spapr.c 61.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "sysemu/numa.h"
29
#include "hw/hw.h"
30
#include "hw/fw-path-provider.h"
31
#include "elf.h"
P
Paolo Bonzini 已提交
32
#include "net/net.h"
33
#include "sysemu/block-backend.h"
34 35
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
36
#include "kvm_ppc.h"
37
#include "migration/migration.h"
38
#include "mmu-hash64.h"
39
#include "qom/cpu.h"
40 41

#include "hw/boards.h"
P
Paolo Bonzini 已提交
42
#include "hw/ppc/ppc.h"
43 44
#include "hw/loader.h"

P
Paolo Bonzini 已提交
45 46 47 48
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
49
#include "hw/pci/msi.h"
50

51
#include "hw/pci/pci.h"
52 53
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
54

55
#include "exec/address-spaces.h"
56
#include "hw/usb.h"
57
#include "qemu/config-file.h"
58
#include "qemu/error-report.h"
59
#include "trace.h"
60
#include "hw/nmi.h"
A
Avi Kivity 已提交
61

62 63
#include "hw/compat.h"

64 65
#include <libfdt.h>

66 67 68 69 70 71 72 73 74 75
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
76
#define FDT_MAX_SIZE            0x40000
77
#define RTAS_MAX_SIZE           0x10000
78
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
79 80
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
81 82
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
83

84
#define MIN_RMA_SLOF            128UL
85 86 87

#define TIMEBASE_FREQ           512000000ULL

88
#define MAX_CPUS                255
89

90 91
#define PHANDLE_XICP            0x00001111

92 93
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

94
static XICSState *try_create_xics(const char *type, int nr_servers,
95
                                  int nr_irqs, Error **errp)
96
{
97
    Error *err = NULL;
98 99 100 101 102
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
103 104 105 106
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
107 108
        return NULL;
    }
109
    return XICS_COMMON(dev);
110 111
}

112 113
static XICSState *xics_system_init(MachineState *machine,
                                   int nr_servers, int nr_irqs)
114 115 116
{
    XICSState *icp = NULL;

117
    if (kvm_enabled()) {
118 119
        Error *err = NULL;

120
        if (machine_kernel_irqchip_allowed(machine)) {
121
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
122
        }
123
        if (machine_kernel_irqchip_required(machine) && !icp) {
124 125
            error_report("kernel_irqchip requested but unavailable: %s",
                         error_get_pretty(err));
126 127 128 129
        }
    }

    if (!icp) {
130
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
131 132 133 134 135
    }

    return icp;
}

136 137 138 139 140 141 142 143
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

144
    if (cpu->cpu_version) {
145
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
146 147 148 149 150
        if (ret < 0) {
            return ret;
        }
    }

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

190
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
191
{
192 193
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
194 195
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
196
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
197

198 199 200 201
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
202

203
        if ((index % smt) != 0) {
204 205 206
            continue;
        }

207
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
208

209 210 211 212 213 214 215 216 217
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
218
        if (offset < 0) {
219 220 221 222
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
223 224
        }

225 226
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
227 228 229
        if (ret < 0) {
            return ret;
        }
230

231 232 233 234 235
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

236
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
237
                                     ppc_get_compat_smt_threads(cpu));
238 239 240
        if (ret < 0) {
            return ret;
        }
241 242 243 244
    }
    return ret;
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

279 280
static hwaddr spapr_node0_size(void)
{
281 282
    MachineState *machine = MACHINE(qdev_get_machine());

283 284 285 286
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
287 288
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
289 290 291
            }
        }
    }
292
    return machine->ram_size;
293 294
}

295 296 297 298 299 300 301 302 303 304
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

305 306 307 308
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
309

310
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
311 312
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
313
                                   bool little_endian,
314 315
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
316 317 318 319
{
    void *fdt;
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
320 321
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
322
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
323
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
324
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
325
    char *buf;
326

327 328 329 330 331 332 333 334 335 336 337
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

338
    fdt = g_malloc0(FDT_MAX_SIZE);
339 340
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

341 342 343 344 345 346
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
347 348 349 350 351
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
352
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
353
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
    g_free(buf);

