spapr.c 77.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "sysemu/numa.h"
29
#include "hw/hw.h"
30
#include "hw/fw-path-provider.h"
31
#include "elf.h"
P
Paolo Bonzini 已提交
32
#include "net/net.h"
A
Andrew Jones 已提交
33
#include "sysemu/device_tree.h"
34
#include "sysemu/block-backend.h"
35 36
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
B
Bharata B Rao 已提交
37
#include "sysemu/device_tree.h"
38
#include "kvm_ppc.h"
39
#include "migration/migration.h"
40
#include "mmu-hash64.h"
41
#include "qom/cpu.h"
42 43

#include "hw/boards.h"
P
Paolo Bonzini 已提交
44
#include "hw/ppc/ppc.h"
45 46
#include "hw/loader.h"

P
Paolo Bonzini 已提交
47 48 49 50
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
51
#include "hw/pci/msi.h"
52

53
#include "hw/pci/pci.h"
54 55
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
56

57
#include "exec/address-spaces.h"
58
#include "hw/usb.h"
59
#include "qemu/config-file.h"
60
#include "qemu/error-report.h"
61
#include "trace.h"
62
#include "hw/nmi.h"
A
Avi Kivity 已提交
63

64
#include "hw/compat.h"
D
David Gibson 已提交
65
#include "qemu-common.h"
66

67 68
#include <libfdt.h>

69 70 71 72 73 74 75 76 77 78
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
79
#define FDT_MAX_SIZE            0x100000
80
#define RTAS_MAX_SIZE           0x10000
81
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
82 83
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
84 85
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
86

87
#define MIN_RMA_SLOF            128UL
88 89 90

#define TIMEBASE_FREQ           512000000ULL

91 92
#define PHANDLE_XICP            0x00001111

93 94
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

95
static XICSState *try_create_xics(const char *type, int nr_servers,
96
                                  int nr_irqs, Error **errp)
97
{
98
    Error *err = NULL;
99 100 101 102 103
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
104 105 106 107
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
108 109
        return NULL;
    }
110
    return XICS_COMMON(dev);
111 112
}

113 114
static XICSState *xics_system_init(MachineState *machine,
                                   int nr_servers, int nr_irqs)
115 116 117
{
    XICSState *icp = NULL;

118
    if (kvm_enabled()) {
119 120
        Error *err = NULL;

121
        if (machine_kernel_irqchip_allowed(machine)) {
122
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
123
        }
124
        if (machine_kernel_irqchip_required(machine) && !icp) {
125 126 127 128
            error_reportf_err(err,
                              "kernel_irqchip requested but unavailable: ");
        } else {
            error_free(err);
129 130 131 132
        }
    }

    if (!icp) {
133
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
134 135 136 137 138
    }

    return icp;
}

139 140 141 142 143 144 145 146
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

147
    if (cpu->cpu_version) {
148
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
149 150 151 152 153
        if (ret < 0) {
            return ret;
        }
    }

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

193
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
194
{
195 196
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
197 198
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
199
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
200

201 202 203 204
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
205

206
        if ((index % smt) != 0) {
207 208 209
            continue;
        }

210
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
211

212 213 214 215 216 217 218 219 220
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
221
        if (offset < 0) {
222 223 224 225
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
226 227
        }

228 229
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
230 231 232
        if (ret < 0) {
            return ret;
        }
233

234 235 236 237 238
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

239
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
240
                                     ppc_get_compat_smt_threads(cpu));
241 242 243
        if (ret < 0) {
            return ret;
        }
244 245 246 247
    }
    return ret;
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

282 283
static hwaddr spapr_node0_size(void)
{
284 285
    MachineState *machine = MACHINE(qdev_get_machine());

286 287 288 289
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
290 291
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
292 293 294
            }
        }
    }
295
    return machine->ram_size;
296 297
}

298 299 300 301 302 303 304 305 306 307
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

308 309 310 311
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
312

313
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
314 315
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
316
                                   bool little_endian,
317 318
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
319 320 321 322
{
    void *fdt;
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
323 324
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
325
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
326
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
327
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
328
    char *buf;
329

