cpsw.c 65.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
20
#include <linux/net_tstamp.h>
21
#include <linux/phy.h>
22
#include <linux/phy/phy.h>
23 24
#include <linux/workqueue.h>
#include <linux/delay.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/gpio/consumer.h>
27
#include <linux/of.h>
28
#include <linux/of_mdio.h>
29 30
#include <linux/of_net.h>
#include <linux/of_device.h>
31
#include <linux/if_vlan.h>
32
#include <linux/kmemleak.h>
33
#include <linux/sys_soc.h>
34

35
#include <linux/pinctrl/consumer.h>
36
#include <net/pkt_cls.h>
37

38
#include "cpsw.h"
39
#include "cpsw_ale.h"
40
#include "cpsw_priv.h"
41
#include "cpsw_sl.h"
42
#include "cpts.h"
43 44
#include "davinci_cpdma.h"

45 46
#include <net/pkt_sched.h>

47 48 49 50 51 52 53 54 55 56 57 58
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

59 60 61 62
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

63 64
#define for_each_slave(priv, func, arg...)				\
	do {								\
65
		struct cpsw_slave *slave;				\
66
		struct cpsw_common *cpsw = (priv)->cpsw;		\
67
		int n;							\
68 69
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
70
		else							\
71 72
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
73 74
					n; n--)				\
				(func)(slave++, ##arg);			\
75 76
	} while (0)

77 78 79
static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
				    __be16 proto, u16 vid);

80 81
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
82 83
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
84 85
	int i;

86
	if (cpsw->data.dual_emac) {
87 88 89 90 91 92
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
93 94
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

116
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
117
			for (i = 0; i <= cpsw->data.slaves; i++) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
134
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
135
			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
136 137 138 139 140

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
141
			/* Don't Flood All Unicast Packets to Host port */
142 143
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

144
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
145
			for (i = 0; i <= cpsw->data.slaves; i++) {
146 147 148 149 150 151 152 153 154 155
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

156 157 158 159 160 161 162 163 164 165
/**
 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
 * if it's not deleted
 * @ndev: device to sync
 * @addr: address to be added or deleted
 * @vid: vlan id, if vid < 0 set/unset address for real device
 * @add: add address if the flag is set or remove otherwise
 */
static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
		       int vid, int add)
166 167
{
	struct cpsw_priv *priv = netdev_priv(ndev);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	struct cpsw_common *cpsw = priv->cpsw;
	int mask, flags, ret;

	if (vid < 0) {
		if (cpsw->data.dual_emac)
			vid = cpsw->slaves[priv->emac_port].port_vlan;
		else
			vid = 0;
	}

	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
	flags = vid ? ALE_VLAN : 0;

	if (add)
		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
	else
		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);

	return ret;
}

static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0, ret = 0;

	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
	}

	if (found)
		sync_ctx->consumed++;

	if (sync_ctx->flush) {
		if (!found)
			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
		return 0;
	}

	if (found)
		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);

	return ret;
}

static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;
	int ret;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 0;

	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num && !ret)
		ret = cpsw_set_mc(ndev, addr, -1, 1);

	return ret;
}

static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 1;

	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed == num)
		cpsw_set_mc(ndev, addr, -1, 0);
250 251 252 253

	return 0;
}

254
static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
255
{
256 257 258
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0;
259

260 261 262 263 264 265 266 267 268
	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
269 270
	}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	if (!found)
		return 0;

	sync_ctx->consumed++;
	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
	return 0;
}

static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.consumed = 0;

	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num)
		cpsw_set_mc(ndev, addr, -1, 0);

291 292 293 294 295
	return 0;
}

static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
296 297 298 299 300 301
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_port = -1;

	if (cpsw->data.dual_emac)
		slave_port = priv->emac_port + 1;
302 303 304

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
305
		cpsw_set_promiscious(ndev, true);
306
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
307
		return;
308 309 310
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
311 312
	}

313
	/* Restore allmulti on vlans if necessary */
314 315
	cpsw_ale_set_allmulti(cpsw->ale,
			      ndev->flags & IFF_ALLMULTI, slave_port);
316

317 318 319
	/* add/remove mcast address either for real netdev or for vlan */
	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
			       cpsw_del_mc_addr);
320 321
}

322
void cpsw_intr_enable(struct cpsw_common *cpsw)
323
{
324 325
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
326

327
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
328 329 330
	return;
}

331
void cpsw_intr_disable(struct cpsw_common *cpsw)
332
{
333 334
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
335

336
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
337 338 339
	return;
}

340
void cpsw_tx_handler(void *token, int len, int status)
341
{
342
	struct netdev_queue	*txq;
343 344
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
345
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
346

347 348 349
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
350 351 352 353
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

354
	cpts_tx_timestamp(cpsw->cpts, skb);
355 356
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
357 358 359
	dev_kfree_skb_any(skb);
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	struct cpsw_common *cpsw = priv->cpsw;
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;
	/* Ignore default vlans in dual mac mode */
	if (cpsw->data.dual_emac &&
	    vid == cpsw->slaves[priv->emac_port].port_vlan)
		return;

	prio = (rx_vlan_encap_hdr >>
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

