spapr.c 42.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "elf.h"
P
Paolo Bonzini 已提交
30
#include "net/net.h"
31 32 33
#include "sysemu/blockdev.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
34
#include "kvm_ppc.h"
35
#include "mmu-hash64.h"
36 37

#include "hw/boards.h"
P
Paolo Bonzini 已提交
38
#include "hw/ppc/ppc.h"
39 40
#include "hw/loader.h"

P
Paolo Bonzini 已提交
41 42 43 44
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
45
#include "hw/pci/msi.h"
46

47
#include "hw/pci/pci.h"
48

49
#include "exec/address-spaces.h"
50
#include "hw/usb.h"
51
#include "qemu/config-file.h"
52
#include "qemu/error-report.h"
A
Avi Kivity 已提交
53

54 55
#include <libfdt.h>

56 57 58 59 60 61 62 63 64 65
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
66
#define FDT_MAX_SIZE            0x40000
67
#define RTAS_MAX_SIZE           0x10000
68 69
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
70 71
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
72

73
#define MIN_RMA_SLOF            128UL
74 75 76

#define TIMEBASE_FREQ           512000000ULL

77
#define MAX_CPUS                256
78
#define XICS_IRQS               1024
79

80 81
#define PHANDLE_XICP            0x00001111

82 83
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

84 85
sPAPREnvironment *spapr;

86
int spapr_allocate_irq(int hint, bool lsi)
87
{
88
    int irq;
89 90 91

    if (hint) {
        irq = hint;
92 93 94
        if (hint >= spapr->next_irq) {
            spapr->next_irq = hint + 1;
        }
95 96 97 98 99
        /* FIXME: we should probably check for collisions somehow */
    } else {
        irq = spapr->next_irq++;
    }

100 101 102
    /* Configure irq type */
    if (!xics_get_qirq(spapr->icp, irq)) {
        return 0;
103 104
    }

105
    xics_set_irq_type(spapr->icp, irq, lsi);
106

107
    return irq;
108 109
}

110 111 112 113 114
/*
 * Allocate block of consequtive IRQs, returns a number of the first.
 * If msi==true, aligns the first IRQ number to num.
 */
int spapr_allocate_irq_block(int num, bool lsi, bool msi)
115 116
{
    int first = -1;
117 118 119 120 121 122 123
    int i, hint = 0;

    /*
     * MSIMesage::data is used for storing VIRQ so
     * it has to be aligned to num to support multiple
     * MSI vectors. MSI-X is not affected by this.
     * The hint is used for the first IRQ, the rest should
S
Stefan Weil 已提交
124
     * be allocated continuously.
125 126 127 128 129 130
     */
    if (msi) {
        assert((num == 1) || (num == 2) || (num == 4) ||
               (num == 8) || (num == 16) || (num == 32));
        hint = (spapr->next_irq + num - 1) & ~(num - 1);
    }
131 132 133 134

    for (i = 0; i < num; ++i) {
        int irq;

135
        irq = spapr_allocate_irq(hint, lsi);
136 137 138 139 140 141
        if (!irq) {
            return -1;
        }

        if (0 == i) {
            first = irq;
142
            hint = 0;
143 144 145 146 147 148 149 150 151 152
        }

        /* If the above doesn't create a consecutive block then that's
         * an internal bug */
        assert(irq == (first + i));
    }

    return first;
}

153 154 155 156 157 158 159 160 161 162 163 164
static XICSState *try_create_xics(const char *type, int nr_servers,
                                  int nr_irqs)
{
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
    if (qdev_init(dev) < 0) {
        return NULL;
    }

165
    return XICS_COMMON(dev);
166 167 168 169 170 171
}

static XICSState *xics_system_init(int nr_servers, int nr_irqs)
{
    XICSState *icp = NULL;

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    if (kvm_enabled()) {
        QemuOpts *machine_opts = qemu_get_machine_opts();
        bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
                                                "kernel_irqchip", true);
        bool irqchip_required = qemu_opt_get_bool(machine_opts,
                                                  "kernel_irqchip", false);
        if (irqchip_allowed) {
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
        }

        if (irqchip_required && !icp) {
            perror("Failed to create in-kernel XICS\n");
            abort();
        }
    }

    if (!icp) {
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
    }

192 193 194 195 196 197 198 199
    if (!icp) {
        perror("Failed to create XICS\n");
        abort();
    }

    return icp;
}

200
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
201 202
{
    int ret = 0, offset;
203
    CPUState *cpu;
204 205
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
206
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
207

