spapr.c 58.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "sysemu/numa.h"
29
#include "hw/hw.h"
30
#include "hw/fw-path-provider.h"
31
#include "elf.h"
P
Paolo Bonzini 已提交
32
#include "net/net.h"
33
#include "sysemu/block-backend.h"
34 35
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
36
#include "kvm_ppc.h"
37
#include "mmu-hash64.h"
38
#include "qom/cpu.h"
39 40

#include "hw/boards.h"
P
Paolo Bonzini 已提交
41
#include "hw/ppc/ppc.h"
42 43
#include "hw/loader.h"

P
Paolo Bonzini 已提交
44 45 46 47
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
48
#include "hw/pci/msi.h"
49

50
#include "hw/pci/pci.h"
51 52
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
53

54
#include "exec/address-spaces.h"
55
#include "hw/usb.h"
56
#include "qemu/config-file.h"
57
#include "qemu/error-report.h"
58
#include "trace.h"
59
#include "hw/nmi.h"
A
Avi Kivity 已提交
60

61 62
#include "hw/compat.h"

63 64
#include <libfdt.h>

65 66 67 68 69 70 71 72 73 74
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
75
#define FDT_MAX_SIZE            0x40000
76
#define RTAS_MAX_SIZE           0x10000
77
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
78 79
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
80 81
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
82

83
#define MIN_RMA_SLOF            128UL
84 85 86

#define TIMEBASE_FREQ           512000000ULL

87
#define MAX_CPUS                255
88

89 90
#define PHANDLE_XICP            0x00001111

91 92
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

93
typedef struct sPAPRMachineState sPAPRMachineState;
94

95
#define TYPE_SPAPR_MACHINE      "spapr-machine"
96
#define SPAPR_MACHINE(obj) \
97
    OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
98 99

/**
100
 * sPAPRMachineState:
101
 */
102
struct sPAPRMachineState {
103 104
    /*< private >*/
    MachineState parent_obj;
E
Eduardo Habkost 已提交
105 106 107

    /*< public >*/
    char *kvm_type;
108 109
};

110 111
sPAPREnvironment *spapr;

112
static XICSState *try_create_xics(const char *type, int nr_servers,
113
                                  int nr_irqs, Error **errp)
114
{
115
    Error *err = NULL;
116 117 118 119 120
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
121 122 123 124
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
125 126
        return NULL;
    }
127
    return XICS_COMMON(dev);
128 129
}

130 131
static XICSState *xics_system_init(MachineState *machine,
                                   int nr_servers, int nr_irqs)
132 133 134
{
    XICSState *icp = NULL;

135
    if (kvm_enabled()) {
136 137
        Error *err = NULL;

138
        if (machine_kernel_irqchip_allowed(machine)) {
139
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
140
        }
141
        if (machine_kernel_irqchip_required(machine) && !icp) {
142 143
            error_report("kernel_irqchip requested but unavailable: %s",
                         error_get_pretty(err));
144 145 146 147
        }
    }

    if (!icp) {
148
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
149 150 151 152 153
    }

    return icp;
}

154 155 156 157 158 159 160 161
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

162
    if (cpu->cpu_version) {
163
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
164 165 166 167 168
        if (ret < 0) {
            return ret;
        }
    }

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

187
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
188
{
189 190
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
191 192
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
193
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
194

195 196 197 198
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
199 200 201 202
        uint32_t associativity[] = {cpu_to_be32(0x5),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
203
                                    cpu_to_be32(cs->numa_node),
204
                                    cpu_to_be32(index)};
205

206
        if ((index % smt) != 0) {
207 208 209
            continue;
        }

210
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
211

212 213 214 215 216 217 218 219 220
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
221
        if (offset < 0) {
222 223 224 225
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
226 227
        }

228 229 230 231 232 233 234 235 236 237
        if (nb_numa_nodes > 1) {
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                              sizeof(associativity));
            if (ret < 0) {
                return ret;
            }
        }

        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
238 239 240
        if (ret < 0) {
            return ret;
        }
241

242
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243
                                     ppc_get_compat_smt_threads(cpu));
244 245 246
        if (ret < 0) {
            return ret;
        }
247 248 249 250
    }
    return ret;
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

285 286 287 288 289 290 291 292 293 294 295 296 297
static hwaddr spapr_node0_size(void)
{
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
                return MIN(pow2floor(numa_info[i].node_mem), ram_size);
            }
        }
    }
    return ram_size;
}