403
static void cpsw_rx_handler(void *token, int len, int status)
404
{
405
	struct cpdma_chan	*ch;
406
	struct sk_buff		*skb = token;
407
	struct sk_buff		*new_skb;
408
	struct net_device	*ndev = skb->dev;
409
	int			ret = 0, port;
410
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
411
	struct cpsw_priv	*priv;
412

413 414 415 416 417 418 419
	if (cpsw->data.dual_emac) {
		port = CPDMA_RX_SOURCE_PORT(status);
		if (port) {
			ndev = cpsw->slaves[--port].ndev;
			skb->dev = ndev;
		}
	}
420

421
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
422
		/* In dual emac mode check for all interfaces */
423
		if (cpsw->data.dual_emac && cpsw->usage_count &&
424
		    (status >= 0)) {
425 426
			/* The packet received is for the interface which
			 * is already down and the other interface is up
427
			 * and running, instead of freeing which results
428 429 430 431 432 433 434
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

435
		/* the interface is going down, skbs are purged */
436 437 438
		dev_kfree_skb_any(skb);
		return;
	}
439

440
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
441
	if (new_skb) {
442
		skb_copy_queue_mapping(new_skb, skb);
443
		skb_put(skb, len);
444 445
		if (status & CPDMA_RX_VLAN_ENCAP)
			cpsw_rx_vlan_encap(skb);
446 447 448
		priv = netdev_priv(ndev);
		if (priv->rx_ts_enabled)
			cpts_rx_timestamp(cpsw->cpts, skb);
449 450
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
451 452
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
453
		kmemleak_not_leak(new_skb);
454
	} else {
455
		ndev->stats.rx_dropped++;
456
		new_skb = skb;
457 458
	}

459
requeue:
460
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
461
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
462
				skb_tailroom(new_skb), 0);
463 464
	if (ret < 0) {
		WARN_ON(ret == -ENOMEM);
465
		dev_kfree_skb_any(new_skb);
466
	}
467 468
}

469
void cpsw_split_res(struct cpsw_common *cpsw)
470
{
471
	u32 consumed_rate = 0, bigest_rate = 0;
472
	struct cpsw_vector *txv = cpsw->txv;
473
	int i, ch_weight, rlim_ch_num = 0;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
489 490 491 492
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
493
	} else {
494 495 496 497 498 499 500 501 502 503
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
504

505 506 507 508 509 510 511
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

512
	/* split tx weight/budget */
513 514 515 516 517 518
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
519
				txv[i].budget++;
520 521 522 523
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
524 525 526 527 528

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
529 530 531 532
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
533
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

554
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
555
{
556
	struct cpsw_common *cpsw = dev_id;
557

558
	writel(0, &cpsw->wr_regs->tx_en);
559
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
560

561 562 563
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
564 565
	}

566
	napi_schedule(&cpsw->napi_tx);
567 568 569 570 571
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
572
	struct cpsw_common *cpsw = dev_id;
573

574
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
575
	writel(0, &cpsw->wr_regs->rx_en);
576

577 578 579
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
580 581
	}

582
	napi_schedule(&cpsw->napi_rx);
583
	return IRQ_HANDLED;
584 585
}

586
static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
587
{
588
	u32			ch_map;
589
	int			num_tx, cur_budget, ch;
590
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
591
	struct cpsw_vector	*txv;
592

593 594
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
595 596
	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
		if (!(ch_map & 0x80))
597 598
			continue;

599 600 601 602 603 604 605
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
606 607
		if (num_tx >= budget)
			break;
608 609
	}

610 611
	if (num_tx < budget) {
		napi_complete(napi_tx);
612
		writel(0xff, &cpsw->wr_regs->tx_en);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	}

	return num_tx;
}

static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
628 629
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
630
		}
631 632 633 634 635
	}

	return num_tx;
}

636
static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
637
{
638
	u32			ch_map;
639
	int			num_rx, cur_budget, ch;
640
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
641
	struct cpsw_vector	*rxv;
642

643 644
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
645
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
646 647 648
		if (!(ch_map & 0x01))
			continue;

649 650 651 652 653 654 655
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
656 657
		if (num_rx >= budget)
			break;
658 659
	}

660
	if (num_rx < budget) {
661
		napi_complete_done(napi_rx, num_rx);
662
		writel(0xff, &cpsw->wr_regs->rx_en);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	}

	return num_rx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
678 679
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
680
		}
681 682 683 684 685 686 687 688 689
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

690
	writel_relaxed(1, reg);
691 692
	do {
		cpu_relax();
693
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
694

695
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
696 697 698 699 700
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
701 702
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
703 704
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = 7 << shift;
	val = val & mask;

	return !val;
}

static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = (1 << --fifo) << shift;
	val = on ? val | mask : val & ~mask;

	writel_relaxed(val, &cpsw->regs->ptype);
}

737 738 739 740 741 742
static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
743
	struct cpsw_common *cpsw = priv->cpsw;
744 745 746 747

	if (!phy)
		return;

