spapr.c 56.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "sysemu/numa.h"
29
#include "hw/hw.h"
30
#include "hw/fw-path-provider.h"
31
#include "elf.h"
P
Paolo Bonzini 已提交
32
#include "net/net.h"
33
#include "sysemu/block-backend.h"
34 35
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
36
#include "kvm_ppc.h"
37
#include "mmu-hash64.h"
38
#include "qom/cpu.h"
39 40

#include "hw/boards.h"
P
Paolo Bonzini 已提交
41
#include "hw/ppc/ppc.h"
42 43
#include "hw/loader.h"

P
Paolo Bonzini 已提交
44 45 46 47
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
48
#include "hw/pci/msi.h"
49

50
#include "hw/pci/pci.h"
51 52
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
53

54
#include "exec/address-spaces.h"
55
#include "hw/usb.h"
56
#include "qemu/config-file.h"
57
#include "qemu/error-report.h"
58
#include "trace.h"
59
#include "hw/nmi.h"
A
Avi Kivity 已提交
60

61 62
#include "hw/compat.h"

63 64
#include <libfdt.h>

65 66 67 68 69 70 71 72 73 74
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
75
#define FDT_MAX_SIZE            0x40000
76
#define RTAS_MAX_SIZE           0x10000
77
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
78 79
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
80 81
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
82

83
#define MIN_RMA_SLOF            128UL
84 85 86

#define TIMEBASE_FREQ           512000000ULL

87
#define MAX_CPUS                255
88

89 90
#define PHANDLE_XICP            0x00001111

91 92
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

93
typedef struct sPAPRMachineState sPAPRMachineState;
94

95
#define TYPE_SPAPR_MACHINE      "spapr-machine"
96
#define SPAPR_MACHINE(obj) \
97
    OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
98 99

/**
100
 * sPAPRMachineState:
101
 */
102
struct sPAPRMachineState {
103 104
    /*< private >*/
    MachineState parent_obj;
E
Eduardo Habkost 已提交
105 106 107

    /*< public >*/
    char *kvm_type;
108 109
};

110 111
sPAPREnvironment *spapr;

112 113 114 115 116 117 118 119 120 121 122 123
static XICSState *try_create_xics(const char *type, int nr_servers,
                                  int nr_irqs)
{
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
    if (qdev_init(dev) < 0) {
        return NULL;
    }

124
    return XICS_COMMON(dev);
125 126 127 128 129 130
}

static XICSState *xics_system_init(int nr_servers, int nr_irqs)
{
    XICSState *icp = NULL;

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    if (kvm_enabled()) {
        QemuOpts *machine_opts = qemu_get_machine_opts();
        bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
                                                "kernel_irqchip", true);
        bool irqchip_required = qemu_opt_get_bool(machine_opts,
                                                  "kernel_irqchip", false);
        if (irqchip_allowed) {
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
        }

        if (irqchip_required && !icp) {
            perror("Failed to create in-kernel XICS\n");
            abort();
        }
    }

    if (!icp) {
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
    }

151 152 153 154 155 156 157 158
    if (!icp) {
        perror("Failed to create XICS\n");
        abort();
    }

    return icp;
}

159 160 161 162 163 164 165 166
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

167
    if (cpu->cpu_version) {
168
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
169 170 171 172 173
        if (ret < 0) {
            return ret;
        }
    }

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

192
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
193
{
194 195
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
196 197
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
198
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
199

200 201 202 203
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
204 205 206 207
        uint32_t associativity[] = {cpu_to_be32(0x5),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
208
                                    cpu_to_be32(cs->numa_node),
209
                                    cpu_to_be32(index)};
210

211
        if ((index % smt) != 0) {
212 213 214
            continue;
        }

215
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
216

217 218 219 220 221 222 223 224 225
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
226
        if (offset < 0) {
227 228 229 230
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
231 232
        }

233 234 235 236 237 238 239 240 241 242
        if (nb_numa_nodes > 1) {
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                              sizeof(associativity));
            if (ret < 0) {
                return ret;
            }
        }