A
Andreas Färber 已提交
208
    CPU_FOREACH(cpu) {
209
        DeviceClass *dc = DEVICE_GET_CLASS(cpu);
210 211 212 213
        uint32_t associativity[] = {cpu_to_be32(0x5),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
214
                                    cpu_to_be32(cpu->numa_node),
215
                                    cpu_to_be32(cpu->cpu_index)};
216

217
        if ((cpu->cpu_index % smt) != 0) {
218 219 220
            continue;
        }

221
        snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
222
                 cpu->cpu_index);
223 224 225 226 227 228

        offset = fdt_path_offset(fdt, cpu_model);
        if (offset < 0) {
            return offset;
        }

229 230 231 232 233 234 235 236 237 238
        if (nb_numa_nodes > 1) {
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                              sizeof(associativity));
            if (ret < 0) {
                return ret;
            }
        }

        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
239 240 241 242 243 244 245
        if (ret < 0) {
            return ret;
        }
    }
    return ret;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

280 281 282 283 284 285 286 287 288 289 290
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)


291
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
292 293
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
294
                                   bool little_endian,
295
                                   const char *boot_device,
296 297
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
298 299
{
    void *fdt;
300
    CPUState *cs;
301 302
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
303
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
304
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
305
    char qemu_hypertas_prop[] = "hcall-memop1";
306
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
307
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
308
    int i, smt = kvmppc_smt_threads();
309
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
310

311
    fdt = g_malloc0(FDT_MAX_SIZE);
312 313
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

314 315 316 317 318 319
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
320 321 322 323 324
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
325
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
326
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
327 328 329 330 331 332 333

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

334 335 336
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

337 338 339 340 341
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
342 343 344
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
345

346
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
347 348 349
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
350
    }
A
Avik Sil 已提交
351 352 353
    if (boot_device) {
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
    }
354 355 356
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
357

358 359 360 361 362 363 364 365
    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

A
Andreas Färber 已提交
366
    CPU_FOREACH(cs) {
367 368
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        CPUPPCState *env = &cpu->env;
369
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
370 371
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
        int index = cs->cpu_index;
372 373
        uint32_t servers_prop[smp_threads];
        uint32_t gservers_prop[smp_threads * 2];
374 375 376
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};
377 378
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
379 380
        uint32_t page_sizes_prop[64];
        size_t page_sizes_prop_size;
381

382 383 384 385
        if ((index % smt) != 0) {
            continue;
        }

386
        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
387 388 389

        _FDT((fdt_begin_node(fdt, nodename)));

390
        g_free(nodename);
391

D
David Gibson 已提交
392
        _FDT((fdt_property_cell(fdt, "reg", index)));
393 394 395
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
396
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
397
                                env->dcache_line_size)));
398 399 400 401 402
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
403
                                env->icache_line_size)));
404 405 406 407 408 409 410 411 412 413 414 415

        if (pcc->l1_dcache_size) {
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
        }
        if (pcc->l1_icache_size) {
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
        }

416 417
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
418 419 420
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
421 422 423 424 425 426 427 428 429 430

        /* Build interrupt servers and gservers properties */
        for (i = 0; i < smp_threads; i++) {
            servers_prop[i] = cpu_to_be32(index + i);
            /* Hack, direct the group queues back to cpu 0 */
            gservers_prop[i*2] = cpu_to_be32(index + i);
            gservers_prop[i*2 + 1] = 0;
        }
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
                           servers_prop, sizeof(servers_prop))));
431
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
432
                           gservers_prop, sizeof(gservers_prop))));
433

434 435 436 437
        if (env->spr_cb[SPR_PURR].oea_read) {
            _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
        }

D
David Gibson 已提交
438
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
439 440 441 442
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

443 444 445 446
        /* Advertise VMX/VSX (vector extensions) if available
         *   0 / no property == no vector extensions
         *   1               == VMX / Altivec available
         *   2               == VSX available */
447 448 449
        if (env->insns_flags & PPC_ALTIVEC) {
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

450 451 452 453 454 455
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
        }

        /* Advertise DFP (Decimal Floating Point) if available
         *   0 / no property == no DFP
         *   1               == DFP available */
456 457
        if (env->insns_flags2 & PPC2_DFP) {
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
458 459
        }