330 331 332 333 334 335 336 337 338 339 340
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

341
    fdt = g_malloc0(FDT_MAX_SIZE);
342 343
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

344 345 346 347 348 349
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
350 351 352 353 354
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
355
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
356
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
A
Alexey Kardashevskiy 已提交
379 380 381
    if (qemu_uuid_set) {
        _FDT((fdt_property_string(fdt, "system-id", buf)));
    }
382 383
    g_free(buf);

S
Sam Bobroff 已提交
384 385 386 387 388
    if (qemu_get_vm_name()) {
        _FDT((fdt_property_string(fdt, "ibm,partition-name",
                                  qemu_get_vm_name())));
    }

389 390 391 392 393 394
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

395 396 397
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

398 399 400 401 402
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
403 404 405
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
406

407
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
408 409 410
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
411
    }
412 413 414
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
415 416 417
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
418

419 420
    _FDT((fdt_end_node(fdt)));

421 422 423
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

424 425 426
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
427 428 429 430 431 432
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
433

434 435 436
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

437
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
438 439
    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
                            RTAS_EVENT_SCAN_RATE)));
440

441 442 443 444
    if (msi_supported) {
        _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
    }

445
    /*
446
     * According to PAPR, rtas ibm,os-term does not guarantee a return
447 448 449 450 451 452 453
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

454 455
    _FDT((fdt_end_node(fdt)));

456
    /* interrupt controller */
457
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
458 459 460 461 462 463 464 465

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
466 467 468
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
469 470 471

    _FDT((fdt_end_node(fdt)));

472 473 474 475 476 477 478
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
479 480
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
481 482 483

    _FDT((fdt_end_node(fdt)));

484 485 486
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

507 508 509
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

510 511 512
    return fdt;
}

513
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
514 515 516 517 518
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
519
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
536
    return off;
537 538
}

539
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
540
{
541
    MachineState *machine = MACHINE(spapr);
542 543 544 545 546 547 548 549
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
550
        ramnode.node_mem = machine->ram_size;
551
        nodes = &ramnode;
552
    }
553

554 555 556 557
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
558
        if (mem_start >= machine->ram_size) {
559 560
            node_size = 0;
        } else {
561
            node_size = nodes[i].node_mem;
562 563
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
564 565
            }
        }
566 567
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
568
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
569 570 571
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
572 573 574 575 576 577 578 579 580 581 582 583
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
584 585 586 587 588
    }

    return 0;
}

589 590 591 592 593 594 595 596 597 598 599 600 601
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
602
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
603 604
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    /* Note: we keep CI large pages off for now because a 64K capable guest
     * provisioned with large pages might otherwise try to map a qemu
     * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
     * even if that qemu runs on a 4k host.
     *
     * We can later add this bit back when we are confident this is not
     * an issue (!HV KVM or 64K host)
     */
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
    uint8_t *pa_features;
    size_t pa_size;

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
651
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

689 690 691 692 693 694 695 696 697 698 699 700 701
    /* Do the ibm,pa-features property, adjust it for ci-large-pages */
    if (env->mmu_model == POWERPC_MMU_2_06) {
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
    } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
    }
    if (env->ci_large_pages) {
        pa_features[3] |= 0x20;
    }
    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));

702
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
703
                           cs->cpu_index / vcpus_per_socket)));
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
                                ppc_get_compat_smt_threads(cpu)));
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

750 751 752 753 754 755 756 757 758 759 760
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
761
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
762
    uint32_t *int_buf, *cur_index, buf_len;
763
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
764

765 766 767 768 769 770
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        sPAPRDRConnectorClass *drck;
797
        uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        uint32_t *dynamic_memory = cur_index;

        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                       addr/lmb_size);
        g_assert(drc);
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

        dynamic_memory[0] = cpu_to_be32(addr >> 32);
        dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
        dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
        dynamic_memory[3] = cpu_to_be32(0); /* reserved */
        dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
        if (addr < machine->ram_size ||
                    memory_region_present(get_system_memory(), addr)) {
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
        } else {
            dynamic_memory[5] = cpu_to_be32(0);
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
826
    int_buf[0] = cpu_to_be32(nr_nodes);
827 828
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
829
    for (i = 0; i < nr_nodes; i++) {
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
                                 bool cpu_update, bool memory_update)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
    if (cpu_update) {
        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
    }