        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
243 244 245
        if (ret < 0) {
            return ret;
        }
246

247
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
248
                                     ppc_get_compat_smt_threads(cpu));
249 250 251
        if (ret < 0) {
            return ret;
        }
252 253 254 255
    }
    return ret;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

290 291 292 293 294 295 296 297 298 299 300 301 302
static hwaddr spapr_node0_size(void)
{
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
                return MIN(pow2floor(numa_info[i].node_mem), ram_size);
            }
        }
    }
    return ram_size;
}

303 304 305 306 307 308 309 310 311 312
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

313 314 315 316
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
317

318
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
319 320
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
321
                                   bool little_endian,
322
                                   const char *boot_device,
323 324
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
325 326
{
    void *fdt;
327
    CPUState *cs;
328 329
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
330 331
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
332
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
333
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
334
    int smt = kvmppc_smt_threads();
335
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
336 337 338
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
    unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
    uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
339
    char *buf;
340

341 342 343 344 345 346 347 348 349 350 351
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

352
    fdt = g_malloc0(FDT_MAX_SIZE);
353 354
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

355 356 357 358 359 360
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
361 362 363 364 365
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
366
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
367
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
    g_free(buf);

392 393 394 395 396 397
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

398 399 400
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

401 402 403 404 405
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
406 407 408
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
409

410
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
411 412 413
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
414
    }
A
Avik Sil 已提交
415 416 417
    if (boot_device) {
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
    }
418 419 420
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
421 422 423
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
424

425 426 427 428 429 430 431 432
    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

A
Andreas Färber 已提交
433
    CPU_FOREACH(cs) {
434 435
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        CPUPPCState *env = &cpu->env;
436
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
437
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
438
        int index = ppc_get_vcpu_dt_id(cpu);
439 440 441
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};
442 443
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
444 445
        uint32_t page_sizes_prop[64];
        size_t page_sizes_prop_size;
446

447 448 449 450
        if ((index % smt) != 0) {
            continue;
        }

451
        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
452 453 454

        _FDT((fdt_begin_node(fdt, nodename)));

455
        g_free(nodename);
456

D
David Gibson 已提交
457
        _FDT((fdt_property_cell(fdt, "reg", index)));
458 459 460
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
461
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
462
                                env->dcache_line_size)));
463 464 465 466 467
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
468
                                env->icache_line_size)));
469 470 471 472 473 474 475 476 477 478 479 480

        if (pcc->l1_dcache_size) {
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
        }
        if (pcc->l1_icache_size) {
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
        }

481 482
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
483 484 485
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
486

487 488 489 490
        if (env->spr_cb[SPR_PURR].oea_read) {
            _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
        }

D
David Gibson 已提交
491
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
492 493 494 495
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

496 497 498 499
        /* Advertise VMX/VSX (vector extensions) if available
         *   0 / no property == no vector extensions
         *   1               == VMX / Altivec available
         *   2               == VSX available */
500 501 502
        if (env->insns_flags & PPC_ALTIVEC) {
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

503 504 505 506 507 508
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
        }

        /* Advertise DFP (Decimal Floating Point) if available
         *   0 / no property == no DFP
         *   1               == DFP available */
509 510
        if (env->insns_flags2 & PPC2_DFP) {
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
511 512
        }

513 514 515 516 517 518 519
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                      sizeof(page_sizes_prop));
        if (page_sizes_prop_size) {
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
                               page_sizes_prop, page_sizes_prop_size)));
        }

520 521 522
        _FDT((fdt_property_cell(fdt, "ibm,chip-id",
                                cs->cpu_index / cpus_per_socket)));

523 524 525 526 527
        _FDT((fdt_end_node(fdt)));
    }

    _FDT((fdt_end_node(fdt)));

528 529 530
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

531 532 533
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
534 535 536 537 538 539
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
540

541 542 543
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

544 545
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));

546
    /*
547
     * According to PAPR, rtas ibm,os-term does not guarantee a return
548 549 550 551 552 553 554
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