378 379 380 381 382 383
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

384 385 386
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

387 388 389 390 391
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
392 393 394
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
395

396
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
397 398 399
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
400
    }
401 402 403
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
404 405 406
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
407

408 409
    _FDT((fdt_end_node(fdt)));

410 411 412
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

413 414 415
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
416 417 418 419 420 421
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
422

423 424 425
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

426
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
427 428
    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
                            RTAS_EVENT_SCAN_RATE)));
429

430
    /*
431
     * According to PAPR, rtas ibm,os-term does not guarantee a return
432 433 434 435 436 437 438
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

439 440
    _FDT((fdt_end_node(fdt)));

441
    /* interrupt controller */
442
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
443 444 445 446 447 448 449 450

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
451 452 453
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
454 455 456

    _FDT((fdt_end_node(fdt)));

457 458 459 460 461 462 463
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
464 465
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
466 467 468

    _FDT((fdt_end_node(fdt)));

469 470 471
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

492 493 494
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

495 496 497
    return fdt;
}

498 499
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

516 517
    /* Fix skeleton up */
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

535 536 537 538 539 540
static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
541
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
}

560
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
561
{
562
    MachineState *machine = MACHINE(spapr);
563 564 565 566 567 568 569 570
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
571
        ramnode.node_mem = machine->ram_size;
572
        nodes = &ramnode;
573
    }
574

575 576 577 578
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
579
        if (mem_start >= machine->ram_size) {
580 581
            node_size = 0;
        } else {
582
            node_size = nodes[i].node_mem;
583 584
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
585 586
            }
        }
587 588 589 590 591 592
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
593 594 595 596 597 598 599 600 601 602 603 604
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
605 606 607 608 609
    }

    return 0;
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
    unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
    uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};

    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
                           cs->cpu_index / cpus_per_socket)));

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
                                ppc_get_compat_smt_threads(cpu)));
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

741
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
A
Avi Kivity 已提交
742 743 744
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
745
{
746 747
    MachineState *machine = MACHINE(qdev_get_machine());
    const char *boot_device = machine->boot_order;
748 749 750
    int ret, i;
    size_t cb = 0;
    char *bootlist;
751
    void *fdt;
752
    sPAPRPHBState *phb;
753

754
    fdt = g_malloc(FDT_MAX_SIZE);
755 756 757

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
758

759 760 761 762 763 764
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

765 766 767 768 769 770
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

771
    QLIST_FOREACH(phb, &spapr->phbs, list) {
772
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
773 774 775 776 777 778 779
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

780 781 782 783 784 785
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

786 787
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

804 805 806 807 808 809 810 811 812
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

813
    if (!spapr->has_graphics) {
814 815
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
816

817 818
    _FDT((fdt_pack(fdt)));

819
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
820 821
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
822 823 824
        exit(1);
    }

825
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
826

G
Gonglei 已提交
827
    g_free(bootlist);
828
    g_free(fdt);
829 830 831 832 833 834 835
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

836
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
837
{
838 839
    CPUPPCState *env = &cpu->env;

840 841 842 843
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
844
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
845
    }
846 847
}

848 849 850 851 852 853
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

854
static void spapr_reset_htab(sPAPRMachineState *spapr)
855 856
{
    long shift;
857
    int index;
858 859 860 861 862 863 864 865 866 867

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
868
        kvmppc_kern_htab = true;
869 870 871 872 873

        /* Tell readers to update their file descriptor */
        if (spapr->htab_fd >= 0) {
            spapr->htab_fd_stale = true;
        }
874 875 876 877 878 879 880 881
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
882 883 884 885

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
886 887 888 889
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
890 891
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
892
    }
893 894
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

