spapr.c 50.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/fw-path-provider.h"
30
#include "elf.h"
P
Paolo Bonzini 已提交
31
#include "net/net.h"
32 33 34
#include "sysemu/blockdev.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
35
#include "kvm_ppc.h"
36
#include "mmu-hash64.h"
37
#include "qom/cpu.h"
38 39

#include "hw/boards.h"
P
Paolo Bonzini 已提交
40
#include "hw/ppc/ppc.h"
41 42
#include "hw/loader.h"

P
Paolo Bonzini 已提交
43 44 45 46
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
47
#include "hw/pci/msi.h"
48

49
#include "hw/pci/pci.h"
50 51
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
52

53
#include "exec/address-spaces.h"
54
#include "hw/usb.h"
55
#include "qemu/config-file.h"
56
#include "qemu/error-report.h"
57
#include "trace.h"
A
Avi Kivity 已提交
58

59 60
#include <libfdt.h>

61 62 63 64 65 66 67 68 69 70
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
71
#define FDT_MAX_SIZE            0x40000
72
#define RTAS_MAX_SIZE           0x10000
73 74
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
75 76
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
77

78
#define MIN_RMA_SLOF            128UL
79 80 81

#define TIMEBASE_FREQ           512000000ULL

82
#define MAX_CPUS                256
83

84 85
#define PHANDLE_XICP            0x00001111

86 87
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

88
typedef struct sPAPRMachineState sPAPRMachineState;
89

90
#define TYPE_SPAPR_MACHINE      "spapr-machine"
91
#define SPAPR_MACHINE(obj) \
92
    OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
93 94

/**
95
 * sPAPRMachineState:
96
 */
97
struct sPAPRMachineState {
98 99
    /*< private >*/
    MachineState parent_obj;
E
Eduardo Habkost 已提交
100 101 102

    /*< public >*/
    char *kvm_type;
103 104
};

105 106
sPAPREnvironment *spapr;

107 108 109 110 111 112 113 114 115 116 117 118
static XICSState *try_create_xics(const char *type, int nr_servers,
                                  int nr_irqs)
{
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
    if (qdev_init(dev) < 0) {
        return NULL;
    }

119
    return XICS_COMMON(dev);
120 121 122 123 124 125
}

static XICSState *xics_system_init(int nr_servers, int nr_irqs)
{
    XICSState *icp = NULL;

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    if (kvm_enabled()) {
        QemuOpts *machine_opts = qemu_get_machine_opts();
        bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
                                                "kernel_irqchip", true);
        bool irqchip_required = qemu_opt_get_bool(machine_opts,
                                                  "kernel_irqchip", false);
        if (irqchip_allowed) {
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
        }

        if (irqchip_required && !icp) {
            perror("Failed to create in-kernel XICS\n");
            abort();
        }
    }

    if (!icp) {
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
    }

146 147 148 149 150 151 152 153
    if (!icp) {
        perror("Failed to create XICS\n");
        abort();
    }

    return icp;
}

154 155 156 157 158 159 160 161
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

162
    if (cpu->cpu_version) {
163
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
164 165 166 167 168
        if (ret < 0) {
            return ret;
        }
    }

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

187
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
188
{
189 190
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
191 192
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
193
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
194

195 196 197 198
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
199 200 201 202
        uint32_t associativity[] = {cpu_to_be32(0x5),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
203
                                    cpu_to_be32(cs->numa_node),
204
                                    cpu_to_be32(index)};
205

206
        if ((index % smt) != 0) {
207 208 209
            continue;
        }

210
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
211

212 213 214 215 216 217 218 219 220
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
221
        if (offset < 0) {
222 223 224 225
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
226 227
        }

228 229 230 231 232 233 234 235 236 237
        if (nb_numa_nodes > 1) {
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                              sizeof(associativity));
            if (ret < 0) {
                return ret;
            }
        }

        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
238 239 240
        if (ret < 0) {
            return ret;
        }
241

242
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243
                                     ppc_get_compat_smt_threads(cpu));
244 245 246
        if (ret < 0) {
            return ret;
        }
247 248 249 250
    }
    return ret;
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

285 286 287 288 289 290 291 292 293 294
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