555 556
    _FDT((fdt_end_node(fdt)));

557
    /* interrupt controller */
558
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
559 560 561 562 563 564 565 566

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
567 568 569
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
570 571 572

    _FDT((fdt_end_node(fdt)));

573 574 575 576 577 578 579
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
580 581
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
582 583 584

    _FDT((fdt_end_node(fdt)));

585 586 587
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

608 609 610
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

611 612 613
    return fdt;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

631 632
    /* Fix skeleton up */
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

650 651 652 653 654 655
static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
656
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
}

675 676
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
{
677 678 679 680 681 682 683 684 685 686
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
        ramnode.node_mem = ram_size;
        nodes = &ramnode;
687
    }
688

689 690 691 692
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
693 694 695
        if (mem_start >= ram_size) {
            node_size = 0;
        } else {
696
            node_size = nodes[i].node_mem;
697 698 699 700
            if (node_size > ram_size - mem_start) {
                node_size = ram_size - mem_start;
            }
        }
701 702 703 704 705 706
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
707 708 709 710 711 712 713 714 715 716 717 718
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
719 720 721 722 723
    }

    return 0;
}

724
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
A
Avi Kivity 已提交
725 726 727
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
728
{
729 730 731
    int ret, i;
    size_t cb = 0;
    char *bootlist;
732
    void *fdt;
733
    sPAPRPHBState *phb;
734

735
    fdt = g_malloc(FDT_MAX_SIZE);
736 737 738

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
739

740 741 742 743 744 745
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

746 747 748 749 750 751
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

752
    QLIST_FOREACH(phb, &spapr->phbs, list) {
753
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
754 755 756 757 758 759 760
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

761 762 763 764 765 766
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

767
    /* Advertise NUMA via ibm,associativity */
768 769 770
    ret = spapr_fixup_cpu_dt(fdt, spapr);
    if (ret < 0) {
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
771 772
    }

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

788
    if (!spapr->has_graphics) {
789 790
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
791

792 793
    _FDT((fdt_pack(fdt)));

794 795 796 797 798 799
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

800
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
801

G
Gonglei 已提交
802
    g_free(bootlist);
803
    g_free(fdt);
804 805 806 807 808 809 810
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

811
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
812
{
813 814
    CPUPPCState *env = &cpu->env;

815 816 817 818
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
819
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
820
    }
821 822
}

823 824 825 826 827 828
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

829 830 831
static void spapr_reset_htab(sPAPREnvironment *spapr)
{
    long shift;
832
    int index;
833 834 835 836 837 838 839 840 841 842

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
843
        kvmppc_kern_htab = true;
844 845 846 847 848

        /* Tell readers to update their file descriptor */
        if (spapr->htab_fd >= 0) {
            spapr->htab_fd_stale = true;
        }
849 850 851 852 853 854 855 856
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
857 858 859 860

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
861 862 863 864
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
865 866
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
867
    }
868 869
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
/*
 * A guest reset will cause spapr->htab_fd to become stale if being used.
 * Reopen the file descriptor to make sure the whole HTAB is properly read.
 */
static int spapr_check_htab_fd(sPAPREnvironment *spapr)
{
    int rc = 0;

    if (spapr->htab_fd_stale) {
        close(spapr->htab_fd);
        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            error_report("Unable to open fd for reading hash table from KVM: "
                    "%s", strerror(errno));
            rc = -1;
        }
        spapr->htab_fd_stale = false;
    }

    return rc;
}

909
static void ppc_spapr_reset(void)
910
{
911
    PowerPCCPU *first_ppc_cpu;
912
    uint32_t rtas_limit;
913

914 915 916
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

917 918
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
919

920
    qemu_devices_reset();
921

922 923 924 925 926 927 928 929 930
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

931 932 933 934
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

935 936 937 938
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

939
    /* Set up the entry state */
940 941 942 943 944
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
    first_ppc_cpu->env.nip = spapr->entry_point;
945 946 947