    /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
    if (memory_update && smc->dr_lmb_enabled) {
        _FDT((spapr_populate_drconf_memory(spapr, fdt)));
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

892
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
A
Avi Kivity 已提交
893 894 895
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
896
{
897
    MachineState *machine = MACHINE(qdev_get_machine());
B
Bharata B Rao 已提交
898
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
899
    const char *boot_device = machine->boot_order;
900 901 902
    int ret, i;
    size_t cb = 0;
    char *bootlist;
903
    void *fdt;
904
    sPAPRPHBState *phb;
905

906
    fdt = g_malloc(FDT_MAX_SIZE);
907 908 909

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
910

911 912 913 914
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
915 916
    }

917 918 919 920 921 922
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

923 924 925 926 927 928 929 930
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
            fprintf(stderr, "could not set up rng device in the fdt\n");
            exit(1);
        }
    }

931
    QLIST_FOREACH(phb, &spapr->phbs, list) {
932
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
933 934 935 936 937 938 939
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

940 941 942 943 944 945
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

946 947
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

964 965 966 967 968 969 970 971 972
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

973
    if (!spapr->has_graphics) {
974 975
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
976

B
Bharata B Rao 已提交
977 978 979 980
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

981 982
    _FDT((fdt_pack(fdt)));

983
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
984 985
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
986 987 988
        exit(1);
    }

A
Andrew Jones 已提交
989
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
990
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
991

G
Gonglei 已提交
992
    g_free(bootlist);
993
    g_free(fdt);
994 995 996 997 998 999 1000
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

1001
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1002
{
1003 1004
    CPUPPCState *env = &cpu->env;

1005 1006 1007 1008
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1009
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1010
    }
1011 1012
}

1013 1014 1015 1016 1017 1018
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1019
static void spapr_alloc_htab(sPAPRMachineState *spapr)
1020 1021
{
    long shift;
1022
    int index;
1023 1024 1025 1026 1027 1028

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    if (shift < 0) {
        /*
         * For HV KVM, host kernel will return -ENOMEM when requested
         * HTAB size can't be allocated.
         */
        error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
    } else if (shift > 0) {
        /*
         * Kernel handles htab, we don't need to allocate one
         *
         * Older kernels can fall back to lower HTAB shift values,
         * but we don't allow booting of such guests.
         */
1042 1043 1044 1045
        if (shift != spapr->htab_shift) {
            error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
        }

1046
        spapr->htab_shift = shift;
1047
        kvmppc_kern_htab = true;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    } else {
        /* Allocate htab */
        spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
    }
}

/*
 * Clear HTAB entries during reset.
 *
 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
 */
static void spapr_reset_htab(sPAPRMachineState *spapr)
{
    long shift;
    int index;
1071

1072
    shift = kvmppc_reset_htab(spapr->htab_shift);
1073 1074 1075
    if (shift < 0) {
        error_setg(&error_abort, "Failed to reset HTAB");
    } else if (shift > 0) {
1076 1077 1078 1079
        if (shift != spapr->htab_shift) {
            error_setg(&error_abort, "Requested HTAB allocation failed during reset");
        }

1080 1081 1082 1083
        /* Tell readers to update their file descriptor */
        if (spapr->htab_fd >= 0) {
            spapr->htab_fd_stale = true;
        }
1084 1085
    } else {
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
1086 1087 1088 1089

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
1090 1091 1092 1093
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
1094 1095
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
1096
    }
1097 1098
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

