spapr.c 49.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/fw-path-provider.h"
30
#include "elf.h"
P
Paolo Bonzini 已提交
31
#include "net/net.h"
32 33 34
#include "sysemu/blockdev.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
35
#include "kvm_ppc.h"
36
#include "mmu-hash64.h"
37
#include "qom/cpu.h"
38 39

#include "hw/boards.h"
P
Paolo Bonzini 已提交
40
#include "hw/ppc/ppc.h"
41 42
#include "hw/loader.h"

P
Paolo Bonzini 已提交
43 44 45 46
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
47
#include "hw/pci/msi.h"
48

49
#include "hw/pci/pci.h"
50 51
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
52

53
#include "exec/address-spaces.h"
54
#include "hw/usb.h"
55
#include "qemu/config-file.h"
56
#include "qemu/error-report.h"
57
#include "trace.h"
A
Avi Kivity 已提交
58

59 60
#include <libfdt.h>

61 62 63 64 65 66 67 68 69 70
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
71
#define FDT_MAX_SIZE            0x40000
72
#define RTAS_MAX_SIZE           0x10000
73 74
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
75 76
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
77

78
#define MIN_RMA_SLOF            128UL
79 80 81

#define TIMEBASE_FREQ           512000000ULL

82
#define MAX_CPUS                256
83
#define XICS_IRQS               1024
84

85 86
#define PHANDLE_XICP            0x00001111

87 88
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

89 90
#define TYPE_SPAPR_MACHINE      "spapr-machine"

91 92
sPAPREnvironment *spapr;

93
int spapr_allocate_irq(int hint, bool lsi)
94
{
95
    int irq;
96 97 98

    if (hint) {
        irq = hint;
99 100 101
        if (hint >= spapr->next_irq) {
            spapr->next_irq = hint + 1;
        }
102 103 104 105 106
        /* FIXME: we should probably check for collisions somehow */
    } else {
        irq = spapr->next_irq++;
    }

107 108 109
    /* Configure irq type */
    if (!xics_get_qirq(spapr->icp, irq)) {
        return 0;
110 111
    }

112
    xics_set_irq_type(spapr->icp, irq, lsi);
113

114
    return irq;
115 116
}

117 118 119 120 121
/*
 * Allocate block of consequtive IRQs, returns a number of the first.
 * If msi==true, aligns the first IRQ number to num.
 */
int spapr_allocate_irq_block(int num, bool lsi, bool msi)
122 123
{
    int first = -1;
124 125 126 127 128 129 130
    int i, hint = 0;

    /*
     * MSIMesage::data is used for storing VIRQ so
     * it has to be aligned to num to support multiple
     * MSI vectors. MSI-X is not affected by this.
     * The hint is used for the first IRQ, the rest should
S
Stefan Weil 已提交
131
     * be allocated continuously.
132 133 134 135 136 137
     */
    if (msi) {
        assert((num == 1) || (num == 2) || (num == 4) ||
               (num == 8) || (num == 16) || (num == 32));
        hint = (spapr->next_irq + num - 1) & ~(num - 1);
    }
138 139 140 141

    for (i = 0; i < num; ++i) {
        int irq;

142
        irq = spapr_allocate_irq(hint, lsi);
143 144 145 146 147 148
        if (!irq) {
            return -1;
        }

        if (0 == i) {
            first = irq;
149
            hint = 0;
150 151 152 153 154 155 156 157 158 159
        }

        /* If the above doesn't create a consecutive block then that's
         * an internal bug */
        assert(irq == (first + i));
    }

    return first;
}

160 161 162 163 164 165 166 167 168 169 170 171
static XICSState *try_create_xics(const char *type, int nr_servers,
                                  int nr_irqs)
{
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
    if (qdev_init(dev) < 0) {
        return NULL;
    }

172
    return XICS_COMMON(dev);
173 174 175 176 177 178
}

static XICSState *xics_system_init(int nr_servers, int nr_irqs)
{
    XICSState *icp = NULL;

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    if (kvm_enabled()) {
        QemuOpts *machine_opts = qemu_get_machine_opts();
        bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
                                                "kernel_irqchip", true);
        bool irqchip_required = qemu_opt_get_bool(machine_opts,
                                                  "kernel_irqchip", false);
        if (irqchip_allowed) {
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
        }

        if (irqchip_required && !icp) {
            perror("Failed to create in-kernel XICS\n");
            abort();
        }
    }

    if (!icp) {
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
    }

199 200 201 202 203 204 205 206
    if (!icp) {
        perror("Failed to create XICS\n");
        abort();
    }

    return icp;
}

207 208 209 210 211 212 213 214
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

