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1644 1645 1646 1647
        exit(1);
    }
    g_free(filename);

1648 1649 1650
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
1651 1652 1653 1654
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1655
    /* Prepare the device tree */
1656
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1657
                                            kernel_size, kernel_le,
1658 1659
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
1660
    assert(spapr->fdt_skel != NULL);
1661

1662 1663 1664 1665
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

1666
    qemu_register_boot_set(spapr_boot_set, spapr);
1667 1668
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1687
/*
1688
 * Implementation of an interface to adjust firmware path
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
1744 1745
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
1746
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1747

1748
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
1749 1750 1751 1752
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
1753
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1754

1755 1756
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
1757 1758 1759 1760 1761 1762
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1763 1764 1765
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
1766 1767
}

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

1785 1786 1787
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1788
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1789
    NMIClass *nc = NMI_CLASS(oc);
1790 1791 1792 1793 1794 1795

    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
    mc->max_cpus = MAX_CPUS;
    mc->no_parallel = 1;
1796
    mc->default_boot_order = "";
1797
    mc->default_ram_size = 512 * M_BYTE;
1798
    mc->kvm_type = spapr_kvm_type;
1799
    mc->has_dynamic_sysbus = true;
1800

1801
    fwc->get_dev_path = spapr_get_fw_dev_path;
1802
    nc->nmi_monitor_handler = spapr_nmi;
1803 1804 1805 1806 1807
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
1808
    .abstract      = true,
1809
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
1810
    .instance_init = spapr_machine_initfn,
D
David Gibson 已提交
1811
    .class_size    = sizeof(sPAPRMachineClass),
1812
    .class_init    = spapr_machine_class_init,
1813 1814
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
1815
        { TYPE_NMI },
1816 1817
        { }
    },
1818 1819
};

E
Eduardo Habkost 已提交
1820
#define SPAPR_COMPAT_2_3 \
1821 1822 1823 1824 1825 1826
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
1827

1828
#define SPAPR_COMPAT_2_2 \
E
Eduardo Habkost 已提交
1829
        SPAPR_COMPAT_2_3 \
1830
        HW_COMPAT_2_2 \
1831 1832 1833 1834
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
1835
        },
1836 1837

#define SPAPR_COMPAT_2_1 \
1838 1839
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
1840

J
Jason Wang 已提交
1841 1842 1843 1844
static void spapr_compat_2_3(Object *obj)
{
}

1845 1846
static void spapr_compat_2_2(Object *obj)
{
J
Jason Wang 已提交
1847
    spapr_compat_2_3(obj);
1848 1849 1850 1851 1852 1853 1854
}

static void spapr_compat_2_1(Object *obj)
{
    spapr_compat_2_2(obj);
}

J
Jason Wang 已提交
1855 1856 1857 1858 1859 1860
static void spapr_machine_2_3_instance_init(Object *obj)
{
    spapr_compat_2_3(obj);
    spapr_machine_initfn(obj);
}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static void spapr_machine_2_2_instance_init(Object *obj)
{
    spapr_compat_2_2(obj);
    spapr_machine_initfn(obj);
}

static void spapr_machine_2_1_instance_init(Object *obj)
{
    spapr_compat_2_1(obj);
    spapr_machine_initfn(obj);
}

1873 1874 1875
static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1876
    static GlobalProperty compat_props[] = {
1877
        SPAPR_COMPAT_2_1
1878 1879
        { /* end of list */ }
    };
1880 1881 1882

    mc->name = "pseries-2.1";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1883
    mc->compat_props = compat_props;
1884 1885 1886 1887 1888 1889
}

static const TypeInfo spapr_machine_2_1_info = {
    .name          = TYPE_SPAPR_MACHINE "2.1",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_1_class_init,
1890
    .instance_init = spapr_machine_2_1_instance_init,
1891 1892
};

1893 1894
static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
{
1895
    static GlobalProperty compat_props[] = {
1896
        SPAPR_COMPAT_2_2
1897 1898
        { /* end of list */ }
    };
1899 1900 1901 1902
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.2";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1903
    mc->compat_props = compat_props;
1904 1905 1906 1907 1908 1909
}

static const TypeInfo spapr_machine_2_2_info = {
    .name          = TYPE_SPAPR_MACHINE "2.2",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_2_class_init,
1910
    .instance_init = spapr_machine_2_2_instance_init,
1911 1912
};

1913 1914
static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
{
1915
    static GlobalProperty compat_props[] = {
1916
        SPAPR_COMPAT_2_3
1917 1918
        { /* end of list */ }
    };
1919 1920 1921 1922
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.3";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
1923
    mc->compat_props = compat_props;
1924 1925 1926 1927 1928 1929
}

static const TypeInfo spapr_machine_2_3_info = {
    .name          = TYPE_SPAPR_MACHINE "2.3",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_3_class_init,
J
Jason Wang 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
    .instance_init = spapr_machine_2_3_instance_init,
};

static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.4";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
    mc->alias = "pseries";
    mc->is_default = 1;
}

static const TypeInfo spapr_machine_2_4_info = {
    .name          = TYPE_SPAPR_MACHINE "2.4",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_4_class_init,
1947 1948
};

1949
static void spapr_machine_register_types(void)
1950
{
1951
    type_register_static(&spapr_machine_info);
1952
    type_register_static(&spapr_machine_2_1_info);
1953
    type_register_static(&spapr_machine_2_2_info);
1954
    type_register_static(&spapr_machine_2_3_info);
J
Jason Wang 已提交
1955
    type_register_static(&spapr_machine_2_4_info);
1956 1957
}

1958
type_init(spapr_machine_register_types)