1116 1117 1118 1119
/*
 * A guest reset will cause spapr->htab_fd to become stale if being used.
 * Reopen the file descriptor to make sure the whole HTAB is properly read.
 */
1120
static int spapr_check_htab_fd(sPAPRMachineState *spapr)
1121 1122 1123 1124 1125 1126 1127 1128
{
    int rc = 0;

    if (spapr->htab_fd_stale) {
        close(spapr->htab_fd);
        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            error_report("Unable to open fd for reading hash table from KVM: "
1129
                         "%s", strerror(errno));
1130 1131 1132 1133 1134 1135 1136 1137
            rc = -1;
        }
        spapr->htab_fd_stale = false;
    }

    return rc;
}

1138
static void ppc_spapr_reset(void)
1139
{
1140
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1141
    PowerPCCPU *first_ppc_cpu;
1142
    uint32_t rtas_limit;
1143

1144 1145 1146
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1147 1148
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
1149

1150
    qemu_devices_reset();
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

1161 1162 1163 1164
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

1165 1166 1167 1168
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

1169
    /* Set up the entry state */
1170 1171 1172 1173
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1174
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1175 1176 1177

}

1178 1179
static void spapr_cpu_reset(void *opaque)
{
1180
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1181
    PowerPCCPU *cpu = opaque;
1182
    CPUState *cs = CPU(cpu);
1183
    CPUPPCState *env = &cpu->env;
1184

1185
    cpu_reset(cs);
1186 1187 1188 1189

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
1190
    cs->halted = 1;
1191 1192

    env->spr[SPR_HIOR] = 0;
1193

1194
    env->external_htab = (uint8_t *)spapr->htab;
1195 1196 1197 1198 1199 1200 1201
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
1202
    env->htab_base = -1;
1203 1204 1205 1206 1207 1208
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
1209
    env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1210
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1211
        (spapr->htab_shift - 18);
1212 1213
}

1214
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1215
{
1216
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1217
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1218

P
Paolo Bonzini 已提交
1219
    if (dinfo) {
1220 1221
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_fatal);
D
David Gibson 已提交
1222 1223 1224 1225 1226 1227 1228
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1229
static void spapr_rtc_create(sPAPRMachineState *spapr)
1230 1231 1232 1233 1234
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1235 1236 1237

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1238 1239
}

1240
/* Returns whether we want to use VGA or not */
1241 1242
static int spapr_vga_init(PCIBus *pci_bus)
{
1243 1244
    switch (vga_interface_type) {
    case VGA_NONE:
1245 1246 1247
        return false;
    case VGA_DEVICE:
        return true;
1248
    case VGA_STD:
1249
    case VGA_VIRTIO:
1250
        return pci_vga_init(pci_bus) != NULL;
1251
    default:
1252 1253
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
1254
        exit(0);
1255 1256 1257
    }
}

1258 1259
static int spapr_post_load(void *opaque, int version_id)
{
1260
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1261 1262
    int err = 0;

S
Stefan Weil 已提交
1263
    /* In earlier versions, there was no separate qdev for the PAPR
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1279 1280
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1281
    .version_id = 3,
1282
    .minimum_version_id = 1,
1283
    .post_load = spapr_post_load,
1284
    .fields = (VMStateField[]) {
1285 1286
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1287 1288

        /* RTC offset */
1289
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1290

1291
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1292 1293 1294 1295 1296 1297
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1298
    sPAPRMachineState *spapr = opaque;
1299 1300 1301 1302

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1303 1304 1305 1306 1307 1308 1309
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
1310
        spapr->htab_fd_stale = false;
1311 1312 1313 1314 1315 1316 1317 1318
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


1319 1320 1321
    return 0;
}

1322
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1323 1324 1325 1326
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1327
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1343
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1358
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1372
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1373
                                int64_t max_ns)
1374 1375 1376 1377 1378
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1379
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1395
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1396 1397 1398 1399 1400 1401 1402 1403 1404
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1405
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1424
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1446
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1447 1448
}

1449 1450 1451
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1452 1453
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1454
    sPAPRMachineState *spapr = opaque;
1455
    int rc = 0;
1456 1457 1458 1459

    /* Iteration header */
    qemu_put_be32(f, 0);

1460 1461 1462
    if (!spapr->htab) {
        assert(kvm_enabled());

1463 1464 1465 1466 1467
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1468 1469 1470 1471 1472 1473
        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1474 1475
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1476
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1477 1478 1479 1480 1481 1482 1483
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1484
    return rc;
1485 1486 1487 1488
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1489
    sPAPRMachineState *spapr = opaque;
1490 1491 1492 1493