748
	slave_port = cpsw_get_slave_port(slave->slave_num);
749 750

	if (phy->link) {
751
		mac_control = CPSW_SL_CTL_GMII_EN;
752 753

		if (phy->speed == 1000)
754
			mac_control |= CPSW_SL_CTL_GIG;
755
		if (phy->duplex)
756
			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
757 758 759

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
760
			mac_control |= CPSW_SL_CTL_IFCTL_A;
761 762
		/* in band mode only works in 10Mbps RGMII mode */
		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
763
			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
764

765
		if (priv->rx_pause)
766
			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
767 768

		if (priv->tx_pause)
769 770 771 772 773 774 775 776
			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;

		if (mac_control != slave->mac_control)
			cpsw_sl_ctl_set(slave->mac_sl, mac_control);

		/* enable forwarding */
		cpsw_ale_control_set(cpsw->ale, slave_port,
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
777

778
		*link = true;
779 780 781 782 783 784

		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed &&
		    !cpsw_shp_is_off(priv))
			dev_warn(priv->dev,
				 "Speed was changed, CBS shaper speeds are changed!");
785 786 787
	} else {
		mac_control = 0;
		/* disable forwarding */
788
		cpsw_ale_control_set(cpsw->ale, slave_port,
789
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
790 791 792 793

		cpsw_sl_wait_for_idle(slave->mac_sl, 100);

		cpsw_sl_ctl_reset(slave->mac_sl);
794 795
	}

796
	if (mac_control != slave->mac_control)
797 798 799 800 801
		phy_print_status(phy);

	slave->mac_control = mac_control;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

840 841 842
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
843
	struct cpsw_common	*cpsw = priv->cpsw;
844 845 846 847 848
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
849
		if (cpsw_need_resplit(cpsw))
850
			cpsw_split_res(cpsw);
851

852 853
		netif_carrier_on(ndev);
		if (netif_running(ndev))
854
			netif_tx_wake_all_queues(ndev);
855 856
	} else {
		netif_carrier_off(ndev);
857
		netif_tx_stop_all_queues(ndev);
858 859 860
	}
}

861 862 863 864
static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
865
	struct cpsw_common *cpsw = priv->cpsw;
866
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
867

868
	if (cpsw->version == CPSW_VERSION_1)
869 870 871
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
872
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
873
			  port_mask, port_mask, 0);
874
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
875
			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
876 877 878
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
879 880
	cpsw_ale_control_set(cpsw->ale, slave_port,
			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
881 882
}

883 884 885
static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
886
	struct phy_device *phy;
887
	struct cpsw_common *cpsw = priv->cpsw;
888

889 890
	cpsw_sl_reset(slave->mac_sl, 100);
	cpsw_sl_ctl_reset(slave->mac_sl);
891 892

	/* setup priority mapping */
893 894
	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
			  RX_PRIORITY_MAPPING);
895

896
	switch (cpsw->version) {
897 898
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
899 900 901 902 903 904
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
905 906
		break;
	case CPSW_VERSION_2:
907
	case CPSW_VERSION_3:
908
	case CPSW_VERSION_4:
909
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
910 911 912 913 914 915
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
916 917
		break;
	}
918 919

	/* setup max packet size, and mac address */
920 921
	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
			  cpsw->rx_packet_max);
922 923 924 925
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

926
	slave_port = cpsw_get_slave_port(slave->slave_num);
927

928
	if (cpsw->data.dual_emac)
929 930
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
931
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
932
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
933

934
	if (slave->data->phy_node) {
935
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
936
				 &cpsw_adjust_link, 0, slave->data->phy_if);
937
		if (!phy) {
938 939
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
940 941 942 943
				slave->slave_num);
			return;
		}
	} else {
944
		phy = phy_connect(priv->ndev, slave->data->phy_id,
945
				 &cpsw_adjust_link, slave->data->phy_if);
946
		if (IS_ERR(phy)) {
947 948 949
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
950
				PTR_ERR(phy));
951 952 953
			return;
		}
	}
954

955 956
	slave->phy = phy;

957
	phy_attached_info(slave->phy);
958

959 960 961
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
962 963 964 965 966 967
	if (!IS_ERR(slave->data->ifphy))
		phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
				 slave->data->phy_if);
	else
		cpsw_phy_sel(cpsw->dev, slave->phy->interface,
			     slave->slave_num);
968 969
}

970 971
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
972 973
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
974 975
	u32 reg;
	int i;
976
	int unreg_mcast_mask;
977

978
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
979 980
	       CPSW2_PORT_VLAN;

981
	writel(vlan, &cpsw->host_port_regs->port_vlan);
982

983 984
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
985

986 987 988 989 990
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

991
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
992 993
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
994 995
}

996 997
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
998
	u32 fifo_mode;
999 1000
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1001

1002
	/* soft reset the controller and initialize ale */
1003
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1004
	cpsw_ale_start(cpsw->ale);
1005 1006