460 461 462 463 464 465 466
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                      sizeof(page_sizes_prop));
        if (page_sizes_prop_size) {
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
                               page_sizes_prop, page_sizes_prop_size)));
        }

467 468 469 470 471
        _FDT((fdt_end_node(fdt)));
    }

    _FDT((fdt_end_node(fdt)));

472 473 474 475 476
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
                       sizeof(hypertas_prop))));
477 478
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
                       sizeof(qemu_hypertas_prop))));
479

480 481 482
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

483 484
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));

485 486
    _FDT((fdt_end_node(fdt)));

487
    /* interrupt controller */
488
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
489 490 491 492 493 494 495 496

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
497 498 499
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
500 501 502

    _FDT((fdt_end_node(fdt)));

503 504 505 506 507 508 509
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
510 511
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
512 513 514

    _FDT((fdt_end_node(fdt)));

515 516 517
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

518 519 520
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

521 522 523
    return fdt;
}

524 525 526 527 528 529
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
{
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
                                cpu_to_be32(0x0)};
    char mem_name[32];
530
    hwaddr node0_size, mem_start, node_size;
531 532 533 534
    uint64_t mem_reg_property[2];
    int i, off;

    /* memory node(s) */
535 536 537 538 539
    if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
        node0_size = node_mem[0];
    } else {
        node0_size = ram_size;
    }
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

    /* RMA */
    mem_reg_property[0] = 0;
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
    off = fdt_add_subnode(fdt, 0, "memory@0");
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));

    /* RAM: Node 0 */
    if (node0_size > spapr->rma_size) {
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);

        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
    }

    /* RAM: Node 1 and beyond */
    mem_start = node0_size;
    for (i = 1; i < nb_numa_nodes; i++) {
        mem_reg_property[0] = cpu_to_be64(mem_start);
571 572 573 574 575 576 577 578 579
        if (mem_start >= ram_size) {
            node_size = 0;
        } else {
            node_size = node_mem[i];
            if (node_size > ram_size - mem_start) {
                node_size = ram_size - mem_start;
            }
        }
        mem_reg_property[1] = cpu_to_be64(node_size);
580 581 582 583 584 585 586 587 588
        associativity[3] = associativity[4] = cpu_to_be32(i);
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
589
        mem_start += node_size;
590 591 592 593 594
    }

    return 0;
}

595
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
A
Avi Kivity 已提交
596 597 598
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
599 600 601
{
    int ret;
    void *fdt;
602
    sPAPRPHBState *phb;
603

604
    fdt = g_malloc(FDT_MAX_SIZE);
605 606 607

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
608

609 610 611 612 613 614
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

615 616 617 618 619 620
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

621
    QLIST_FOREACH(phb, &spapr->phbs, list) {
622
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
623 624 625 626 627 628 629
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

630 631 632 633 634 635
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

636
    /* Advertise NUMA via ibm,associativity */
637 638 639
    ret = spapr_fixup_cpu_dt(fdt, spapr);
    if (ret < 0) {
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
640 641
    }

642
    if (!spapr->has_graphics) {
643 644
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
645

646 647
    _FDT((fdt_pack(fdt)));

648 649 650 651 652 653
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

654
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
655

656
    g_free(fdt);
657 658 659 660 661 662 663
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

664
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
665
{
666 667
    CPUPPCState *env = &cpu->env;

668 669 670 671
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
672
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
673
    }
674 675
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
static void spapr_reset_htab(sPAPREnvironment *spapr)
{
    long shift;

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
701 702
        hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
        spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
703
    }
704 705
}

706
static void ppc_spapr_reset(void)
707
{
708
    PowerPCCPU *first_ppc_cpu;
709

710 711
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
712

713
    qemu_devices_reset();
714 715 716 717 718 719

    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

    /* Set up the entry state */
720 721 722 723 724
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
    first_ppc_cpu->env.nip = spapr->entry_point;
725 726 727

}

728 729
static void spapr_cpu_reset(void *opaque)
{
730
    PowerPCCPU *cpu = opaque;
731
    CPUState *cs = CPU(cpu);
732
    CPUPPCState *env = &cpu->env;
733