    /* Iteration header */
    qemu_put_be32(f, 0);

1494 1495 1496 1497 1498
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1499 1500 1501 1502 1503
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1504 1505 1506 1507 1508 1509 1510 1511 1512
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1524
    sPAPRMachineState *spapr = opaque;
1525
    uint32_t section_hdr;
1526
    int fd = -1;
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
1538 1539
            error_report("htab_shift mismatch: source %d target %d",
                         section_hdr, spapr->htab_shift);
1540 1541 1542 1543 1544
            return -EINVAL;
        }
        return 0;
    }

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1568
        if ((index + n_valid + n_invalid) >
1569 1570 1571
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1572 1573
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1574 1575 1576
            return -EINVAL;
        }

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1595 1596 1597
        }
    }

1598 1599 1600 1601 1602
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1603 1604 1605 1606 1607 1608
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
1609
    .save_live_complete_precopy = htab_save_complete,
1610 1611 1612
    .load_state = htab_load,
};

1613 1614 1615 1616 1617 1618 1619
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;

    /* Set time-base frequency to 512 MHz */
    cpu_ppc_tb_init(env, TIMEBASE_FREQ);

    /* PAPR always has exception vectors in RAM not ROM. To ensure this,
     * MSR[IP] should never be set.
     */
    env->msr_mask &= ~(1 << 6);

    /* Tell KVM that we're in PAPR mode */
    if (kvm_enabled()) {
        kvmppc_set_papr(cpu);
    }

    if (cpu->max_compat) {
        if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
            exit(1);
        }
    }

    xics_cpu_setup(spapr->icp, cpu);

    qemu_register_reset(spapr_cpu_reset, cpu);
}

D
David Gibson 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1670
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1671 1672 1673 1674 1675 1676
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1677
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
static void spapr_validate_node_memory(MachineState *machine)
{
    int i;

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
        machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_report("Can't support memory configuration where RAM size "
                     "0x" RAM_ADDR_FMT " or maxmem size "
                     "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
                     machine->ram_size, machine->maxram_size,
                     SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        exit(EXIT_FAILURE);
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
            error_report("Can't support memory configuration where memory size"
                         " %" PRIx64 " of node %d isn't aligned to %llu MB",
                         numa_info[i].node_mem, i,
                         SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
            exit(EXIT_FAILURE);
        }
    }
}

1714
/* pSeries LPAR / sPAPR hardware init */
1715
static void ppc_spapr_init(MachineState *machine)
1716
{
1717
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
D
David Gibson 已提交
1718
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1719 1720 1721
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1722
    PowerPCCPU *cpu;
1723
    PCIHostState *phb;
1724
    int i;
A
Avi Kivity 已提交
1725 1726
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1727 1728
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1729
    hwaddr rma_alloc_size;
1730
    hwaddr node0_size = spapr_node0_size();
1731 1732
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1733
    long load_limit, fw_size;
1734
    bool kernel_le = false;
1735
    char *filename;
1736

1737 1738
    msi_supported = true;

1739 1740
    QLIST_INIT(&spapr->phbs);

1741 1742
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1743
    /* Allocate RMA if necessary */
1744
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1745 1746

    if (rma_alloc_size == -1) {
1747
        error_report("Unable to create RMA");
1748 1749
        exit(1);
    }
1750

1751
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1752
        spapr->rma_size = rma_alloc_size;
1753
    } else {
1754
        spapr->rma_size = node0_size;
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1769 1770
    }

1771 1772 1773 1774 1775 1776
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1777 1778
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1779

1780 1781 1782 1783 1784
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
1785
        if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
1786 1787 1788 1789
            break;
        }
        spapr->htab_shift++;
    }
1790
    spapr_alloc_htab(spapr);
1791

1792
    /* Set up Interrupt Controller before we create the VCPUs */
1793
    spapr->icp = xics_system_init(machine,
1794
                                  DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1795
                                               smp_threads),
1796 1797
                                  XICS_IRQS);