912 913 914 915
/*
 * A guest reset will cause spapr->htab_fd to become stale if being used.
 * Reopen the file descriptor to make sure the whole HTAB is properly read.
 */
916
static int spapr_check_htab_fd(sPAPRMachineState *spapr)
917 918 919 920 921 922 923 924
{
    int rc = 0;

    if (spapr->htab_fd_stale) {
        close(spapr->htab_fd);
        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            error_report("Unable to open fd for reading hash table from KVM: "
925
                         "%s", strerror(errno));
926 927 928 929 930 931 932 933
            rc = -1;
        }
        spapr->htab_fd_stale = false;
    }

    return rc;
}

934
static void ppc_spapr_reset(void)
935
{
936
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
937
    PowerPCCPU *first_ppc_cpu;
938
    uint32_t rtas_limit;
939

940 941 942
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

943 944
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
945

946
    qemu_devices_reset();
947

948 949 950 951 952 953 954 955 956
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

957 958 959 960
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

961 962 963 964
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

965
    /* Set up the entry state */
966 967 968 969
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
970
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
971 972 973

}

974 975
static void spapr_cpu_reset(void *opaque)
{
976
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
977
    PowerPCCPU *cpu = opaque;
978
    CPUState *cs = CPU(cpu);
979
    CPUPPCState *env = &cpu->env;
980

981
    cpu_reset(cs);
982 983 984 985

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
986
    cs->halted = 1;
987 988

    env->spr[SPR_HIOR] = 0;
989

990
    env->external_htab = (uint8_t *)spapr->htab;
991 992 993 994 995 996 997
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
998
    env->htab_base = -1;
999 1000 1001 1002 1003 1004
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
1005
    env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1006
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1007
        (spapr->htab_shift - 18);
1008 1009
}

1010
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1011
{
1012
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1013
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1014

P
Paolo Bonzini 已提交
1015
    if (dinfo) {
1016
        qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
D
David Gibson 已提交
1017 1018 1019 1020 1021 1022 1023
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1024
static void spapr_rtc_create(sPAPRMachineState *spapr)
1025 1026 1027 1028 1029
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1030 1031 1032

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1033 1034
}

1035
/* Returns whether we want to use VGA or not */
1036 1037
static int spapr_vga_init(PCIBus *pci_bus)
{
1038 1039
    switch (vga_interface_type) {
    case VGA_NONE:
1040 1041 1042
        return false;
    case VGA_DEVICE:
        return true;
1043 1044
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
1045
    default:
1046 1047
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
1048
        exit(0);
1049 1050 1051
    }
}

1052 1053
static int spapr_post_load(void *opaque, int version_id)
{
1054
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1055 1056
    int err = 0;

S
Stefan Weil 已提交
1057
    /* In earlier versions, there was no separate qdev for the PAPR
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1073 1074
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1075
    .version_id = 3,
1076
    .minimum_version_id = 1,
1077
    .post_load = spapr_post_load,
1078
    .fields = (VMStateField[]) {
1079 1080
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1081 1082

        /* RTC offset */
1083
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1084

1085
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1086 1087 1088 1089 1090 1091
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1092
    sPAPRMachineState *spapr = opaque;
1093 1094 1095 1096

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1097 1098 1099 1100 1101 1102 1103
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
1104
        spapr->htab_fd_stale = false;
1105 1106 1107 1108 1109 1110 1111 1112
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


1113 1114 1115
    return 0;
}

1116
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1117 1118 1119 1120
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1121
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1137
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1152
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1166
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1167
                                int64_t max_ns)
1168 1169 1170 1171 1172
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1173
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1189
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1190 1191 1192 1193 1194 1195 1196 1197 1198
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1199
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1218
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1240
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1241 1242
}

1243 1244 1245
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1246 1247
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1248
    sPAPRMachineState *spapr = opaque;
1249
    int rc = 0;
1250 1251 1252 1253

    /* Iteration header */
    qemu_put_be32(f, 0);

1254 1255 1256
    if (!spapr->htab) {
        assert(kvm_enabled());

1257 1258 1259 1260 1261
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1262 1263 1264 1265 1266 1267
        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1268 1269
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1270
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1271 1272 1273 1274 1275 1276 1277
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1278
    return rc;
1279 1280 1281 1282
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1283
    sPAPRMachineState *spapr = opaque;
1284 1285 1286 1287

    /* Iteration header */
    qemu_put_be32(f, 0);