734
    cpu_reset(cs);
735 736 737 738

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
739
    cs->halted = 1;
740 741

    env->spr[SPR_HIOR] = 0;
742

743
    env->external_htab = (uint8_t *)spapr->htab;
744 745 746 747 748 749 750
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
751 752
    env->htab_base = -1;
    env->htab_mask = HTAB_SIZE(spapr) - 1;
753
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
754
        (spapr->htab_shift - 18);
755 756
}

D
David Gibson 已提交
757 758
static void spapr_create_nvram(sPAPREnvironment *spapr)
{
759
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
760
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
761

P
Paolo Bonzini 已提交
762 763
    if (dinfo) {
        qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
D
David Gibson 已提交
764 765 766 767 768 769 770
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

771
/* Returns whether we want to use VGA or not */
772 773
static int spapr_vga_init(PCIBus *pci_bus)
{
774 775
    switch (vga_interface_type) {
    case VGA_NONE:
776 777
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
778
    default:
779 780
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
781 782
        exit(0);
        break;
783 784 785
    }
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
    .version_id = 1,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .fields      = (VMStateField []) {
        VMSTATE_UINT32(next_irq, sPAPREnvironment),

        /* RTC offset */
        VMSTATE_UINT64(rtc_offset, sPAPREnvironment),

        VMSTATE_END_OF_LIST()
    },
};

#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))

static int htab_save_setup(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


828 829 830 831 832 833 834 835
    return 0;
}

static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
836
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
        while ((index < htabslots)
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

867
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
868 869 870 871 872 873 874 875 876 877 878 879 880
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

881 882
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                int64_t max_ns)
883 884 885 886 887
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
888
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

933
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

955
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
956 957
}

958 959 960
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

961 962 963
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;
964
    int rc = 0;
965 966 967 968

    /* Iteration header */
    qemu_put_be32(f, 0);

969 970 971 972 973 974 975 976 977
    if (!spapr->htab) {
        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
978 979
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
980
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
981 982 983 984 985 986 987
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

988
    return rc;
989 990 991 992 993 994 995 996 997
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* Iteration header */
    qemu_put_be32(f, 0);

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
    sPAPREnvironment *spapr = opaque;
    uint32_t section_hdr;
1025
    int fd = -1;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1065
        if ((index + n_valid + n_invalid) >
1066 1067 1068
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1069 1070
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1071 1072 1073
            return -EINVAL;
        }

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1092 1093 1094
        }
    }

1095 1096 1097 1098 1099
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1110
/* pSeries LPAR / sPAPR hardware init */
1111
static void ppc_spapr_init(QEMUMachineInitArgs *args)
1112
{
1113 1114 1115 1116 1117
    ram_addr_t ram_size = args->ram_size;
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    const char *kernel_cmdline = args->kernel_cmdline;
    const char *initrd_filename = args->initrd_filename;
1118
    const char *boot_device = args->boot_order;
1119
    PowerPCCPU *cpu;
A
Andreas Färber 已提交
1120
    CPUPPCState *env;
1121
    PCIHostState *phb;
1122
    int i;
A
Avi Kivity 已提交
1123 1124
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
A
Avi Kivity 已提交
1125
    hwaddr rma_alloc_size;
1126
    hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1127 1128 1129
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
    long load_limit, rtas_limit, fw_size;
1130
    bool kernel_le = false;
1131
    char *filename;
1132

1133 1134
    msi_supported = true;

1135 1136 1137
    spapr = g_malloc0(sizeof(*spapr));
    QLIST_INIT(&spapr->phbs);

1138 1139
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1140 1141 1142 1143 1144 1145 1146
    /* Allocate RMA if necessary */
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);

    if (rma_alloc_size == -1) {
        hw_error("qemu: Unable to create RMA\n");
        exit(1);
    }
1147

1148
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1149
        spapr->rma_size = rma_alloc_size;
1150
    } else {
1151
        spapr->rma_size = node0_size;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1166 1167
    }

1168 1169 1170 1171 1172 1173
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1174
    /* We place the device tree and RTAS just below either the top of the RMA,
1175 1176
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary */
1177
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
1178 1179 1180
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
            break;
        }
        spapr->htab_shift++;
    }
1192

1193 1194 1195 1196 1197
    /* Set up Interrupt Controller before we create the VCPUs */
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
                                  XICS_IRQS);
    spapr->next_irq = XICS_IRQ_BASE;