	/* switch to vlan unaware mode */
1007
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1008
			     CPSW_ALE_VLAN_AWARE);
1009
	control_reg = readl(&cpsw->regs->control);
1010
	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1011
	writel(control_reg, &cpsw->regs->control);
1012
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1013
		     CPSW_FIFO_NORMAL_MODE;
1014
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1015 1016

	/* setup host port priority mapping */
1017 1018 1019
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1020

1021
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1022 1023
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1024
	if (!cpsw->data.dual_emac) {
1025
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1026
				   0, 0);
1027
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1028
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1029
	}
1030 1031
}

1032
int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1033 1034 1035 1036
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1037 1038 1039
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1040
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1041 1042 1043 1044 1045 1046 1047 1048
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1049

1050
			skb_set_queue_mapping(skb, ch);
1051 1052 1053
			ret = cpdma_chan_idle_submit(cpsw->rxv[ch].ch, skb,
						     skb->data,
						     skb_tailroom(skb), 0);
1054 1055 1056 1057 1058 1059 1060 1061
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1062 1063
		}

1064 1065 1066
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1067

1068
	return 0;
1069 1070
}

1071
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1072
{
1073 1074
	u32 slave_port;

1075
	slave_port = cpsw_get_slave_port(slave->slave_num);
1076

1077 1078 1079 1080 1081
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1082
	cpsw_ale_control_set(cpsw->ale, slave_port,
1083
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1084 1085
	cpsw_sl_reset(slave->mac_sl, 100);
	cpsw_sl_ctl_reset(slave->mac_sl);
1086 1087
}

1088 1089 1090 1091 1092 1093 1094 1095
static int cpsw_tc_to_fifo(int tc, int num_tc)
{
	if (tc == num_tc - 1)
		return 0;

	return CPSW_FIFO_SHAPERS_NUM - tc;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 val = 0, send_pct, shift;
	struct cpsw_slave *slave;
	int pct = 0, i;

	if (bw > priv->shp_cfg_speed * 1000)
		goto err;

	/* shaping has to stay enabled for highest fifos linearly
	 * and fifo bw no more then interface can allow
	 */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	send_pct = slave_read(slave, SEND_PERCENT);
	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
		if (!bw) {
			if (i >= fifo || !priv->fifo_bw[i])
				continue;

			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
			continue;
		}

		if (!priv->fifo_bw[i] && i > fifo) {
			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
			return -EINVAL;
		}

		shift = (i - 1) * 8;
		if (i == fifo) {
			send_pct &= ~(CPSW_PCT_MASK << shift);
			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
			if (!val)
				val = 1;

			send_pct |= val << shift;
			pct += val;
			continue;
		}

		if (priv->fifo_bw[i])
			pct += (send_pct >> shift) & CPSW_PCT_MASK;
	}

	if (pct >= 100)
		goto err;

	slave_write(slave, send_pct, SEND_PERCENT);
	priv->fifo_bw[fifo] = bw;

	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));

	return 0;
err:
	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
	return -EINVAL;
}

static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 tx_in_ctl_rg, val;
	int ret;

	ret = cpsw_set_fifo_bw(priv, fifo, bw);
	if (ret)
		return ret;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;

	if (!bw)
		cpsw_fifo_shp_on(priv, fifo, bw);

	val = slave_read(slave, tx_in_ctl_rg);
	if (cpsw_shp_is_off(priv)) {
		/* disable FIFOs rate limited queues */
		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);

		/* set type of FIFO queues to normal priority mode */
		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);

		/* set type of FIFO queues to be rate limited */
		if (bw)
			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
		else
			priv->shp_cfg_speed = 0;
	}

	/* toggle a FIFO rate limited queue */
	if (bw)
		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	else
		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	slave_write(slave, val, tx_in_ctl_rg);

	/* FIFO transmit shape enable */
	cpsw_fifo_shp_on(priv, fifo, bw);
	return 0;
}

/* Defaults:
 * class A - prio 3
 * class B - prio 2
 * shaping for class A should be set first
 */
static int cpsw_set_cbs(struct net_device *ndev,
			struct tc_cbs_qopt_offload *qopt)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int prev_speed = 0;
	int tc, ret, fifo;
	u32 bw = 0;

	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);

	/* enable channels in backward order, as highest FIFOs must be rate
	 * limited first and for compliance with CPDMA rate limited channels
	 * that also used in bacward order. FIFO0 cannot be rate limited.
	 */
	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
	if (!fifo) {
		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
		return -EINVAL;
	}

	/* do nothing, it's disabled anyway */
	if (!qopt->enable && !priv->fifo_bw[fifo])
		return 0;

	/* shapers can be set if link speed is known */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	if (slave->phy && slave->phy->link) {
		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed)
			prev_speed = priv->shp_cfg_speed;

		priv->shp_cfg_speed = slave->phy->speed;
	}

	if (!priv->shp_cfg_speed) {
		dev_err(priv->dev, "Link speed is not known");
		return -1;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	bw = qopt->enable ? qopt->idleslope : 0;
	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
	if (ret) {
		priv->shp_cfg_speed = prev_speed;
		prev_speed = 0;
	}

	if (bw && prev_speed)
		dev_warn(priv->dev,
			 "Speed was changed, CBS shaper speeds are changed!");

	pm_runtime_put_sync(cpsw->dev);
	return ret;
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	int fifo, bw;