215 216 217 218 219 220 221 222
    if (cpu->cpu_version) {
        ret = fdt_setprop(fdt, offset, "cpu-version",
                          &cpu->cpu_version, sizeof(cpu->cpu_version));
        if (ret < 0) {
            return ret;
        }
    }

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

241
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
242
{
243 244
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
245 246
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
247
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
248

249 250 251 252
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
253 254 255 256
        uint32_t associativity[] = {cpu_to_be32(0x5),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
                                    cpu_to_be32(0x0),
257
                                    cpu_to_be32(cs->numa_node),
258
                                    cpu_to_be32(index)};
259

260
        if ((index % smt) != 0) {
261 262 263
            continue;
        }

264
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
265

266 267 268 269 270 271 272 273 274
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
275
        if (offset < 0) {
276 277 278 279
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
280 281
        }

282 283 284 285 286 287 288 289 290 291
        if (nb_numa_nodes > 1) {
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                              sizeof(associativity));
            if (ret < 0) {
                return ret;
            }
        }

        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
292 293 294
        if (ret < 0) {
            return ret;
        }
295

296
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
297
                                     ppc_get_compat_smt_threads(cpu));
298 299 300
        if (ret < 0) {
            return ret;
        }
301 302 303 304
    }
    return ret;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

339 340 341 342 343 344 345 346 347 348
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

349 350 351 352
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
353

354
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
355 356
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
357
                                   bool little_endian,
358
                                   const char *boot_device,
359 360
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
361 362
{
    void *fdt;
363
    CPUState *cs;
364 365
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
366 367
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
368
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
369
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
370
    int smt = kvmppc_smt_threads();
371
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
372 373 374
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
    unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
    uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
375

376 377 378 379 380 381 382 383 384 385 386
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

387
    fdt = g_malloc0(FDT_MAX_SIZE);
388 389
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

390 391 392 393 394 395
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
396 397 398 399 400
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
401
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
402
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
403 404 405 406 407 408 409

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

410 411 412
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

413 414 415 416 417
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
418 419 420
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
421

422
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
423 424 425
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
426
    }
A
Avik Sil 已提交
427 428 429
    if (boot_device) {
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
    }
430 431 432
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
433

434 435 436 437 438 439 440 441
    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

A
Andreas Färber 已提交
442
    CPU_FOREACH(cs) {
443 444
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        CPUPPCState *env = &cpu->env;
445
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
446
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447
        int index = ppc_get_vcpu_dt_id(cpu);
448 449 450
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};
451 452
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 454
        uint32_t page_sizes_prop[64];
        size_t page_sizes_prop_size;
455

456 457 458 459
        if ((index % smt) != 0) {
            continue;
        }

460
        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
461 462 463

        _FDT((fdt_begin_node(fdt, nodename)));

464
        g_free(nodename);
465

D
David Gibson 已提交
466
        _FDT((fdt_property_cell(fdt, "reg", index)));
467 468 469
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
470
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
471
                                env->dcache_line_size)));
472 473 474 475 476
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
477
                                env->icache_line_size)));
478 479 480 481 482 483 484 485 486 487 488 489

        if (pcc->l1_dcache_size) {
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
        }
        if (pcc->l1_icache_size) {
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
        } else {
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
        }

490 491
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
492 493 494
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
495

496 497 498 499
        if (env->spr_cb[SPR_PURR].oea_read) {
            _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
        }

D
David Gibson 已提交
500
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
501 502 503 504
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

505 506 507 508
        /* Advertise VMX/VSX (vector extensions) if available
         *   0 / no property == no vector extensions
         *   1               == VMX / Altivec available
         *   2               == VSX available */
509 510 511
        if (env->insns_flags & PPC_ALTIVEC) {
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

512 513 514 515 516 517
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
        }

        /* Advertise DFP (Decimal Floating Point) if available
         *   0 / no property == no DFP
         *   1               == DFP available */
518 519
        if (env->insns_flags2 & PPC2_DFP) {
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
520 521
        }

522 523 524 525 526 527 528
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                      sizeof(page_sizes_prop));
        if (page_sizes_prop_size) {
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
                               page_sizes_prop, page_sizes_prop_size)));
        }

529 530 531
        _FDT((fdt_property_cell(fdt, "ibm,chip-id",
                                cs->cpu_index / cpus_per_socket)));