295 296 297 298
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
299

300
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
301 302
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
303
                                   bool little_endian,
304
                                   const char *boot_device,
305 306
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
307 308
{
    void *fdt;
309
    CPUState *cs;
310 311
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
312 313
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
314
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
315
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
316
    int smt = kvmppc_smt_threads();
317
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
318 319 320
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
    unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
    uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
321

322 323 324 325 326 327 328 329 330 331 332
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

333
    fdt = g_malloc0(FDT_MAX_SIZE);
334 335
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

336 337 338 339 340 341
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
342 343 344 345 346
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
347
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
348
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
349 350 351 352 353 354 355

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

356 357 358
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

359 360 361 362 363
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
364 365 366
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
367

368
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
369 370 371
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
372
    }
A
Avik Sil 已提交
373 374 375
    if (boot_device) {
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
    }
376 377 378
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
379 380 381
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
382

383 384 385 386 387 388 389 390
    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

A
Andreas Färber 已提交
391
    CPU_FOREACH(cs) {
392 393
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        CPUPPCState *env = &cpu->env;
394
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
395
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
396
        int index = ppc_get_vcpu_dt_id(cpu);
397 398 399
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};
400 401
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
402 403
        uint32_t page_sizes_prop[64];
        size_t page_sizes_prop_size;
404

405 406 407 408
        if ((index % smt) != 0) {
            continue;
        }

409
        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
410 411 412

        _FDT((fdt_begin_node(fdt, nodename)));

413
        g_free(nodename);
414

D
David Gibson 已提交
415
        _FDT((fdt_property_cell(fdt, "reg", index)));
416 417 418
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
419
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
420
                                env->dcache_line_size)));
421 422 423 424 425
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
426
                                env->icache_line_size)));
427 428 429 430 431 432 433 434 435 436 437 438

        if (pcc->l1_dcache_size) {
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
        }
        if (pcc->l1_icache_size) {
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
        }

439 440
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
441 442 443
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
444

445 446 447 448
        if (env->spr_cb[SPR_PURR].oea_read) {
            _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
        }

D
David Gibson 已提交
449
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
450 451 452 453
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

454 455 456 457
        /* Advertise VMX/VSX (vector extensions) if available
         *   0 / no property == no vector extensions
         *   1               == VMX / Altivec available
         *   2               == VSX available */
458 459 460
        if (env->insns_flags & PPC_ALTIVEC) {
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

461 462 463 464 465 466
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
        }

        /* Advertise DFP (Decimal Floating Point) if available
         *   0 / no property == no DFP
         *   1               == DFP available */
467 468
        if (env->insns_flags2 & PPC2_DFP) {
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
469 470
        }

471 472 473 474 475 476 477
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                      sizeof(page_sizes_prop));
        if (page_sizes_prop_size) {
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
                               page_sizes_prop, page_sizes_prop_size)));
        }

478 479 480
        _FDT((fdt_property_cell(fdt, "ibm,chip-id",
                                cs->cpu_index / cpus_per_socket)));

481 482 483 484 485
        _FDT((fdt_end_node(fdt)));
    }

    _FDT((fdt_end_node(fdt)));

486 487 488
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

489 490 491
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
492 493 494 495 496 497
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
498

499 500 501
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

502 503
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));

504 505
    _FDT((fdt_end_node(fdt)));

506
    /* interrupt controller */
507
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
508 509 510 511 512 513 514 515

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
516 517 518
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
519 520 521

    _FDT((fdt_end_node(fdt)));

522 523 524 525 526 527 528
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
529 530
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
531 532 533

    _FDT((fdt_end_node(fdt)));

534 535 536
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

557 558 559
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

560 561 562
    return fdt;
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

580 581
    /* Fix skeleton up */
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

599 600 601 602 603 604
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
{
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
                                cpu_to_be32(0x0)};
    char mem_name[32];
605
    hwaddr node0_size, mem_start, node_size;
606 607 608 609
    uint64_t mem_reg_property[2];
    int i, off;

    /* memory node(s) */
610 611
    if (nb_numa_nodes > 1 && numa_info[0].node_mem < ram_size) {
        node0_size = numa_info[0].node_mem;
612 613 614
    } else {
        node0_size = ram_size;
    }
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

    /* RMA */
    mem_reg_property[0] = 0;
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
    off = fdt_add_subnode(fdt, 0, "memory@0");
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));