1288 1289 1290 1291 1292
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1293 1294 1295 1296 1297
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1298 1299 1300 1301 1302 1303 1304 1305 1306
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1318
    sPAPRMachineState *spapr = opaque;
1319
    uint32_t section_hdr;
1320
    int fd = -1;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
1332 1333
            error_report("htab_shift mismatch: source %d target %d",
                         section_hdr, spapr->htab_shift);
1334 1335 1336 1337 1338
            return -EINVAL;
        }
        return 0;
    }

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1362
        if ((index + n_valid + n_invalid) >
1363 1364 1365
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1366 1367
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1368 1369 1370
            return -EINVAL;
        }

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1389 1390 1391
        }
    }

1392 1393 1394 1395 1396
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1407 1408 1409 1410 1411 1412 1413
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;

    /* Set time-base frequency to 512 MHz */
    cpu_ppc_tb_init(env, TIMEBASE_FREQ);

    /* PAPR always has exception vectors in RAM not ROM. To ensure this,
     * MSR[IP] should never be set.
     */
    env->msr_mask &= ~(1 << 6);

    /* Tell KVM that we're in PAPR mode */
    if (kvm_enabled()) {
        kvmppc_set_papr(cpu);
    }

    if (cpu->max_compat) {
        if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
            exit(1);
        }
    }

    xics_cpu_setup(spapr->icp, cpu);

    qemu_register_reset(spapr_cpu_reset, cpu);
}

1442
/* pSeries LPAR / sPAPR hardware init */
1443
static void ppc_spapr_init(MachineState *machine)
1444
{
1445
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1446 1447 1448
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1449
    PowerPCCPU *cpu;
1450
    PCIHostState *phb;
1451
    int i;
A
Avi Kivity 已提交
1452 1453
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1454 1455
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1456
    hwaddr rma_alloc_size;
1457
    hwaddr node0_size = spapr_node0_size();
1458 1459
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1460
    long load_limit, fw_size;
1461
    bool kernel_le = false;
1462
    char *filename;
1463

1464 1465
    msi_supported = true;

1466 1467
    QLIST_INIT(&spapr->phbs);

1468 1469
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1470
    /* Allocate RMA if necessary */
1471
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1472 1473

    if (rma_alloc_size == -1) {
1474
        error_report("Unable to create RMA");
1475 1476
        exit(1);
    }
1477

1478
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1479
        spapr->rma_size = rma_alloc_size;
1480
    } else {
1481
        spapr->rma_size = node0_size;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1496 1497
    }

1498 1499 1500 1501 1502 1503
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1504 1505
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1506

1507 1508 1509 1510 1511
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
1512
        if ((1ULL << (spapr->htab_shift + 7)) >= machine->ram_size) {
1513 1514 1515 1516
            break;
        }
        spapr->htab_shift++;
    }
1517

1518
    /* Set up Interrupt Controller before we create the VCPUs */
1519
    spapr->icp = xics_system_init(machine,
1520
                                  DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1521
                                               smp_threads),
1522 1523
                                  XICS_IRQS);

1524
    /* init CPUs */
1525 1526
    if (machine->cpu_model == NULL) {
        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1527 1528
    }
    for (i = 0; i < smp_cpus; i++) {
1529
        cpu = cpu_ppc_init(machine->cpu_model);
1530
        if (cpu == NULL) {
1531 1532 1533
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1534
        spapr_cpu_init(spapr, cpu);
1535 1536
    }

1537 1538 1539 1540 1541
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
    }

1542
    /* allocate RAM */
1543
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1544
                                         machine->ram_size);
1545
    memory_region_add_subregion(sysmem, 0, ram);
1546

1547 1548 1549 1550 1551 1552 1553 1554
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1555
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1556
    if (!filename) {
1557
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1558 1559
        exit(1);
    }
1560 1561 1562
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1563
        error_report("Could not load LPAR rtas '%s'", filename);
1564 1565
        exit(1);
    }
1566
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1567 1568
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1569 1570
        exit(1);
    }
1571
    g_free(filename);
1572

1573 1574 1575
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1576
    /* Set up the RTC RTAS interfaces */
1577
    spapr_rtc_create(spapr);
1578