298 299 300 301 302 303 304 305 306 307
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

308 309 310 311
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
312

313
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
314 315
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
316
                                   bool little_endian,
317 318
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
319 320
{
    void *fdt;
321
    CPUState *cs;
322 323
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
324 325
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
326
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
327
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
328
    int smt = kvmppc_smt_threads();
329
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
330 331 332
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
    unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
    uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
333
    char *buf;
334

335 336 337 338 339 340 341 342 343 344 345
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

346
    fdt = g_malloc0(FDT_MAX_SIZE);
347 348
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

349 350 351 352 353 354
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
355 356 357 358 359
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
360
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
361
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
    g_free(buf);

386 387 388 389 390 391
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

392 393 394
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

395 396 397 398 399
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
400 401 402
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
403

404
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
405 406 407
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
408
    }
409 410 411
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
412 413 414
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
415

416 417 418 419 420 421 422 423
    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

A
Andreas Färber 已提交
424
    CPU_FOREACH(cs) {
425 426
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        CPUPPCState *env = &cpu->env;
427
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
428
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
429
        int index = ppc_get_vcpu_dt_id(cpu);
430 431 432
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};
433 434
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
435 436
        uint32_t page_sizes_prop[64];
        size_t page_sizes_prop_size;
437

438 439 440 441
        if ((index % smt) != 0) {
            continue;
        }

442
        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
443 444 445

        _FDT((fdt_begin_node(fdt, nodename)));

446
        g_free(nodename);
447

D
David Gibson 已提交
448
        _FDT((fdt_property_cell(fdt, "reg", index)));
449 450 451
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
452
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
453
                                env->dcache_line_size)));
454 455 456 457 458
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
459
                                env->icache_line_size)));
460 461 462 463 464 465 466 467 468 469 470 471

        if (pcc->l1_dcache_size) {
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
        }
        if (pcc->l1_icache_size) {
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
        }

472 473
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
474 475 476
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
477

478 479 480 481
        if (env->spr_cb[SPR_PURR].oea_read) {
            _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
        }

D
David Gibson 已提交
482
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
483 484 485 486
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

487 488 489 490
        /* Advertise VMX/VSX (vector extensions) if available
         *   0 / no property == no vector extensions
         *   1               == VMX / Altivec available
         *   2               == VSX available */
491 492 493
        if (env->insns_flags & PPC_ALTIVEC) {
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

494 495 496 497 498 499
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
        }

        /* Advertise DFP (Decimal Floating Point) if available
         *   0 / no property == no DFP
         *   1               == DFP available */
500 501
        if (env->insns_flags2 & PPC2_DFP) {
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
502 503
        }

504 505 506 507 508 509 510
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                      sizeof(page_sizes_prop));
        if (page_sizes_prop_size) {
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
                               page_sizes_prop, page_sizes_prop_size)));
        }

511 512 513
        _FDT((fdt_property_cell(fdt, "ibm,chip-id",
                                cs->cpu_index / cpus_per_socket)));

514 515 516 517 518
        _FDT((fdt_end_node(fdt)));
    }

    _FDT((fdt_end_node(fdt)));

519 520 521
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

522 523 524
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
525 526 527 528 529 530
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
531

532 533 534
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

535 536
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));

537
    /*
538
     * According to PAPR, rtas ibm,os-term does not guarantee a return
539 540 541 542 543 544 545
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

546 547
    _FDT((fdt_end_node(fdt)));

548
    /* interrupt controller */
549
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
550 551 552 553 554 555 556 557

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
558 559 560
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
561 562 563

    _FDT((fdt_end_node(fdt)));

564 565 566 567 568 569 570
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
571 572
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
573 574 575

    _FDT((fdt_end_node(fdt)));

576 577 578
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

599 600 601
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

602 603 604
    return fdt;
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

622 623
    /* Fix skeleton up */
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

641 642 643 644 645 646
static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
647
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
}

666 667
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
{
668 669 670 671 672 673 674 675 676 677
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
        ramnode.node_mem = ram_size;
        nodes = &ramnode;
678
    }
679