D
David Gibson 已提交
1798 1799 1800 1801
    if (smc->dr_lmb_enabled) {
        spapr_validate_node_memory(machine);
    }

1802
    /* init CPUs */
1803 1804
    if (machine->cpu_model == NULL) {
        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1805 1806
    }
    for (i = 0; i < smp_cpus; i++) {
1807
        cpu = cpu_ppc_init(machine->cpu_model);
1808
        if (cpu == NULL) {
1809 1810 1811
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1812
        spapr_cpu_init(spapr, cpu);
1813 1814
    }

1815 1816 1817
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
1818
        kvmppc_enable_set_mode_hcall();
1819 1820
    }

1821
    /* allocate RAM */
1822
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1823
                                         machine->ram_size);
1824
    memory_region_add_subregion(sysmem, 0, ram);
1825

1826 1827 1828 1829 1830 1831 1832 1833
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1834 1835 1836 1837 1838
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;

        if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1839 1840
            error_report("Specified number of memory slots %"PRIu64" exceeds max supported %d\n",
                         machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            exit(EXIT_FAILURE);
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
1852 1853 1854 1855
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

1856
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1857
    if (!filename) {
1858
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1859 1860
        exit(1);
    }
1861 1862 1863
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1864
        error_report("Could not load LPAR rtas '%s'", filename);
1865 1866
        exit(1);
    }
1867
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1868 1869
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1870 1871
        exit(1);
    }
1872
    g_free(filename);
1873

1874 1875 1876
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1877
    /* Set up the RTC RTAS interfaces */
1878
    spapr_rtc_create(spapr);
1879

1880
    /* Set up VIO bus */
1881 1882
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1883
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1884
        if (serial_hds[i]) {
1885
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1886 1887
        }
    }
1888

D
David Gibson 已提交
1889 1890 1891
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1892
    /* Set up PCI */
1893 1894
    spapr_pci_rtas_init();

1895
    phb = spapr_create_phb(spapr, 0);
1896

P
Paolo Bonzini 已提交
1897
    for (i = 0; i < nb_nics; i++) {
1898 1899 1900
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1901
            nd->model = g_strdup("ibmveth");
1902 1903 1904
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1905
            spapr_vlan_create(spapr->vio_bus, nd);
1906
        } else {
1907
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1908 1909 1910
        }
    }

1911
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1912
        spapr_vscsi_create(spapr->vio_bus);
1913 1914
    }

1915
    /* Graphics */
1916
    if (spapr_vga_init(phb->bus)) {
1917
        spapr->has_graphics = true;
1918
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1919 1920
    }

1921
    if (machine->usb) {
1922 1923 1924 1925 1926
        if (smc->use_ohci_by_default) {
            pci_create_simple(phb->bus, -1, "pci-ohci");
        } else {
            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
        }
1927

1928
        if (spapr->has_graphics) {
1929 1930 1931 1932
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1933 1934 1935
        }
    }

1936
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1937 1938 1939 1940 1941
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1942 1943 1944 1945
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1946
                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
1947
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1948 1949
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
1950
                                   NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
1951 1952
            kernel_le = kernel_size > 0;
        }
1953
        if (kernel_size < 0) {
1954 1955
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1956 1957 1958 1959 1960
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1961 1962 1963 1964
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1965
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1966
                                              load_limit - initrd_base);
1967 1968 1969 1970 1971 1972 1973 1974 1975
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1976
    }
1977

1978 1979 1980 1981
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1982
    if (!filename) {
1983
        error_report("Could not find LPAR firmware '%s'", bios_name);
1984 1985
        exit(1);
    }
1986
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1987 1988
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1989 1990 1991 1992
        exit(1);
    }
    g_free(filename);

1993 1994 1995
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
1996 1997 1998 1999
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

2000
    /* Prepare the device tree */
2001
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2002
                                            kernel_size, kernel_le,
2003 2004
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
2005
    assert(spapr->fdt_skel != NULL);
2006

2007 2008 2009 2010
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

2011
    qemu_register_boot_set(spapr_boot_set, spapr);
2012 2013
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2032
/*
2033
 * Implementation of an interface to adjust firmware path
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2089 2090
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2091
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2092