    /* RAM: Node 0 */
    if (node0_size > spapr->rma_size) {
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);

        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
    }

    /* RAM: Node 1 and beyond */
    mem_start = node0_size;
    for (i = 1; i < nb_numa_nodes; i++) {
        mem_reg_property[0] = cpu_to_be64(mem_start);
646 647 648
        if (mem_start >= ram_size) {
            node_size = 0;
        } else {
649
            node_size = numa_info[i].node_mem;
650 651 652 653 654
            if (node_size > ram_size - mem_start) {
                node_size = ram_size - mem_start;
            }
        }
        mem_reg_property[1] = cpu_to_be64(node_size);
655 656 657 658 659 660 661 662 663
        associativity[3] = associativity[4] = cpu_to_be32(i);
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
664
        mem_start += node_size;
665 666 667 668 669
    }

    return 0;
}

670
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
A
Avi Kivity 已提交
671 672 673
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
674
{
675 676 677
    int ret, i;
    size_t cb = 0;
    char *bootlist;
678
    void *fdt;
679
    sPAPRPHBState *phb;
680

681
    fdt = g_malloc(FDT_MAX_SIZE);
682 683 684

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
685

686 687 688 689 690 691
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

692 693 694 695 696 697
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

698
    QLIST_FOREACH(phb, &spapr->phbs, list) {
699
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
700 701 702 703 704 705 706
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

707 708 709 710 711 712
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

713
    /* Advertise NUMA via ibm,associativity */
714 715 716
    ret = spapr_fixup_cpu_dt(fdt, spapr);
    if (ret < 0) {
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
717 718
    }

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

734
    if (!spapr->has_graphics) {
735 736
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
737

738 739
    _FDT((fdt_pack(fdt)));

740 741 742 743 744 745
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

746
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
747

748
    g_free(fdt);
749 750 751 752 753 754 755
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

756
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
757
{
758 759
    CPUPPCState *env = &cpu->env;

760 761 762 763
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
764
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
765
    }
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780
static void spapr_reset_htab(sPAPREnvironment *spapr)
{
    long shift;

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
781
        kvmppc_kern_htab = true;
782 783 784 785 786 787 788 789 790 791 792 793
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
794 795
        hwaddr node0_size = (nb_numa_nodes > 1) ?
            numa_info[0].node_mem : ram_size;
796
        spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
797
    }
798 799
}

800
static void ppc_spapr_reset(void)
801
{
802
    PowerPCCPU *first_ppc_cpu;
803

804 805
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
806

807
    qemu_devices_reset();
808 809 810 811 812 813

    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

    /* Set up the entry state */
814 815 816 817 818
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
    first_ppc_cpu->env.nip = spapr->entry_point;
819 820 821

}

822 823
static void spapr_cpu_reset(void *opaque)
{
824
    PowerPCCPU *cpu = opaque;
825
    CPUState *cs = CPU(cpu);
826
    CPUPPCState *env = &cpu->env;
827

828
    cpu_reset(cs);
829 830 831 832

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
833
    cs->halted = 1;
834 835

    env->spr[SPR_HIOR] = 0;
836

837
    env->external_htab = (uint8_t *)spapr->htab;
838 839 840 841 842 843 844
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
845
    env->htab_base = -1;
846 847 848 849 850 851 852
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
    env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
853
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
854
        (spapr->htab_shift - 18);
855 856
}

D
David Gibson 已提交
857 858
static void spapr_create_nvram(sPAPREnvironment *spapr)
{
859
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
860
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
861

P
Paolo Bonzini 已提交
862 863
    if (dinfo) {
        qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
D
David Gibson 已提交
864 865 866 867 868 869 870
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

871
/* Returns whether we want to use VGA or not */
872 873
static int spapr_vga_init(PCIBus *pci_bus)
{
874 875
    switch (vga_interface_type) {
    case VGA_NONE:
876 877 878
        return false;
    case VGA_DEVICE:
        return true;
879 880
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
881
    default:
882 883
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
884
        exit(0);
885 886 887
    }
}

888 889
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
890
    .version_id = 2,
891
    .minimum_version_id = 1,
892
    .fields = (VMStateField[]) {
A
Alexey Kardashevskiy 已提交
893
        VMSTATE_UNUSED(4), /* used to be @next_irq */
894 895 896