532 533 534 535 536
        _FDT((fdt_end_node(fdt)));
    }

    _FDT((fdt_end_node(fdt)));

537 538 539
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

540 541 542
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
543 544 545 546 547 548
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
549

550 551 552
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

553 554
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));

555 556
    _FDT((fdt_end_node(fdt)));

557
    /* interrupt controller */
558
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
559 560 561 562 563 564 565 566

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
567 568 569
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
570 571 572

    _FDT((fdt_end_node(fdt)));

573 574 575 576 577 578 579
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
580 581
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
582 583 584

    _FDT((fdt_end_node(fdt)));

585 586 587
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

588 589 590
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

591 592 593
    return fdt;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

611 612
    /* Fix skeleton up */
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

630 631 632 633 634 635
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
{
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
                                cpu_to_be32(0x0)};
    char mem_name[32];
636
    hwaddr node0_size, mem_start, node_size;
637 638 639 640
    uint64_t mem_reg_property[2];
    int i, off;

    /* memory node(s) */
641 642 643 644 645
    if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
        node0_size = node_mem[0];
    } else {
        node0_size = ram_size;
    }
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

    /* RMA */
    mem_reg_property[0] = 0;
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
    off = fdt_add_subnode(fdt, 0, "memory@0");
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));

    /* RAM: Node 0 */
    if (node0_size > spapr->rma_size) {
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);

        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
    }

    /* RAM: Node 1 and beyond */
    mem_start = node0_size;
    for (i = 1; i < nb_numa_nodes; i++) {
        mem_reg_property[0] = cpu_to_be64(mem_start);
677 678 679 680 681 682 683 684 685
        if (mem_start >= ram_size) {
            node_size = 0;
        } else {
            node_size = node_mem[i];
            if (node_size > ram_size - mem_start) {
                node_size = ram_size - mem_start;
            }
        }
        mem_reg_property[1] = cpu_to_be64(node_size);
686 687 688 689 690 691 692 693 694
        associativity[3] = associativity[4] = cpu_to_be32(i);
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
        off = fdt_add_subnode(fdt, 0, mem_name);
        _FDT(off);
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                          sizeof(mem_reg_property))));
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                          sizeof(associativity))));
695
        mem_start += node_size;
696 697 698 699 700
    }

    return 0;
}

701
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
A
Avi Kivity 已提交
702 703 704
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
705
{
706 707 708
    int ret, i;
    size_t cb = 0;
    char *bootlist;
709
    void *fdt;
710
    sPAPRPHBState *phb;
711

712
    fdt = g_malloc(FDT_MAX_SIZE);
713 714 715

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
716

717 718 719 720 721 722
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

723 724 725 726 727 728
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

729
    QLIST_FOREACH(phb, &spapr->phbs, list) {
730
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
731 732 733 734 735 736 737
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

738 739 740 741 742 743
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

744
    /* Advertise NUMA via ibm,associativity */
745 746 747
    ret = spapr_fixup_cpu_dt(fdt, spapr);
    if (ret < 0) {
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
748 749
    }

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

765
    if (!spapr->has_graphics) {
766 767
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
768

769 770
    _FDT((fdt_pack(fdt)));

771 772 773 774 775 776
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

777
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
778

779
    g_free(fdt);
780 781 782 783 784 785 786
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

787
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
788
{
789 790
    CPUPPCState *env = &cpu->env;

791 792 793 794
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
795
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
796
    }
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811
static void spapr_reset_htab(sPAPREnvironment *spapr)
{
    long shift;

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
812
        kvmppc_kern_htab = true;
813 814 815 816 817 818 819 820 821 822 823 824
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
825 826
        hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
        spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
827
    }
828 829
}

830
static void ppc_spapr_reset(void)
831
{
832
    PowerPCCPU *first_ppc_cpu;
833

834 835
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
836

837
    qemu_devices_reset();
838 839 840 841 842 843

    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

    /* Set up the entry state */
844 845 846 847 848
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
    first_ppc_cpu->env.nip = spapr->entry_point;
849 850 851

}

852 853
static void spapr_cpu_reset(void *opaque)
{
854
    PowerPCCPU *cpu = opaque;
855
    CPUState *cs = CPU(cpu);
856
    CPUPPCState *env = &cpu->env;
857