}

948 949
static void spapr_cpu_reset(void *opaque)
{
950
    PowerPCCPU *cpu = opaque;
951
    CPUState *cs = CPU(cpu);
952
    CPUPPCState *env = &cpu->env;
953

954
    cpu_reset(cs);
955 956 957 958

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
959
    cs->halted = 1;
960 961

    env->spr[SPR_HIOR] = 0;
962

963
    env->external_htab = (uint8_t *)spapr->htab;
964 965 966 967 968 969 970
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
971
    env->htab_base = -1;
972 973 974 975 976 977 978
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
    env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
979
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
980
        (spapr->htab_shift - 18);
981 982
}

D
David Gibson 已提交
983 984
static void spapr_create_nvram(sPAPREnvironment *spapr)
{
985
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
986
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
987

P
Paolo Bonzini 已提交
988
    if (dinfo) {
989
        qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
D
David Gibson 已提交
990 991 992 993 994 995 996
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

997 998 999 1000 1001 1002 1003 1004
static void spapr_rtc_create(sPAPREnvironment *spapr)
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
}

1005
/* Returns whether we want to use VGA or not */
1006 1007
static int spapr_vga_init(PCIBus *pci_bus)
{
1008 1009
    switch (vga_interface_type) {
    case VGA_NONE:
1010 1011 1012
        return false;
    case VGA_DEVICE:
        return true;
1013 1014
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
1015
    default:
1016 1017
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
1018
        exit(0);
1019 1020 1021
    }
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static int spapr_post_load(void *opaque, int version_id)
{
    sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
    int err = 0;

    /* In earlier versions, there was no seperate qdev for the PAPR
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1043 1044
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1045
    .version_id = 3,
1046
    .minimum_version_id = 1,
1047
    .post_load = spapr_post_load,
1048
    .fields = (VMStateField[]) {
1049 1050
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1051 1052

        /* RTC offset */
1053 1054
        VMSTATE_UINT64_TEST(rtc_offset, sPAPREnvironment, version_before_3),

1055
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1067 1068 1069 1070 1071 1072 1073
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
1074
        spapr->htab_fd_stale = false;
1075 1076 1077 1078 1079 1080 1081 1082
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


1083 1084 1085 1086 1087 1088 1089 1090
    return 0;
}

static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1091
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1107
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1122
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1136 1137
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                int64_t max_ns)
1138 1139 1140 1141 1142
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1143
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1159
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1160 1161 1162 1163 1164 1165 1166 1167 1168
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1169
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1188
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1210
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1211 1212
}

1213 1214 1215
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1216 1217 1218
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;
1219
    int rc = 0;
1220 1221 1222 1223

    /* Iteration header */
    qemu_put_be32(f, 0);

1224 1225 1226
    if (!spapr->htab) {
        assert(kvm_enabled());

1227 1228 1229 1230 1231
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1232 1233 1234 1235 1236 1237
        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1238 1239
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1240
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1241 1242 1243 1244 1245 1246 1247
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1248
    return rc;
1249 1250 1251 1252 1253 1254 1255 1256 1257
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* Iteration header */
    qemu_put_be32(f, 0);

1258 1259 1260 1261 1262
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1263 1264 1265 1266 1267
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1268 1269 1270 1271 1272 1273 1274 1275 1276
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
    sPAPREnvironment *spapr = opaque;
    uint32_t section_hdr;
1290
    int fd = -1;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1330
        if ((index + n_valid + n_invalid) >
1331 1332 1333
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1334 1335
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1336 1337 1338
            return -EINVAL;
        }

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1357 1358 1359
        }
    }

1360 1361 1362 1363 1364
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1375
/* pSeries LPAR / sPAPR hardware init */
1376
static void ppc_spapr_init(MachineState *machine)
1377
{
1378 1379 1380 1381 1382 1383
    ram_addr_t ram_size = machine->ram_size;
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    const char *boot_device = machine->boot_order;
1384
    PowerPCCPU *cpu;
A
Andreas Färber 已提交
1385
    CPUPPCState *env;
1386
    PCIHostState *phb;
1387
    int i;
A
Avi Kivity 已提交
1388 1389
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1390 1391
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1392
    hwaddr rma_alloc_size;
1393
    hwaddr node0_size = spapr_node0_size();
1394 1395
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1396
    long load_limit, fw_size;
1397
    bool kernel_le = false;
1398
    char *filename;
1399