        /* RTC offset */
        VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
897
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
        VMSTATE_END_OF_LIST()
    },
};

#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))

static int htab_save_setup(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


929 930 931 932 933 934 935 936
    return 0;
}

static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
937
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
        while ((index < htabslots)
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

968
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
969 970 971 972 973 974 975 976 977 978 979 980 981
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

982 983
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                int64_t max_ns)
984 985 986 987 988
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
989
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1034
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1056
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1057 1058
}

1059 1060 1061
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1062 1063 1064
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;
1065
    int rc = 0;
1066 1067 1068 1069

    /* Iteration header */
    qemu_put_be32(f, 0);

1070 1071 1072 1073 1074 1075 1076 1077 1078
    if (!spapr->htab) {
        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1079 1080
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1081
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1082 1083 1084 1085 1086 1087 1088
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1089
    return rc;
1090 1091 1092 1093 1094 1095 1096 1097 1098
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* Iteration header */
    qemu_put_be32(f, 0);

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
    sPAPREnvironment *spapr = opaque;
    uint32_t section_hdr;
1126
    int fd = -1;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1166
        if ((index + n_valid + n_invalid) >
1167 1168 1169
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1170 1171
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1172 1173 1174
            return -EINVAL;
        }

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1193 1194 1195
        }
    }

1196 1197 1198 1199 1200
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1211
/* pSeries LPAR / sPAPR hardware init */
1212
static void ppc_spapr_init(MachineState *machine)
1213
{
1214 1215 1216 1217 1218 1219
    ram_addr_t ram_size = machine->ram_size;
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    const char *boot_device = machine->boot_order;
1220
    PowerPCCPU *cpu;
A
Andreas Färber 已提交
1221
    CPUPPCState *env;
1222
    PCIHostState *phb;
1223
    int i;
A
Avi Kivity 已提交
1224 1225
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
A
Avi Kivity 已提交
1226
    hwaddr rma_alloc_size;
1227
    hwaddr node0_size = (nb_numa_nodes > 1) ? numa_info[0].node_mem : ram_size;
1228 1229 1230
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
    long load_limit, rtas_limit, fw_size;
1231
    bool kernel_le = false;
1232
    char *filename;
1233

1234 1235
    msi_supported = true;

1236 1237 1238
    spapr = g_malloc0(sizeof(*spapr));
    QLIST_INIT(&spapr->phbs);

1239 1240
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1241 1242 1243 1244 1245 1246 1247
    /* Allocate RMA if necessary */
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);

    if (rma_alloc_size == -1) {
        hw_error("qemu: Unable to create RMA\n");
        exit(1);
    }
1248

1249
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1250
        spapr->rma_size = rma_alloc_size;
1251
    } else {
1252
        spapr->rma_size = node0_size;
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1267 1268
    }

1269 1270 1271 1272 1273 1274
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1275
    /* We place the device tree and RTAS just below either the top of the RMA,
1276 1277
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary */
1278
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
1279 1280 1281
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
            break;
        }
        spapr->htab_shift++;
    }
1293

1294 1295 1296 1297
    /* Set up Interrupt Controller before we create the VCPUs */
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
                                  XICS_IRQS);

1298 1299
    /* init CPUs */
    if (cpu_model == NULL) {
1300
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1301 1302
    }
    for (i = 0; i < smp_cpus; i++) {
1303 1304
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
1305 1306 1307
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1308 1309
        env = &cpu->env;

1310 1311 1312
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1313 1314 1315 1316
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
         * MSR[IP] should never be set.
         */
        env->msr_mask &= ~(1 << 6);
1317 1318 1319

        /* Tell KVM that we're in PAPR mode */
        if (kvm_enabled()) {
1320
            kvmppc_set_papr(cpu);
1321 1322
        }

1323 1324 1325 1326 1327 1328
        if (cpu->max_compat) {
            if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
                exit(1);
            }
        }

1329 1330
        xics_cpu_setup(spapr->icp, cpu);

1331
        qemu_register_reset(spapr_cpu_reset, cpu);
1332 1333 1334
    }

    /* allocate RAM */
1335
    spapr->ram_limit = ram_size;
1336 1337 1338 1339
    if (spapr->ram_limit > rma_alloc_size) {
        ram_addr_t nonrma_base = rma_alloc_size;
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;