858
    cpu_reset(cs);
859 860 861 862

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
863
    cs->halted = 1;
864 865

    env->spr[SPR_HIOR] = 0;
866

867
    env->external_htab = (uint8_t *)spapr->htab;
868 869 870 871 872 873 874
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
875
    env->htab_base = -1;
876 877 878 879 880 881 882
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
    env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
883
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
884
        (spapr->htab_shift - 18);
885 886
}

D
David Gibson 已提交
887 888
static void spapr_create_nvram(sPAPREnvironment *spapr)
{
889
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
890
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
891

P
Paolo Bonzini 已提交
892 893
    if (dinfo) {
        qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
D
David Gibson 已提交
894 895 896 897 898 899 900
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

901
/* Returns whether we want to use VGA or not */
902 903
static int spapr_vga_init(PCIBus *pci_bus)
{
904 905
    switch (vga_interface_type) {
    case VGA_NONE:
906 907 908
        return false;
    case VGA_DEVICE:
        return true;
909 910
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
911
    default:
912 913
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
914
        exit(0);
915 916 917
    }
}

918 919
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
920
    .version_id = 2,
921
    .minimum_version_id = 1,
922
    .fields = (VMStateField[]) {
923 924 925 926
        VMSTATE_UINT32(next_irq, sPAPREnvironment),

        /* RTC offset */
        VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
927
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
        VMSTATE_END_OF_LIST()
    },
};

#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))

static int htab_save_setup(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


959 960 961 962 963 964 965 966
    return 0;
}

static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
967
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
        while ((index < htabslots)
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

998
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1012 1013
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
                                int64_t max_ns)
1014 1015 1016 1017 1018
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1019
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
        while ((index < htabslots)
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1064
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1086
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1087 1088
}

1089 1090 1091
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1092 1093 1094
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;
1095
    int rc = 0;
1096 1097 1098 1099

    /* Iteration header */
    qemu_put_be32(f, 0);

1100 1101 1102 1103 1104 1105 1106 1107 1108
    if (!spapr->htab) {
        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1109 1110
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1111
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1112 1113 1114 1115 1116 1117 1118
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1119
    return rc;
1120 1121 1122 1123 1124 1125 1126 1127 1128
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
    sPAPREnvironment *spapr = opaque;

    /* Iteration header */
    qemu_put_be32(f, 0);

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
    sPAPREnvironment *spapr = opaque;
    uint32_t section_hdr;
1156
    int fd = -1;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1196
        if ((index + n_valid + n_invalid) >
1197 1198 1199
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1200 1201
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1202 1203 1204
            return -EINVAL;
        }

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1223 1224 1225
        }
    }

1226 1227 1228 1229 1230
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1241
/* pSeries LPAR / sPAPR hardware init */
1242
static void ppc_spapr_init(MachineState *machine)
1243
{
1244 1245 1246 1247 1248 1249
    ram_addr_t ram_size = machine->ram_size;
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    const char *boot_device = machine->boot_order;
1250
    PowerPCCPU *cpu;
A
Andreas Färber 已提交
1251
    CPUPPCState *env;
1252
    PCIHostState *phb;
1253
    int i;
A
Avi Kivity 已提交
1254 1255
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
A
Avi Kivity 已提交
1256
    hwaddr rma_alloc_size;
1257
    hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1258 1259 1260
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
    long load_limit, rtas_limit, fw_size;
1261
    bool kernel_le = false;
1262
    char *filename;
1263

1264 1265
    msi_supported = true;

1266 1267 1268
    spapr = g_malloc0(sizeof(*spapr));
    QLIST_INIT(&spapr->phbs);

1269 1270
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1271 1272 1273 1274 1275 1276 1277
    /* Allocate RMA if necessary */
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);

    if (rma_alloc_size == -1) {
        hw_error("qemu: Unable to create RMA\n");
        exit(1);
    }
1278

1279
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1280
        spapr->rma_size = rma_alloc_size;
1281
    } else {
1282
        spapr->rma_size = node0_size;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1297 1298
    }

1299 1300 1301 1302 1303 1304
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1305
    /* We place the device tree and RTAS just below either the top of the RMA,
1306 1307
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary */
1308
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
1309 1310 1311
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
            break;
        }
        spapr->htab_shift++;
    }
1323

1324 1325 1326 1327 1328
    /* Set up Interrupt Controller before we create the VCPUs */
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
                                  XICS_IRQS);
    spapr->next_irq = XICS_IRQ_BASE;

1329 1330
    /* init CPUs */
    if (cpu_model == NULL) {
1331
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1332 1333
    }
    for (i = 0; i < smp_cpus; i++) {
1334 1335
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
1336 1337 1338
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1339 1340
        env = &cpu->env;