	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
		bw = priv->fifo_bw[fifo];
		if (!bw)
			continue;

		cpsw_set_fifo_rlimit(priv, fifo, bw);
	}
}

static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 tx_prio_map = 0;
	int i, tc, fifo;
	u32 tx_prio_rg;

	if (!priv->mqprio_hw)
		return;

	for (i = 0; i < 8; i++) {
		tc = netdev_get_prio_tc_map(priv->ndev, i);
		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
		tx_prio_map |= fifo << (4 * i);
	}

	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave_write(slave, tx_prio_map, tx_prio_rg);
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
{
	struct cpsw_priv *priv = arg;

	if (!vdev)
		return 0;

	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
	return 0;
}

1314 1315 1316
/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
1317 1318 1319
	/* restore vlan configurations */
	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);

1320 1321 1322 1323 1324 1325 1326
	/* restore MQPRIO offload */
	for_each_slave(priv, cpsw_mqprio_resume, priv);

	/* restore CBS offload */
	for_each_slave(priv, cpsw_cbs_resume, priv);
}

1327 1328 1329
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1330
	struct cpsw_common *cpsw = priv->cpsw;
1331
	int ret;
1332 1333
	u32 reg;

1334
	ret = pm_runtime_get_sync(cpsw->dev);
1335
	if (ret < 0) {
1336
		pm_runtime_put_noidle(cpsw->dev);
1337 1338
		return ret;
	}
1339

1340 1341
	netif_carrier_off(ndev);

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1355
	reg = cpsw->version;
1356 1357 1358 1359 1360

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1361 1362
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1363
		cpsw_init_host_port(priv);
1364 1365
	for_each_slave(priv, cpsw_slave_open, priv);

1366
	/* Add default VLAN */
1367
	if (!cpsw->data.dual_emac)
1368 1369
		cpsw_add_default_vlan(priv);
	else
1370
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1371
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1372

1373 1374
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1375
		/* disable priority elevation */
1376
		writel_relaxed(0, &cpsw->regs->ptype);
1377

1378
		/* enable statistics collection only on all ports */
1379
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1380

1381
		/* Enable internal fifo flow control */
1382
		writel(0x7, &cpsw->regs->flow_control);
1383

1384 1385
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1386

1387 1388 1389
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1390 1391
		}

1392 1393 1394
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1395 1396
		}

1397 1398 1399
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1400

1401
		if (cpts_register(cpsw->cpts))
1402 1403
			dev_err(priv->dev, "error registering cpts device\n");

1404 1405
	}

1406 1407
	cpsw_restore(priv);

1408
	/* Enable Interrupt pacing if configured */
1409
	if (cpsw->coal_intvl != 0) {
1410 1411
		struct ethtool_coalesce coal;

1412
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1413 1414 1415
		cpsw_set_coalesce(ndev, &coal);
	}

1416 1417
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1418
	cpsw->usage_count++;
1419

1420 1421
	return 0;

1422
err_cleanup:
1423 1424 1425 1426 1427
	if (!cpsw->usage_count) {
		cpdma_ctlr_stop(cpsw->dma);
		for_each_slave(priv, cpsw_slave_stop, cpsw);
	}

1428
	pm_runtime_put_sync(cpsw->dev);
1429 1430
	netif_carrier_off(priv->ndev);
	return ret;
1431 1432 1433 1434 1435
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1436
	struct cpsw_common *cpsw = priv->cpsw;
1437 1438

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1439
	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
1440
	netif_tx_stop_all_queues(priv->ndev);
1441
	netif_carrier_off(priv->ndev);
1442

1443
	if (cpsw->usage_count <= 1) {
1444 1445
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1446
		cpts_unregister(cpsw->cpts);
1447 1448
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1449
		cpsw_ale_stop(cpsw->ale);
1450
	}
1451
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1452 1453

	if (cpsw_need_resplit(cpsw))
1454
		cpsw_split_res(cpsw);
1455

1456
	cpsw->usage_count--;
1457
	pm_runtime_put_sync(cpsw->dev);
1458 1459 1460 1461 1462 1463 1464
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1465
	struct cpsw_common *cpsw = priv->cpsw;
1466
	struct cpts *cpts = cpsw->cpts;
1467 1468 1469
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1470 1471 1472

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1473
		ndev->stats.tx_dropped++;
1474
		return NET_XMIT_DROP;
1475 1476
	}

1477
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1478
	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
1479 1480
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

1481 1482 1483 1484
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1485
	txch = cpsw->txv[q_idx].ch;
1486
	txq = netdev_get_tx_queue(ndev, q_idx);
1487 1488 1489
	skb_tx_timestamp(skb);
	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
				priv->emac_port + cpsw->data.dual_emac);
1490 1491 1492 1493 1494
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1495 1496 1497
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1498 1499
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
1500 1501 1502 1503 1504 1505