1579
    /* Set up VIO bus */
1580 1581
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1582
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1583
        if (serial_hds[i]) {
1584
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1585 1586
        }
    }
1587

D
David Gibson 已提交
1588 1589 1590
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1591
    /* Set up PCI */
1592 1593
    spapr_pci_rtas_init();

1594
    phb = spapr_create_phb(spapr, 0);
1595

P
Paolo Bonzini 已提交
1596
    for (i = 0; i < nb_nics; i++) {
1597 1598 1599
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1600
            nd->model = g_strdup("ibmveth");
1601 1602 1603
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1604
            spapr_vlan_create(spapr->vio_bus, nd);
1605
        } else {
1606
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1607 1608 1609
        }
    }

1610
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1611
        spapr_vscsi_create(spapr->vio_bus);
1612 1613
    }

1614
    /* Graphics */
1615
    if (spapr_vga_init(phb->bus)) {
1616
        spapr->has_graphics = true;
1617
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1618 1619
    }

1620
    if (machine->usb) {
1621
        pci_create_simple(phb->bus, -1, "pci-ohci");
1622

1623
        if (spapr->has_graphics) {
1624 1625 1626 1627
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1628 1629 1630
        }
    }

1631
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1632 1633 1634 1635 1636
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1637 1638 1639 1640 1641
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1642
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1643 1644 1645 1646 1647
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1648
        if (kernel_size < 0) {
1649 1650
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1651 1652 1653 1654 1655
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1656 1657 1658 1659
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1660
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1661
                                              load_limit - initrd_base);
1662 1663 1664 1665 1666 1667 1668 1669 1670
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1671
    }
1672

1673 1674 1675 1676
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1677
    if (!filename) {
1678
        error_report("Could not find LPAR firmware '%s'", bios_name);
1679 1680
        exit(1);
    }
1681
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1682 1683
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1684 1685 1686 1687
        exit(1);
    }
    g_free(filename);

1688 1689 1690
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
1691 1692 1693 1694
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1695
    /* Prepare the device tree */
1696
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1697
                                            kernel_size, kernel_le,
1698 1699
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
1700
    assert(spapr->fdt_skel != NULL);
1701

1702 1703 1704 1705
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

1706
    qemu_register_boot_set(spapr_boot_set, spapr);
1707 1708
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1727
/*
1728
 * Implementation of an interface to adjust firmware path
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
1784 1785
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
1786
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1787

1788
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
1789 1790 1791 1792
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
1793
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1794

1795 1796
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
1797 1798 1799 1800 1801 1802
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1803 1804 1805
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
1806 1807
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

1825 1826 1827
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1828
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1829
    NMIClass *nc = NMI_CLASS(oc);
1830 1831 1832 1833 1834 1835

    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
    mc->max_cpus = MAX_CPUS;
    mc->no_parallel = 1;
1836
    mc->default_boot_order = "";
1837
    mc->default_ram_size = 512 * M_BYTE;
1838
    mc->kvm_type = spapr_kvm_type;
1839
    mc->has_dynamic_sysbus = true;
1840
    mc->pci_allow_0_address = true;
1841

1842
    fwc->get_dev_path = spapr_get_fw_dev_path;
1843
    nc->nmi_monitor_handler = spapr_nmi;
1844 1845 1846 1847 1848
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
1849
    .abstract      = true,
1850
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
1851
    .instance_init = spapr_machine_initfn,
D
David Gibson 已提交
1852
    .class_size    = sizeof(sPAPRMachineClass),
1853
    .class_init    = spapr_machine_class_init,
1854 1855
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
1856
        { TYPE_NMI },
1857 1858
        { }
    },
1859 1860
};

E
Eduardo Habkost 已提交
1861
#define SPAPR_COMPAT_2_3 \
1862 1863 1864 1865 1866 1867
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
1868

1869
#define SPAPR_COMPAT_2_2 \
E
Eduardo Habkost 已提交
1870
        SPAPR_COMPAT_2_3 \
1871
        HW_COMPAT_2_2 \
1872 1873 1874 1875
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
1876
        },
1877 1878