680 681 682 683
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
684 685 686
        if (mem_start >= ram_size) {
            node_size = 0;
        } else {
687
            node_size = nodes[i].node_mem;
688 689 690 691
            if (node_size > ram_size - mem_start) {
                node_size = ram_size - mem_start;
            }
        }
692 693 694 695 696 697
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
698 699 700 701 702 703 704 705 706 707 708 709
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
710 711 712 713 714
    }

    return 0;
}

715
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
A
Avi Kivity 已提交
716 717 718
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
719
{
720 721
    MachineState *machine = MACHINE(qdev_get_machine());
    const char *boot_device = machine->boot_order;
722 723 724
    int ret, i;
    size_t cb = 0;
    char *bootlist;
725
    void *fdt;
726
    sPAPRPHBState *phb;
727

728
    fdt = g_malloc(FDT_MAX_SIZE);
729 730 731

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
732

733 734 735 736 737 738
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

739 740 741 742 743 744
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

745
    QLIST_FOREACH(phb, &spapr->phbs, list) {
746
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
747 748 749 750 751 752 753
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

754 755 756 757 758 759
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

760
    /* Advertise NUMA via ibm,associativity */
761 762 763
    ret = spapr_fixup_cpu_dt(fdt, spapr);
    if (ret < 0) {
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
764 765
    }

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

781 782 783 784 785 786 787 788 789
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

790
    if (!spapr->has_graphics) {
791 792
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
793

794 795
    _FDT((fdt_pack(fdt)));

796
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
797 798
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
799 800 801
        exit(1);
    }

802
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
803

G
Gonglei 已提交
804
    g_free(bootlist);
805
    g_free(fdt);
806 807 808 809 810 811 812
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

813
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
814
{
815 816
    CPUPPCState *env = &cpu->env;

817 818 819 820
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
821
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
822
    }
823 824
}

825 826 827 828 829 830
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

831 832 833
static void spapr_reset_htab(sPAPREnvironment *spapr)
{
    long shift;
834
    int index;
835 836 837 838 839 840 841 842 843 844

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
845
        kvmppc_kern_htab = true;
846 847 848 849 850

        /* Tell readers to update their file descriptor */
        if (spapr->htab_fd >= 0) {
            spapr->htab_fd_stale = true;
        }
851 852 853 854 855 856 857 858
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
859 860 861 862

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
863 864 865 866
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
867 868
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
869
    }
870 871
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

889 890 891 892 893 894 895 896 897 898 899 900 901
/*
 * A guest reset will cause spapr->htab_fd to become stale if being used.
 * Reopen the file descriptor to make sure the whole HTAB is properly read.
 */
static int spapr_check_htab_fd(sPAPREnvironment *spapr)
{
    int rc = 0;

    if (spapr->htab_fd_stale) {
        close(spapr->htab_fd);
        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            error_report("Unable to open fd for reading hash table from KVM: "
902
                         "%s", strerror(errno));
903 904 905 906 907 908 909 910
            rc = -1;
        }
        spapr->htab_fd_stale = false;
    }

    return rc;
}

911
static void ppc_spapr_reset(void)
912
{
913
    PowerPCCPU *first_ppc_cpu;
914
    uint32_t rtas_limit;
915

916 917 918
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

919 920
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
921

922
    qemu_devices_reset();
923

924 925 926 927 928 929 930 931 932
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

933 934 935 936
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

937 938 939 940
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

941
    /* Set up the entry state */
942 943 944 945 946
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
    first_ppc_cpu->env.nip = spapr->entry_point;
947 948 949

}

950 951
static void spapr_cpu_reset(void *opaque)
{
952
    PowerPCCPU *cpu = opaque;
953
    CPUState *cs = CPU(cpu);
954
    CPUPPCState *env = &cpu->env;
955

956
    cpu_reset(cs);
957 958 959 960

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
961
    cs->halted = 1;
962 963

    env->spr[SPR_HIOR] = 0;
964

965
    env->external_htab = (uint8_t *)spapr->htab;
966 967 968 969 970 971 972
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
973
    env->htab_base = -1;
974 975 976 977 978 979 980
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
    env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
981
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
982
        (spapr->htab_shift - 18);
983 984
}

D
David Gibson 已提交
985 986
static void spapr_create_nvram(sPAPREnvironment *spapr)
{
987
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
988
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
989

P
Paolo Bonzini 已提交
990
    if (dinfo) {
991
        qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
D
David Gibson 已提交
992 993 994 995 996 997 998
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

999 1000 1001 1002 1003 1004
static void spapr_rtc_create(sPAPREnvironment *spapr)
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1005 1006 1007