1400 1401
    msi_supported = true;

1402 1403 1404
    spapr = g_malloc0(sizeof(*spapr));
    QLIST_INIT(&spapr->phbs);

1405 1406
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1407
    /* Allocate RMA if necessary */
1408
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1409 1410 1411 1412 1413

    if (rma_alloc_size == -1) {
        hw_error("qemu: Unable to create RMA\n");
        exit(1);
    }
1414

1415
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1416
        spapr->rma_size = rma_alloc_size;
1417
    } else {
1418
        spapr->rma_size = node0_size;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1433 1434
    }

1435 1436 1437 1438 1439 1440
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1441 1442
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
            break;
        }
        spapr->htab_shift++;
    }
1454

1455 1456 1457 1458
    /* Set up Interrupt Controller before we create the VCPUs */
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
                                  XICS_IRQS);

1459 1460
    /* init CPUs */
    if (cpu_model == NULL) {
1461
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1462 1463
    }
    for (i = 0; i < smp_cpus; i++) {
1464 1465
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
1466 1467 1468
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1469 1470
        env = &cpu->env;

1471 1472 1473
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1474 1475 1476 1477
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
         * MSR[IP] should never be set.
         */
        env->msr_mask &= ~(1 << 6);
1478 1479 1480

        /* Tell KVM that we're in PAPR mode */
        if (kvm_enabled()) {
1481
            kvmppc_set_papr(cpu);
1482 1483
        }

1484 1485 1486 1487 1488 1489
        if (cpu->max_compat) {
            if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
                exit(1);
            }
        }

1490 1491
        xics_cpu_setup(spapr->icp, cpu);

1492
        qemu_register_reset(spapr_cpu_reset, cpu);
1493 1494 1495
    }

    /* allocate RAM */
1496
    spapr->ram_limit = ram_size;
1497 1498 1499
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
                                         spapr->ram_limit);
    memory_region_add_subregion(sysmem, 0, ram);
1500

1501 1502 1503 1504 1505 1506 1507 1508
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1509
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1510 1511 1512
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1513 1514 1515
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
1516
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1517
        hw_error("RTAS too big ! 0x%zx bytes (max is 0x%x)\n",
1518
                 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1519 1520
        exit(1);
    }
1521
    g_free(filename);
1522

1523 1524 1525
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1526
    /* Set up the RTC RTAS interfaces */
1527
    spapr_rtc_create(spapr);
1528

1529
    /* Set up VIO bus */
1530 1531
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1532
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1533
        if (serial_hds[i]) {
1534
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1535 1536
        }
    }
1537

D
David Gibson 已提交
1538 1539 1540
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1541
    /* Set up PCI */
1542 1543
    spapr_pci_rtas_init();

1544
    phb = spapr_create_phb(spapr, 0);
1545

P
Paolo Bonzini 已提交
1546
    for (i = 0; i < nb_nics; i++) {
1547 1548 1549
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1550
            nd->model = g_strdup("ibmveth");
1551 1552 1553
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1554
            spapr_vlan_create(spapr->vio_bus, nd);
1555
        } else {
1556
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1557 1558 1559
        }
    }

1560
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1561
        spapr_vscsi_create(spapr->vio_bus);
1562 1563
    }

1564
    /* Graphics */
1565
    if (spapr_vga_init(phb->bus)) {
1566
        spapr->has_graphics = true;
1567
        machine->usb |= defaults_enabled();
1568 1569
    }

1570
    if (machine->usb) {
1571
        pci_create_simple(phb->bus, -1, "pci-ohci");
1572

1573
        if (spapr->has_graphics) {
1574 1575 1576 1577
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1578 1579 1580
        }
    }