#define SPAPR_COMPAT_2_1 \
1879 1880
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
1881

J
Jason Wang 已提交
1882 1883
static void spapr_compat_2_3(Object *obj)
{
1884
    savevm_skip_section_footers();
1885
    global_state_set_optional();
J
Jason Wang 已提交
1886 1887
}

1888 1889
static void spapr_compat_2_2(Object *obj)
{
J
Jason Wang 已提交
1890
    spapr_compat_2_3(obj);
1891 1892 1893 1894 1895 1896 1897
}

static void spapr_compat_2_1(Object *obj)
{
    spapr_compat_2_2(obj);
}

J
Jason Wang 已提交
1898 1899 1900 1901 1902 1903
static void spapr_machine_2_3_instance_init(Object *obj)
{
    spapr_compat_2_3(obj);
    spapr_machine_initfn(obj);
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static void spapr_machine_2_2_instance_init(Object *obj)
{
    spapr_compat_2_2(obj);
    spapr_machine_initfn(obj);
}

static void spapr_machine_2_1_instance_init(Object *obj)
{
    spapr_compat_2_1(obj);
    spapr_machine_initfn(obj);
}

1916 1917 1918
static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1919
    static GlobalProperty compat_props[] = {
1920
        SPAPR_COMPAT_2_1
1921 1922
        { /* end of list */ }
    };
1923 1924

    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1925
    mc->compat_props = compat_props;
1926 1927 1928
}

static const TypeInfo spapr_machine_2_1_info = {
1929
    .name          = MACHINE_TYPE_NAME("pseries-2.1"),
1930 1931
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_1_class_init,
1932
    .instance_init = spapr_machine_2_1_instance_init,
1933 1934
};

1935 1936
static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
{
1937
    static GlobalProperty compat_props[] = {
1938
        SPAPR_COMPAT_2_2
1939 1940
        { /* end of list */ }
    };
1941 1942 1943
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1944
    mc->compat_props = compat_props;
1945 1946 1947
}

static const TypeInfo spapr_machine_2_2_info = {
1948
    .name          = MACHINE_TYPE_NAME("pseries-2.2"),
1949 1950
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_2_class_init,
1951
    .instance_init = spapr_machine_2_2_instance_init,
1952 1953
};

1954 1955
static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
{
1956
    static GlobalProperty compat_props[] = {
1957
        SPAPR_COMPAT_2_3
1958 1959
        { /* end of list */ }
    };
1960 1961 1962
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
1963
    mc->compat_props = compat_props;
1964 1965 1966
}

static const TypeInfo spapr_machine_2_3_info = {
1967
    .name          = MACHINE_TYPE_NAME("pseries-2.3"),
1968 1969
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_3_class_init,
J
Jason Wang 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978
    .instance_init = spapr_machine_2_3_instance_init,
};

static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
    mc->alias = "pseries";
D
David Gibson 已提交
1979
    mc->is_default = 0;
J
Jason Wang 已提交
1980 1981 1982
}

static const TypeInfo spapr_machine_2_4_info = {
1983
    .name          = MACHINE_TYPE_NAME("pseries-2.4"),
J
Jason Wang 已提交
1984 1985
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_4_class_init,
1986 1987
};

D
David Gibson 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.5";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
    mc->alias = "pseries";
    mc->is_default = 1;
}

static const TypeInfo spapr_machine_2_5_info = {
    .name          = MACHINE_TYPE_NAME("pseries-2.5"),
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_5_class_init,
};

2004
static void spapr_machine_register_types(void)
2005
{
2006
    type_register_static(&spapr_machine_info);
2007
    type_register_static(&spapr_machine_2_1_info);
2008
    type_register_static(&spapr_machine_2_2_info);
2009
    type_register_static(&spapr_machine_2_3_info);
J
Jason Wang 已提交
2010
    type_register_static(&spapr_machine_2_4_info);
D
David Gibson 已提交
2011
    type_register_static(&spapr_machine_2_5_info);
2012 2013
}

2014
type_init(spapr_machine_register_types)