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1008 1009
}

1010
/* Returns whether we want to use VGA or not */
1011 1012
static int spapr_vga_init(PCIBus *pci_bus)
{
1013 1014
    switch (vga_interface_type) {
    case VGA_NONE:
1015 1016 1017
        return false;
    case VGA_DEVICE:
        return true;
1018 1019
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
1020
    default:
1021 1022
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
1023
        exit(0);
1024 1025 1026
    }
}

1027 1028 1029 1030 1031
static int spapr_post_load(void *opaque, int version_id)
{
    sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
    int err = 0;

S
Stefan Weil 已提交
1032
    /* In earlier versions, there was no separate qdev for the PAPR
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1048 1049
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1050
    .version_id = 3,
1051
    .minimum_version_id = 1,
1052
    .post_load = spapr_post_load,
1053
    .fields = (VMStateField[]) {
1054 1055
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1056 1057

        /* RTC offset */
1058 1059
        VMSTATE_UINT64_TEST(rtc_offset, sPAPREnvironment, version_before_3),

1060
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1072 1073 1074 1075 1076 1077 1078
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
1079
        spapr->htab_fd_stale = false;
1080 1081 1082 1083 1084 1085 1086 1087
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


1088 1089 1090 1091 1092 1093 1094 1095
    return 0;
}

static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1096
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1112
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1127
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1141 1142
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                int64_t max_ns)
1143 1144 1145 1146 1147
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1148
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1164
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1165 1166 1167 1168 1169 1170 1171 1172 1173
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1174
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1193
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1215
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1216 1217
}

1218 1219 1220
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1221 1222 1223
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;
1224
    int rc = 0;
1225 1226 1227 1228

    /* Iteration header */
    qemu_put_be32(f, 0);

1229 1230 1231
    if (!spapr->htab) {
        assert(kvm_enabled());

1232 1233 1234 1235 1236
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1237 1238 1239 1240 1241 1242
        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1243 1244
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1245
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1246 1247 1248 1249 1250 1251 1252
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1253
    return rc;
1254 1255 1256 1257 1258 1259 1260 1261 1262
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* Iteration header */
    qemu_put_be32(f, 0);

1263 1264 1265 1266 1267
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1268 1269 1270 1271 1272
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1273 1274 1275 1276 1277 1278 1279 1280 1281
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
    sPAPREnvironment *spapr = opaque;
    uint32_t section_hdr;
1295
    int fd = -1;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1335
        if ((index + n_valid + n_invalid) >
1336 1337 1338
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1339 1340
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1341 1342 1343
            return -EINVAL;
        }

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1362 1363 1364
        }
    }

1365 1366 1367 1368 1369
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1380 1381 1382 1383 1384 1385 1386
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1387
/* pSeries LPAR / sPAPR hardware init */
1388
static void ppc_spapr_init(MachineState *machine)
1389
{
1390 1391 1392 1393 1394
    ram_addr_t ram_size = machine->ram_size;
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1395
    PowerPCCPU *cpu;
A
Andreas Färber 已提交
1396
    CPUPPCState *env;
1397
    PCIHostState *phb;
1398
    int i;
A
Avi Kivity 已提交
1399 1400
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1401 1402
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1403
    hwaddr rma_alloc_size;
1404
    hwaddr node0_size = spapr_node0_size();
1405 1406
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1407
    long load_limit, fw_size;
1408
    bool kernel_le = false;
1409
    char *filename;
1410

1411 1412
    msi_supported = true;

1413 1414 1415
    spapr = g_malloc0(sizeof(*spapr));
    QLIST_INIT(&spapr->phbs);

1416 1417
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1418
    /* Allocate RMA if necessary */
1419
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1420 1421

    if (rma_alloc_size == -1) {
1422
        error_report("Unable to create RMA");
1423 1424
        exit(1);
    }
1425

1426
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1427
        spapr->rma_size = rma_alloc_size;
1428
    } else {
1429
        spapr->rma_size = node0_size;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1444 1445
    }

1446 1447 1448 1449 1450 1451
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1452 1453
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
            break;
        }
        spapr->htab_shift++;
    }
1465

1466
    /* Set up Interrupt Controller before we create the VCPUs */
1467 1468
    spapr->icp = xics_system_init(machine,
                                  smp_cpus * kvmppc_smt_threads() / smp_threads,
1469 1470
                                  XICS_IRQS);

1471 1472
    /* init CPUs */
    if (cpu_model == NULL) {
1473
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1474 1475
    }
    for (i = 0; i < smp_cpus; i++) {
1476 1477
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
1478 1479 1480
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1481 1482
        env = &cpu->env;