1581
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1582 1583 1584 1585 1586
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1587 1588 1589 1590 1591
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1592
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1593 1594 1595 1596 1597
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1598
        if (kernel_size < 0) {
1599 1600
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1601 1602 1603 1604 1605
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1606 1607 1608 1609
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1610
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1611
                                              load_limit - initrd_base);
1612 1613 1614 1615 1616 1617 1618 1619 1620
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1621
    }
1622

1623 1624 1625 1626
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1627 1628 1629 1630 1631 1632 1633 1634 1635
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
    if (fw_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    g_free(filename);

    spapr->entry_point = 0x100;

1636 1637 1638 1639
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1640
    /* Prepare the device tree */
1641
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1642
                                            kernel_size, kernel_le,
1643 1644
                                            boot_device, kernel_cmdline,
                                            spapr->epow_irq);
1645
    assert(spapr->fdt_skel != NULL);
1646 1647
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1666
/*
1667
 * Implementation of an interface to adjust firmware path
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
1723 1724
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
1725
    sPAPRMachineState *sm = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1726 1727 1728 1729 1730 1731

    return g_strdup(sm->kvm_type);
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
1732
    sPAPRMachineState *sm = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741

    g_free(sm->kvm_type);
    sm->kvm_type = g_strdup(value);
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1742 1743 1744
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

1764 1765 1766
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1767
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1768
    NMIClass *nc = NMI_CLASS(oc);
1769 1770 1771 1772 1773 1774 1775 1776

    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
    mc->max_cpus = MAX_CPUS;
    mc->no_parallel = 1;
    mc->default_boot_order = NULL;
    mc->kvm_type = spapr_kvm_type;
1777
    mc->has_dynamic_sysbus = true;
1778

1779
    fwc->get_dev_path = spapr_get_fw_dev_path;
1780
    nc->nmi_monitor_handler = spapr_nmi;
1781 1782 1783 1784 1785
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
1786
    .abstract      = true,
1787
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
1788
    .instance_init = spapr_machine_initfn,
1789
    .class_init    = spapr_machine_class_init,
1790 1791
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
1792
        { TYPE_NMI },
1793 1794
        { }
    },
1795 1796
};

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
#define SPAPR_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        }

#define SPAPR_COMPAT_2_1 \
        SPAPR_COMPAT_2_2

1807 1808 1809
static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1810 1811
    static GlobalProperty compat_props[] = {
        HW_COMPAT_2_1,
1812
        SPAPR_COMPAT_2_1,
1813 1814
        { /* end of list */ }
    };
1815 1816 1817

    mc->name = "pseries-2.1";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1818
    mc->compat_props = compat_props;
1819 1820 1821 1822 1823 1824 1825 1826
}

static const TypeInfo spapr_machine_2_1_info = {
    .name          = TYPE_SPAPR_MACHINE "2.1",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_1_class_init,
};

1827 1828
static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
{
1829 1830 1831 1832
    static GlobalProperty compat_props[] = {
        SPAPR_COMPAT_2_2,
        { /* end of list */ }
    };
1833 1834 1835 1836
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.2";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1837
    mc->compat_props = compat_props;
1838 1839 1840 1841 1842 1843 1844 1845
}

static const TypeInfo spapr_machine_2_2_info = {
    .name          = TYPE_SPAPR_MACHINE "2.2",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_2_class_init,
};

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.3";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
    mc->alias = "pseries";
    mc->is_default = 1;
}

static const TypeInfo spapr_machine_2_3_info = {
    .name          = TYPE_SPAPR_MACHINE "2.3",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_3_class_init,
};

1862
static void spapr_machine_register_types(void)
1863
{
1864
    type_register_static(&spapr_machine_info);
1865
    type_register_static(&spapr_machine_2_1_info);
1866
    type_register_static(&spapr_machine_2_2_info);
1867
    type_register_static(&spapr_machine_2_3_info);
1868 1869
}

1870
type_init(spapr_machine_register_types)