1198 1199
    /* init CPUs */
    if (cpu_model == NULL) {
1200
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1201 1202
    }
    for (i = 0; i < smp_cpus; i++) {
1203 1204
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
1205 1206 1207
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1208 1209
        env = &cpu->env;

1210 1211 1212
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1213 1214 1215 1216
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
         * MSR[IP] should never be set.
         */
        env->msr_mask &= ~(1 << 6);
1217 1218 1219

        /* Tell KVM that we're in PAPR mode */
        if (kvm_enabled()) {
1220
            kvmppc_set_papr(cpu);
1221 1222
        }

1223 1224
        xics_cpu_setup(spapr->icp, cpu);

1225
        qemu_register_reset(spapr_cpu_reset, cpu);
1226 1227 1228
    }

    /* allocate RAM */
1229
    spapr->ram_limit = ram_size;
1230 1231 1232 1233
    if (spapr->ram_limit > rma_alloc_size) {
        ram_addr_t nonrma_base = rma_alloc_size;
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;

1234
        memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1235
        vmstate_register_ram_global(ram);
1236 1237
        memory_region_add_subregion(sysmem, nonrma_base, ram);
    }
1238

1239
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1240
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1241
                                           rtas_limit - spapr->rtas_addr);
1242
    if (spapr->rtas_size < 0) {
1243 1244 1245
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
1246 1247 1248 1249 1250
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
                 spapr->rtas_size, RTAS_MAX_SIZE);
        exit(1);
    }
1251
    g_free(filename);
1252

1253 1254 1255
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1256
    /* Set up VIO bus */
1257 1258
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1259
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1260
        if (serial_hds[i]) {
1261
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1262 1263
        }
    }
1264

D
David Gibson 已提交
1265 1266 1267
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1268
    /* Set up PCI */
1269
    spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1270 1271
    spapr_pci_rtas_init();

1272
    phb = spapr_create_phb(spapr, 0);
1273

P
Paolo Bonzini 已提交
1274
    for (i = 0; i < nb_nics; i++) {
1275 1276 1277
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1278
            nd->model = g_strdup("ibmveth");
1279 1280 1281
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1282
            spapr_vlan_create(spapr->vio_bus, nd);
1283
        } else {
1284
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1285 1286 1287
        }
    }

1288
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1289
        spapr_vscsi_create(spapr->vio_bus);
1290 1291
    }

1292
    /* Graphics */
1293
    if (spapr_vga_init(phb->bus)) {
1294
        spapr->has_graphics = true;
1295 1296
    }

1297
    if (usb_enabled(spapr->has_graphics)) {
1298
        pci_create_simple(phb->bus, -1, "pci-ohci");
1299 1300 1301 1302 1303 1304
        if (spapr->has_graphics) {
            usbdevice_create("keyboard");
            usbdevice_create("mouse");
        }
    }

1305
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1306 1307 1308 1309 1310
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1311 1312 1313 1314 1315
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1316
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1317 1318 1319 1320 1321
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1322
        if (kernel_size < 0) {
1323 1324
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1325 1326 1327 1328 1329
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1330 1331 1332 1333
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1334
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1335
                                              load_limit - initrd_base);
1336 1337 1338 1339 1340 1341 1342 1343 1344
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1345
    }
1346

1347 1348 1349 1350
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1351 1352 1353 1354 1355 1356 1357 1358 1359
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
    if (fw_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    g_free(filename);

    spapr->entry_point = 0x100;

1360 1361 1362 1363
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1364
    /* Prepare the device tree */
1365
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1366
                                            kernel_size, kernel_le,
1367 1368
                                            boot_device, kernel_cmdline,
                                            spapr->epow_irq);
1369
    assert(spapr->fdt_skel != NULL);
1370 1371
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1390 1391 1392
static QEMUMachine spapr_machine = {
    .name = "pseries",
    .desc = "pSeries Logical Partition (PAPR compliant)",
1393
    .is_default = 1,
1394
    .init = ppc_spapr_init,
1395
    .reset = ppc_spapr_reset,
1396
    .block_default_type = IF_SCSI,
1397 1398
    .max_cpus = MAX_CPUS,
    .no_parallel = 1,
1399
    .default_boot_order = NULL,
1400
    .kvm_type = spapr_kvm_type,
1401 1402 1403 1404 1405 1406 1407 1408
};

static void spapr_machine_init(void)
{
    qemu_register_machine(&spapr_machine);
}

machine_init(spapr_machine_init);