2093
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2094 2095 2096 2097
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2098
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2099

2100 2101
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2102 2103 2104 2105 2106 2107
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2108 2109 2110
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
2111 2112
}

2113 2114 2115 2116 2117 2118 2119
static void spapr_machine_finalizefn(Object *obj)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    g_free(spapr->kvm_type);
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

B
Bharata B Rao 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
                           uint32_t node, Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;

    /*
     * Check for DRC connectors and send hotplug notification to the
     * guest only in case of hotplugged memory. This allows cold plugged
     * memory to be specified at boot time.
     */
    if (!dev->hotplugged) {
        return;
    }

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }
2168
    spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
B
Bharata B Rao 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2189
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
B
Bharata B Rao 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

    spapr_add_lmbs(dev, addr, size, node, &error_abort);

out:
    error_propagate(errp, local_err);
}

static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2212
        int node;
B
Bharata B Rao 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
        spapr_memory_plug(hotplug_dev, dev, node, errp);
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        error_setg(errp, "Memory hot unplug not supported by sPAPR");
    }
}

static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
                                             DeviceState *dev)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

2266 2267 2268 2269 2270 2271 2272
static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
{
    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
     * socket means much for the paravirtualized PAPR platform) */
    return cpu_index / smp_threads / smp_cores;
}

2273 2274 2275
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
2276
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2277
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2278
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
2279
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2280

2281
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
2282 2283 2284 2285 2286 2287

    /*
     * We set up the default / latest behaviour here.  The class_init
     * functions for the specific versioned machine types can override
     * these details for backwards compatibility
     */
2288 2289 2290
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
2291
    mc->max_cpus = MAX_CPUMASK_BITS;
2292
    mc->no_parallel = 1;
2293
    mc->default_boot_order = "";
2294
    mc->default_ram_size = 512 * M_BYTE;
2295
    mc->kvm_type = spapr_kvm_type;
2296
    mc->has_dynamic_sysbus = true;
2297
    mc->pci_allow_0_address = true;
B
Bharata B Rao 已提交
2298 2299 2300
    mc->get_hotplug_handler = spapr_get_hotpug_handler;
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
2301
    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2302

2303
    smc->dr_lmb_enabled = true;
2304
    fwc->get_dev_path = spapr_get_fw_dev_path;
2305
    nc->nmi_monitor_handler = spapr_nmi;
2306 2307 2308 2309 2310
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
2311
    .abstract      = true,
2312
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
2313
    .instance_init = spapr_machine_initfn,
2314
    .instance_finalize = spapr_machine_finalizefn,
D
David Gibson 已提交
2315
    .class_size    = sizeof(sPAPRMachineClass),
2316
    .class_init    = spapr_machine_class_init,
2317 2318
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
2319
        { TYPE_NMI },
B
Bharata B Rao 已提交
2320
        { TYPE_HOTPLUG_HANDLER },
2321 2322
        { }
    },
2323 2324
};

2325
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
D
David Gibson 已提交
2326 2327 2328 2329 2330
    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
                                                    void *data)      \
    {                                                                \
        MachineClass *mc = MACHINE_CLASS(oc);                        \
        spapr_machine_##suffix##_class_options(mc);                  \
2331 2332 2333 2334
        if (latest) {                                                \
            mc->alias = "pseries";                                   \
            mc->is_default = 1;                                      \
        }                                                            \
D
David Gibson 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    }                                                                \
    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
    {                                                                \
        MachineState *machine = MACHINE(obj);                        \
        spapr_machine_##suffix##_instance_options(machine);          \
    }                                                                \
    static const TypeInfo spapr_machine_##suffix##_info = {          \
        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
        .parent = TYPE_SPAPR_MACHINE,                                \
        .class_init = spapr_machine_##suffix##_class_init,           \
        .instance_init = spapr_machine_##suffix##_instance_init,     \
    };                                                               \
    static void spapr_machine_register_##suffix(void)                \
    {                                                                \
        type_register(&spapr_machine_##suffix##_info);               \
    }                                                                \
    machine_init(spapr_machine_register_##suffix)