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
1506
	}
1507

1508 1509
	return NETDEV_TX_OK;
fail:
1510
	ndev->stats.tx_dropped++;
1511
	netif_tx_stop_queue(txq);
1512 1513 1514 1515 1516 1517 1518

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

1519 1520 1521
	return NETDEV_TX_BUSY;
}

1522
#if IS_ENABLED(CONFIG_TI_CPTS)
1523

1524
static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1525
{
1526
	struct cpsw_common *cpsw = priv->cpsw;
1527
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1528 1529
	u32 ts_en, seq_id;

1530
	if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
1531 1532 1533 1534 1535 1536 1537
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1538
	if (priv->tx_ts_enabled)
1539 1540
		ts_en |= CPSW_V1_TS_TX_EN;

1541
	if (priv->rx_ts_enabled)
1542 1543 1544 1545 1546 1547 1548 1549
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1550
	struct cpsw_slave *slave;
1551
	struct cpsw_common *cpsw = priv->cpsw;
1552 1553
	u32 ctrl, mtype;

1554
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1555

1556
	ctrl = slave_read(slave, CPSW2_CONTROL);
1557
	switch (cpsw->version) {
1558 1559
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1560

1561
		if (priv->tx_ts_enabled)
1562
			ctrl |= CTRL_V2_TX_TS_BITS;
1563

1564
		if (priv->rx_ts_enabled)
1565
			ctrl |= CTRL_V2_RX_TS_BITS;
1566
		break;
1567 1568 1569 1570
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1571
		if (priv->tx_ts_enabled)
1572 1573
			ctrl |= CTRL_V3_TX_TS_BITS;

1574
		if (priv->rx_ts_enabled)
1575
			ctrl |= CTRL_V3_RX_TS_BITS;
1576
		break;
1577
	}
1578 1579 1580 1581 1582

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1583
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1584
	writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
1585 1586
}

1587
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1588
{
1589
	struct cpsw_priv *priv = netdev_priv(dev);
1590
	struct hwtstamp_config cfg;
1591
	struct cpsw_common *cpsw = priv->cpsw;
1592

1593 1594 1595
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1596 1597
		return -EOPNOTSUPP;

1598 1599 1600 1601 1602 1603 1604
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1605
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1606 1607 1608 1609
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1610
		priv->rx_ts_enabled = 0;
1611 1612
		break;
	case HWTSTAMP_FILTER_ALL:
1613 1614
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
1615 1616 1617
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1618
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1619 1620
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
1621 1622 1623 1624 1625 1626 1627 1628 1629
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1630
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
1631 1632 1633 1634 1635 1636
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1637
	priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
1638

1639
	switch (cpsw->version) {
1640
	case CPSW_VERSION_1:
1641
		cpsw_hwtstamp_v1(priv);
1642 1643
		break;
	case CPSW_VERSION_2:
1644
	case CPSW_VERSION_3:
1645 1646 1647
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1648
		WARN_ON(1);
1649 1650 1651 1652 1653
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1654 1655
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1656
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1657
	struct cpsw_priv *priv = netdev_priv(dev);
1658 1659
	struct hwtstamp_config cfg;

1660 1661 1662
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1663 1664 1665
		return -EOPNOTSUPP;

	cfg.flags = 0;
1666 1667
	cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = priv->rx_ts_enabled;
1668 1669 1670

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1671 1672 1673 1674 1675
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1676

1677 1678 1679 1680
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1681 1682 1683 1684
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1685
	struct cpsw_priv *priv = netdev_priv(dev);
1686 1687
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1688

1689 1690 1691
	if (!netif_running(dev))
		return -EINVAL;

1692 1693
	switch (cmd) {
	case SIOCSHWTSTAMP:
1694 1695 1696
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1697 1698
	}

1699
	if (!cpsw->slaves[slave_no].phy)
1700
		return -EOPNOTSUPP;
1701
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1702 1703
}

1704 1705 1706
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1707
	struct cpsw_common *cpsw = priv->cpsw;
1708
	int ch;
1709 1710

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1711
	ndev->stats.tx_errors++;
1712
	cpsw_intr_disable(cpsw);
1713
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1714 1715
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1716 1717
	}

1718
	cpsw_intr_enable(cpsw);
1719 1720
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
1721 1722
}

1723 1724 1725 1726
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1727
	struct cpsw_common *cpsw = priv->cpsw;
1728 1729
	int flags = 0;
	u16 vid = 0;
1730
	int ret;
1731 1732 1733 1734

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1735
	ret = pm_runtime_get_sync(cpsw->dev);
1736
	if (ret < 0) {
1737
		pm_runtime_put_noidle(cpsw->dev);
1738 1739 1740
		return ret;
	}

1741 1742
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1743 1744 1745
		flags = ALE_VLAN;
	}

1746
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1747
			   flags, vid);
1748
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1749 1750 1751 1752 1753 1754
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1755
	pm_runtime_put(cpsw->dev);
1756