1483 1484 1485
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1486 1487 1488 1489
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
         * MSR[IP] should never be set.
         */
        env->msr_mask &= ~(1 << 6);
1490 1491 1492

        /* Tell KVM that we're in PAPR mode */
        if (kvm_enabled()) {
1493
            kvmppc_set_papr(cpu);
1494 1495
        }

1496 1497 1498 1499 1500 1501
        if (cpu->max_compat) {
            if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
                exit(1);
            }
        }

1502 1503
        xics_cpu_setup(spapr->icp, cpu);

1504
        qemu_register_reset(spapr_cpu_reset, cpu);
1505 1506 1507
    }

    /* allocate RAM */
1508
    spapr->ram_limit = ram_size;
1509 1510 1511
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
                                         spapr->ram_limit);
    memory_region_add_subregion(sysmem, 0, ram);
1512

1513 1514 1515 1516 1517 1518 1519 1520
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1521
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1522
    if (!filename) {
1523
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1524 1525
        exit(1);
    }
1526 1527 1528
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1529
        error_report("Could not load LPAR rtas '%s'", filename);
1530 1531
        exit(1);
    }
1532
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1533 1534
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1535 1536
        exit(1);
    }
1537
    g_free(filename);
1538

1539 1540 1541
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1542
    /* Set up the RTC RTAS interfaces */
1543
    spapr_rtc_create(spapr);
1544

1545
    /* Set up VIO bus */
1546 1547
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1548
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1549
        if (serial_hds[i]) {
1550
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1551 1552
        }
    }
1553

D
David Gibson 已提交
1554 1555 1556
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1557
    /* Set up PCI */
1558 1559
    spapr_pci_rtas_init();

1560
    phb = spapr_create_phb(spapr, 0);
1561

P
Paolo Bonzini 已提交
1562
    for (i = 0; i < nb_nics; i++) {
1563 1564 1565
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1566
            nd->model = g_strdup("ibmveth");
1567 1568 1569
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1570
            spapr_vlan_create(spapr->vio_bus, nd);
1571
        } else {
1572
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1573 1574 1575
        }
    }

1576
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1577
        spapr_vscsi_create(spapr->vio_bus);
1578 1579
    }

1580
    /* Graphics */
1581
    if (spapr_vga_init(phb->bus)) {
1582
        spapr->has_graphics = true;
1583
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1584 1585
    }

1586
    if (machine->usb) {
1587
        pci_create_simple(phb->bus, -1, "pci-ohci");
1588

1589
        if (spapr->has_graphics) {
1590 1591 1592 1593
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1594 1595 1596
        }
    }

1597
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1598 1599 1600 1601 1602
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1603 1604 1605 1606 1607
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1608
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1609 1610 1611 1612 1613
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1614
        if (kernel_size < 0) {
1615 1616
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1617 1618 1619 1620 1621
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1622 1623 1624 1625
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1626
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1627
                                              load_limit - initrd_base);
1628 1629 1630 1631 1632 1633 1634 1635 1636
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1637
    }
1638

1639 1640 1641 1642
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1643
    if (!filename) {
1644
        error_report("Could not find LPAR firmware '%s'", bios_name);
1645 1646
        exit(1);
    }
1647
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1648 1649
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1650 1651 1652 1653 1654 1655
        exit(1);
    }
    g_free(filename);

    spapr->entry_point = 0x100;

1656 1657 1658 1659
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1660
    /* Prepare the device tree */
1661
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1662
                                            kernel_size, kernel_le,
1663 1664
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
1665
    assert(spapr->fdt_skel != NULL);
1666

1667 1668 1669 1670
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

1671
    qemu_register_boot_set(spapr_boot_set, spapr);
1672 1673
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1692
/*
1693
 * Implementation of an interface to adjust firmware path
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
1749 1750
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
1751
    sPAPRMachineState *sm = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1752 1753 1754 1755 1756 1757

    return g_strdup(sm->kvm_type);
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
1758
    sPAPRMachineState *sm = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767

    g_free(sm->kvm_type);
    sm->kvm_type = g_strdup(value);
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1768 1769 1770
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

1790 1791 1792
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1793
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1794
    NMIClass *nc = NMI_CLASS(oc);
1795 1796 1797 1798 1799 1800

    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
    mc->max_cpus = MAX_CPUS;
    mc->no_parallel = 1;
1801
    mc->default_boot_order = "";
1802
    mc->kvm_type = spapr_kvm_type;
1803
    mc->has_dynamic_sysbus = true;
1804