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/*
 * pseries-2.6
 */
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
}

static void spapr_machine_2_6_class_options(MachineClass *mc)
{
    /* Defaults for the latest behaviour inherited from the base class */
}

DEFINE_SPAPR_MACHINE(2_6, "2.6", true);

2367 2368 2369
/*
 * pseries-2.5
 */
2370 2371 2372
#define SPAPR_COMPAT_2_5 \
        HW_COMPAT_2_5

D
David Gibson 已提交
2373
static void spapr_machine_2_5_instance_options(MachineState *machine)
2374
{
D
David Gibson 已提交
2375 2376 2377 2378
}

static void spapr_machine_2_5_class_options(MachineClass *mc)
{
2379 2380
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

2381
    spapr_machine_2_6_class_options(mc);
2382
    smc->use_ohci_by_default = true;
2383
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2384 2385
}

2386
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2387 2388 2389 2390

/*
 * pseries-2.4
 */
C
Cornelia Huck 已提交
2391 2392 2393
#define SPAPR_COMPAT_2_4 \
        HW_COMPAT_2_4

D
David Gibson 已提交
2394
static void spapr_machine_2_4_instance_options(MachineState *machine)
2395
{
D
David Gibson 已提交
2396 2397
    spapr_machine_2_5_instance_options(machine);
}
2398

D
David Gibson 已提交
2399 2400
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
2401 2402 2403 2404
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

    spapr_machine_2_5_class_options(mc);
    smc->dr_lmb_enabled = false;
D
David Gibson 已提交
2405
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2406 2407
}

2408
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2409 2410 2411 2412

/*
 * pseries-2.3
 */
E
Eduardo Habkost 已提交
2413
#define SPAPR_COMPAT_2_3 \
C
Cornelia Huck 已提交
2414
        SPAPR_COMPAT_2_4 \
2415 2416 2417 2418 2419 2420
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
2421

D
David Gibson 已提交
2422
static void spapr_machine_2_3_instance_options(MachineState *machine)
J
Jason Wang 已提交
2423
{
D
David Gibson 已提交
2424
    spapr_machine_2_4_instance_options(machine);
2425
    savevm_skip_section_footers();
2426
    global_state_set_optional();
J
Jason Wang 已提交
2427 2428
}

D
David Gibson 已提交
2429
static void spapr_machine_2_3_class_options(MachineClass *mc)
2430
{
2431
    spapr_machine_2_4_class_options(mc);
D
David Gibson 已提交
2432
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2433
}
2434
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2435

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
/*
 * pseries-2.2
 */

#define SPAPR_COMPAT_2_2 \
        SPAPR_COMPAT_2_3 \
        HW_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        },

D
David Gibson 已提交
2449
static void spapr_machine_2_2_instance_options(MachineState *machine)
2450
{
D
David Gibson 已提交
2451
    spapr_machine_2_3_instance_options(machine);
2452 2453
}

D
David Gibson 已提交
2454
static void spapr_machine_2_2_class_options(MachineClass *mc)
2455
{
2456
    spapr_machine_2_3_class_options(mc);
D
David Gibson 已提交
2457
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2458
}
2459
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2460

2461 2462 2463 2464 2465 2466
/*
 * pseries-2.1
 */
#define SPAPR_COMPAT_2_1 \
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
2467

D
David Gibson 已提交
2468
static void spapr_machine_2_1_instance_options(MachineState *machine)
2469
{
D
David Gibson 已提交
2470
    spapr_machine_2_2_instance_options(machine);
2471
}
J
Jason Wang 已提交
2472

D
David Gibson 已提交
2473
static void spapr_machine_2_1_class_options(MachineClass *mc)
J
Jason Wang 已提交
2474
{
2475
    spapr_machine_2_2_class_options(mc);
D
David Gibson 已提交
2476
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
J
Jason Wang 已提交
2477
}
2478
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
D
David Gibson 已提交
2479

2480
static void spapr_machine_register_types(void)
2481
{
2482
    type_register_static(&spapr_machine_info);
2483 2484
}

2485
type_init(spapr_machine_register_types)