1757 1758 1759
	return 0;
}

1760 1761 1762 1763
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1764
	int unreg_mcast_mask = 0;
1765
	int mcast_mask;
1766
	u32 port_mask;
1767
	struct cpsw_common *cpsw = priv->cpsw;
1768

1769
	if (cpsw->data.dual_emac) {
1770
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1771

1772
		mcast_mask = ALE_PORT_HOST;
1773
		if (priv->ndev->flags & IFF_ALLMULTI)
1774
			unreg_mcast_mask = mcast_mask;
1775 1776
	} else {
		port_mask = ALE_ALL_PORTS;
1777
		mcast_mask = port_mask;
1778 1779 1780 1781 1782 1783

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1784

1785
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1786
				unreg_mcast_mask);
1787 1788 1789
	if (ret != 0)
		return ret;

1790
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1791
				 HOST_PORT_NUM, ALE_VLAN, vid);
1792 1793 1794
	if (ret != 0)
		goto clean_vid;

1795
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1796
				 mcast_mask, ALE_VLAN, vid, 0);
1797 1798 1799 1800 1801
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1802
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1803
			   HOST_PORT_NUM, ALE_VLAN, vid);
1804
clean_vid:
1805
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1806 1807 1808 1809
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1810
				    __be16 proto, u16 vid)
1811 1812
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1813
	struct cpsw_common *cpsw = priv->cpsw;
1814
	int ret;
1815

1816
	if (vid == cpsw->data.default_vlan)
1817 1818
		return 0;

1819
	ret = pm_runtime_get_sync(cpsw->dev);
1820
	if (ret < 0) {
1821
		pm_runtime_put_noidle(cpsw->dev);
1822 1823 1824
		return ret;
	}

1825
	if (cpsw->data.dual_emac) {
1826 1827 1828 1829 1830 1831
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1832
		for (i = 0; i < cpsw->data.slaves; i++) {
1833 1834 1835 1836
			if (vid == cpsw->slaves[i].port_vlan) {
				ret = -EINVAL;
				goto err;
			}
1837 1838 1839
		}
	}

1840
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1841
	ret = cpsw_add_vlan_ale_entry(priv, vid);
1842
err:
1843
	pm_runtime_put(cpsw->dev);
1844
	return ret;
1845 1846 1847
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1848
				     __be16 proto, u16 vid)
1849 1850
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1851
	struct cpsw_common *cpsw = priv->cpsw;
1852 1853
	int ret;

1854
	if (vid == cpsw->data.default_vlan)
1855 1856
		return 0;

1857
	ret = pm_runtime_get_sync(cpsw->dev);
1858
	if (ret < 0) {
1859
		pm_runtime_put_noidle(cpsw->dev);
1860 1861 1862
		return ret;
	}

1863
	if (cpsw->data.dual_emac) {
1864 1865
		int i;

1866 1867
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1868
				goto err;
1869 1870 1871
		}
	}

1872
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1873
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1874 1875 1876 1877
	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
				  HOST_PORT_NUM, ALE_VLAN, vid);
	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
				  0, ALE_VLAN, vid);
1878
	ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
1879
err:
1880
	pm_runtime_put(cpsw->dev);
1881
	return ret;
1882 1883
}

1884 1885 1886 1887
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
1888
	struct cpsw_slave *slave;
1889
	u32 min_rate;
1890
	u32 ch_rate;
1891
	int i, ret;
1892 1893 1894 1895 1896

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

1897 1898 1899 1900 1901
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
1902 1903 1904
		return -EINVAL;
	}

1905
	if (rate > cpsw->speed) {
1906
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
1907 1908 1909 1910 1911 1912 1913 1914 1915
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

1916 1917
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
1918

1919 1920
	if (ret)
		return ret;
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

1931
	cpsw_split_res(cpsw);
1932 1933 1934
	return ret;
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
	struct tc_mqprio_qopt_offload *mqprio = type_data;
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int fifo, num_tc, count, offset;
	struct cpsw_slave *slave;
	u32 tx_prio_map = 0;
	int i, tc, ret;

	num_tc = mqprio->qopt.num_tc;
	if (num_tc > CPSW_TC_NUM)
		return -EINVAL;

	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
		return -EINVAL;

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	if (num_tc) {
		for (i = 0; i < 8; i++) {
			tc = mqprio->qopt.prio_tc_map[i];
			fifo = cpsw_tc_to_fifo(tc, num_tc);
			tx_prio_map |= fifo << (4 * i);
		}

		netdev_set_num_tc(ndev, num_tc);
		for (i = 0; i < num_tc; i++) {
			count = mqprio->qopt.count[i];
			offset = mqprio->qopt.offset[i];
			netdev_set_tc_queue(ndev, i, count, offset);
		}
	}

	if (!mqprio->qopt.hw) {
		/* restore default configuration */
		netdev_reset_tc(ndev);
		tx_prio_map = TX_PRIORITY_MAPPING;
	}

	priv->mqprio_hw = mqprio->qopt.hw;

	offset = cpsw->version == CPSW_VERSION_1 ?
		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	slave_write(slave, tx_prio_map, offset);

	pm_runtime_put_sync(cpsw->dev);

	return 0;
}

static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			     void *type_data)
{
	switch (type) {
1996 1997 1998
	case TC_SETUP_QDISC_CBS:
		return cpsw_set_cbs(ndev, type_data);