1341 1342 1343
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);

1344 1345 1346 1347
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
         * MSR[IP] should never be set.
         */
        env->msr_mask &= ~(1 << 6);
1348 1349 1350

        /* Tell KVM that we're in PAPR mode */
        if (kvm_enabled()) {
1351
            kvmppc_set_papr(cpu);
1352 1353
        }

1354 1355 1356 1357 1358 1359
        if (cpu->max_compat) {
            if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
                exit(1);
            }
        }

1360 1361
        xics_cpu_setup(spapr->icp, cpu);

1362
        qemu_register_reset(spapr_cpu_reset, cpu);
1363 1364 1365
    }

    /* allocate RAM */
1366
    spapr->ram_limit = ram_size;
1367 1368 1369 1370
    if (spapr->ram_limit > rma_alloc_size) {
        ram_addr_t nonrma_base = rma_alloc_size;
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;

1371
        memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1372
        vmstate_register_ram_global(ram);
1373 1374
        memory_region_add_subregion(sysmem, nonrma_base, ram);
    }
1375

1376
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1377
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1378
                                           rtas_limit - spapr->rtas_addr);
1379
    if (spapr->rtas_size < 0) {
1380 1381 1382
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
1383 1384 1385 1386 1387
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
                 spapr->rtas_size, RTAS_MAX_SIZE);
        exit(1);
    }
1388
    g_free(filename);
1389

1390 1391 1392
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1393
    /* Set up VIO bus */
1394 1395
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1396
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1397
        if (serial_hds[i]) {
1398
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1399 1400
        }
    }
1401

D
David Gibson 已提交
1402 1403 1404
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1405
    /* Set up PCI */
1406
    spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1407 1408
    spapr_pci_rtas_init();

1409
    phb = spapr_create_phb(spapr, 0);
1410

P
Paolo Bonzini 已提交
1411
    for (i = 0; i < nb_nics; i++) {
1412 1413 1414
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1415
            nd->model = g_strdup("ibmveth");
1416 1417 1418
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1419
            spapr_vlan_create(spapr->vio_bus, nd);
1420
        } else {
1421
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1422 1423 1424
        }
    }

1425
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1426
        spapr_vscsi_create(spapr->vio_bus);
1427 1428
    }

1429
    /* Graphics */
1430
    if (spapr_vga_init(phb->bus)) {
1431
        spapr->has_graphics = true;
1432 1433
    }

1434
    if (usb_enabled(spapr->has_graphics)) {
1435
        pci_create_simple(phb->bus, -1, "pci-ohci");
1436 1437 1438 1439 1440 1441
        if (spapr->has_graphics) {
            usbdevice_create("keyboard");
            usbdevice_create("mouse");
        }
    }

1442
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1443 1444 1445 1446 1447
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1448 1449 1450 1451 1452
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1453
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1454 1455 1456 1457 1458
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1459
        if (kernel_size < 0) {
1460 1461
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1462 1463 1464 1465 1466
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1467 1468 1469 1470
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1471
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1472
                                              load_limit - initrd_base);
1473 1474 1475 1476 1477 1478 1479 1480 1481
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1482
    }
1483

1484 1485 1486 1487
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1488 1489 1490 1491 1492 1493 1494 1495 1496
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
    if (fw_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    g_free(filename);

    spapr->entry_point = 0x100;

1497 1498 1499 1500
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1501
    /* Prepare the device tree */
1502
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1503
                                            kernel_size, kernel_le,
1504 1505
                                            boot_device, kernel_cmdline,
                                            spapr->epow_irq);
1506
    assert(spapr->fdt_skel != NULL);
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * Implementation of an interface to adjust firmware patch
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

1584 1585 1586
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1587
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

    mc->name = "pseries";
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
    mc->is_default = 1;
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
    mc->max_cpus = MAX_CPUS;
    mc->no_parallel = 1;
    mc->default_boot_order = NULL;
    mc->kvm_type = spapr_kvm_type;
1599

1600
    fwc->get_dev_path = spapr_get_fw_dev_path;
1601 1602 1603 1604 1605 1606
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
    .class_init    = spapr_machine_class_init,
1607 1608 1609 1610
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
        { }
    },
1611 1612 1613
};

static void spapr_machine_register_types(void)
1614
{
1615
    type_register_static(&spapr_machine_info);
1616 1617
}

1618
type_init(spapr_machine_register_types)