1805
    fwc->get_dev_path = spapr_get_fw_dev_path;
1806
    nc->nmi_monitor_handler = spapr_nmi;
1807 1808 1809 1810 1811
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
1812
    .abstract      = true,
1813
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
1814
    .instance_init = spapr_machine_initfn,
1815
    .class_init    = spapr_machine_class_init,
1816 1817
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
1818
        { TYPE_NMI },
1819 1820
        { }
    },
1821 1822
};

E
Eduardo Habkost 已提交
1823 1824 1825
#define SPAPR_COMPAT_2_3 \
        HW_COMPAT_2_3

1826
#define SPAPR_COMPAT_2_2 \
E
Eduardo Habkost 已提交
1827
        SPAPR_COMPAT_2_3 \
1828
        HW_COMPAT_2_2 \
1829 1830 1831 1832
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
1833
        },
1834 1835

#define SPAPR_COMPAT_2_1 \
1836 1837
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
1838

J
Jason Wang 已提交
1839 1840 1841 1842
static void spapr_compat_2_3(Object *obj)
{
}

1843 1844
static void spapr_compat_2_2(Object *obj)
{
J
Jason Wang 已提交
1845
    spapr_compat_2_3(obj);
1846 1847 1848 1849 1850 1851 1852
}

static void spapr_compat_2_1(Object *obj)
{
    spapr_compat_2_2(obj);
}

J
Jason Wang 已提交
1853 1854 1855 1856 1857 1858
static void spapr_machine_2_3_instance_init(Object *obj)
{
    spapr_compat_2_3(obj);
    spapr_machine_initfn(obj);
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static void spapr_machine_2_2_instance_init(Object *obj)
{
    spapr_compat_2_2(obj);
    spapr_machine_initfn(obj);
}

static void spapr_machine_2_1_instance_init(Object *obj)
{
    spapr_compat_2_1(obj);
    spapr_machine_initfn(obj);
}

1871 1872 1873
static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1874
    static GlobalProperty compat_props[] = {
1875
        SPAPR_COMPAT_2_1
1876 1877
        { /* end of list */ }
    };
1878 1879 1880

    mc->name = "pseries-2.1";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1881
    mc->compat_props = compat_props;
1882 1883 1884 1885 1886 1887
}

static const TypeInfo spapr_machine_2_1_info = {
    .name          = TYPE_SPAPR_MACHINE "2.1",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_1_class_init,
1888
    .instance_init = spapr_machine_2_1_instance_init,
1889 1890
};

1891 1892
static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
{
1893
    static GlobalProperty compat_props[] = {
1894
        SPAPR_COMPAT_2_2
1895 1896
        { /* end of list */ }
    };
1897 1898 1899 1900
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.2";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1901
    mc->compat_props = compat_props;
1902 1903 1904 1905 1906 1907
}

static const TypeInfo spapr_machine_2_2_info = {
    .name          = TYPE_SPAPR_MACHINE "2.2",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_2_class_init,
1908
    .instance_init = spapr_machine_2_2_instance_init,
1909 1910
};

1911 1912
static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
{
1913 1914 1915 1916
    static GlobalProperty compat_props[] = {
        /* SPAPR_COMPAT_2_3, */
        { /* end of list */ }
    };
1917 1918 1919 1920
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.3";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
1921
    mc->compat_props = compat_props;
1922 1923 1924 1925 1926 1927
}

static const TypeInfo spapr_machine_2_3_info = {
    .name          = TYPE_SPAPR_MACHINE "2.3",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_3_class_init,
J
Jason Wang 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    .instance_init = spapr_machine_2_3_instance_init,
};

static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.4";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
    mc->alias = "pseries";
    mc->is_default = 1;
}

static const TypeInfo spapr_machine_2_4_info = {
    .name          = TYPE_SPAPR_MACHINE "2.4",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_4_class_init,
1945 1946
};

1947
static void spapr_machine_register_types(void)
1948
{
1949
    type_register_static(&spapr_machine_info);
1950
    type_register_static(&spapr_machine_2_1_info);
1951
    type_register_static(&spapr_machine_2_2_info);
1952
    type_register_static(&spapr_machine_2_3_info);
J
Jason Wang 已提交
1953
    type_register_static(&spapr_machine_2_4_info);
1954 1955
}

1956
type_init(spapr_machine_register_types)