1340
        memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1341
        vmstate_register_ram_global(ram);
1342 1343
        memory_region_add_subregion(sysmem, nonrma_base, ram);
    }
1344

1345
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1346
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1347
                                           rtas_limit - spapr->rtas_addr);
1348
    if (spapr->rtas_size < 0) {
1349 1350 1351
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
1352 1353 1354 1355 1356
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
                 spapr->rtas_size, RTAS_MAX_SIZE);
        exit(1);
    }
1357
    g_free(filename);
1358

1359 1360 1361
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1362
    /* Set up VIO bus */
1363 1364
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1365
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1366
        if (serial_hds[i]) {
1367
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1368 1369
        }
    }
1370

D
David Gibson 已提交
1371 1372 1373
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1374
    /* Set up PCI */
1375
    spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1376 1377
    spapr_pci_rtas_init();

1378
    phb = spapr_create_phb(spapr, 0);
1379

P
Paolo Bonzini 已提交
1380
    for (i = 0; i < nb_nics; i++) {
1381 1382 1383
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1384
            nd->model = g_strdup("ibmveth");
1385 1386 1387
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1388
            spapr_vlan_create(spapr->vio_bus, nd);
1389
        } else {
1390
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1391 1392 1393
        }
    }

1394
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1395
        spapr_vscsi_create(spapr->vio_bus);
1396 1397
    }

1398
    /* Graphics */
1399
    if (spapr_vga_init(phb->bus)) {
1400
        spapr->has_graphics = true;
1401 1402
    }

1403
    if (usb_enabled(spapr->has_graphics)) {
1404
        pci_create_simple(phb->bus, -1, "pci-ohci");
1405 1406 1407 1408 1409 1410
        if (spapr->has_graphics) {
            usbdevice_create("keyboard");
            usbdevice_create("mouse");
        }
    }

1411
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1412 1413 1414 1415 1416
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1417 1418 1419 1420 1421
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1422
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1423 1424 1425 1426 1427
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1428
        if (kernel_size < 0) {
1429 1430
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1431 1432 1433 1434 1435
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1436 1437 1438 1439
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1440
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1441
                                              load_limit - initrd_base);
1442 1443 1444 1445 1446 1447 1448 1449 1450
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1451
    }
1452

1453 1454 1455 1456
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1457 1458 1459 1460 1461 1462 1463 1464 1465
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
    if (fw_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    g_free(filename);

    spapr->entry_point = 0x100;

1466 1467 1468 1469
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1470
    /* Prepare the device tree */
1471
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1472
                                            kernel_size, kernel_le,
1473 1474
                                            boot_device, kernel_cmdline,
                                            spapr->epow_irq);
1475
    assert(spapr->fdt_skel != NULL);
1476 1477
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/*
 * Implementation of an interface to adjust firmware patch
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
1553 1554
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
1555
    sPAPRMachineState *sm = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1556 1557 1558 1559 1560 1561

    return g_strdup(sm->kvm_type);
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
1562
    sPAPRMachineState *sm = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

    g_free(sm->kvm_type);
    sm->kvm_type = g_strdup(value);
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
}

1574 1575 1576
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1577
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

    mc->name = "pseries";
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
    mc->is_default = 1;
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
    mc->max_cpus = MAX_CPUS;
    mc->no_parallel = 1;
    mc->default_boot_order = NULL;
    mc->kvm_type = spapr_kvm_type;
1589

1590
    fwc->get_dev_path = spapr_get_fw_dev_path;
1591 1592 1593 1594 1595
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
1596
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
1597
    .instance_init = spapr_machine_initfn,
1598
    .class_init    = spapr_machine_class_init,
1599 1600 1601 1602
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
        { }
    },
1603 1604
};

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.1";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
    mc->is_default = 0;
}

static const TypeInfo spapr_machine_2_1_info = {
    .name          = TYPE_SPAPR_MACHINE "2.1",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_1_class_init,
};

1620
static void spapr_machine_register_types(void)
1621
{
1622
    type_register_static(&spapr_machine_info);
1623
    type_register_static(&spapr_machine_2_1_info);
1624 1625
}

1626
type_init(spapr_machine_register_types)