1999 2000 2001 2002 2003 2004 2005 2006
	case TC_SETUP_QDISC_MQPRIO:
		return cpsw_set_mqprio(ndev, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
}
#endif

2019 2020 2021 2022
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2023
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2024
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2025 2026
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2027
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2028
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2029 2030 2031
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2032 2033
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2034
	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2035 2036 2037 2038 2039
};

static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2040
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2041
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2042

2043
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2044
	strlcpy(info->version, "1.0", sizeof(info->version));
2045
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2046 2047
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2061 2062 2063
static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
2064
	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
2065 2066
}

2067 2068 2069 2070 2071
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2072
	.get_ts_info	= cpsw_get_ts_info,
2073 2074
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2075 2076 2077
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2078 2079
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2080 2081
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2082 2083
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2084 2085
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2086 2087
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2088 2089
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2090 2091
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2092
	.nway_reset	= cpsw_nway_reset,
2093 2094
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2095 2096
};

2097
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2109
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2110 2111 2112 2113
		return -EINVAL;
	}
	data->slaves = prop;

2114
	if (of_property_read_u32(node, "active_slave", &prop)) {
2115
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2116
		return -EINVAL;
2117
	}
2118
	data->active_slave = prop;
2119

2120 2121 2122
	data->slave_data = devm_kcalloc(&pdev->dev,
					data->slaves,
					sizeof(struct cpsw_slave_data),
2123
					GFP_KERNEL);
2124
	if (!data->slave_data)
2125
		return -ENOMEM;
2126 2127

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2128
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2129
		return -EINVAL;
2130 2131 2132 2133
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2134
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2135
		return -EINVAL;
2136 2137 2138 2139
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2140
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2141
		return -EINVAL;
2142 2143 2144 2145
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2146
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2147
		return -EINVAL;
2148 2149 2150
	}
	data->mac_control = prop;

2151 2152
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2153

2154 2155 2156 2157 2158 2159
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2160
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2161

2162
	for_each_available_child_of_node(node, slave_node) {
2163 2164
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2165 2166 2167
		int lenp;
		const __be32 *parp;

2168
		/* This is no slave child node, continue */
2169
		if (!of_node_name_eq(slave_node, "slave"))
2170 2171
			continue;

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
		slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
						    NULL);
		if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
		    IS_ERR(slave_data->ifphy)) {
			ret = PTR_ERR(slave_data->ifphy);
			dev_err(&pdev->dev,
				"%d: Error retrieving port phy: %d\n", i, ret);
			return ret;
		}

2182 2183
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2184
		parp = of_get_property(slave_node, "phy_id", &lenp);
2185 2186
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
2187 2188
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
2189
		} else if (of_phy_is_fixed_link(slave_node)) {
2190 2191 2192
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2193
			ret = of_phy_register_fixed_link(slave_node);
2194 2195 2196
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2197
				return ret;
2198
			}
2199
			slave_data->phy_node = of_node_get(slave_node);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2219
			put_device(&mdio->dev);
2220
		} else {
2221 2222 2223
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2224
			goto no_phy_slave;
2225
		}
2226 2227 2228 2229 2230 2231 2232 2233
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2234
		mac_addr = of_get_mac_address(slave_node);
2235
		if (!IS_ERR(mac_addr)) {
2236
			ether_addr_copy(slave_data->mac_addr, mac_addr);
2237
		} else {
2238 2239 2240 2241
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2242
		}
2243
		if (data->dual_emac) {
2244
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2245
						 &prop)) {
2246
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2247
				slave_data->dual_emac_res_vlan = i+1;
2248 2249
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2250 2251 2252 2253 2254
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2255
		i++;
2256 2257
		if (i == data->slaves)
			break;
2258 2259 2260 2261 2262
	}

	return 0;
}

2263 2264
static void cpsw_remove_dt(struct platform_device *pdev)
{
2265
	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
2266 2267 2268 2269 2270 2271 2272 2273
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

2274
		if (!of_node_name_eq(slave_node, "slave"))
2275 2276
			continue;

2277 2278
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2279 2280 2281 2282 2283 2284 2285 2286

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2287 2288 2289
	of_platform_depopulate(&pdev->dev);
}

2290
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2291
{
2292 2293
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2294 2295
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2296
	int ret = 0;
2297

2298 2299
	ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
2300
	if (!ndev) {
2301
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2302 2303 2304 2305
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2306
	priv_sl2->cpsw = cpsw;
2307 2308 2309 2310 2311 2312 2313
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2314 2315
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2316
	} else {
2317
		eth_random_addr(priv_sl2->mac_addr);
2318 2319
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2320 2321 2322 2323
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2324
	cpsw->slaves[1].ndev = ndev;
2325
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2326 2327

	ndev->netdev_ops = &cpsw_netdev_ops;
2328
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2329 2330

	/* register the network device */
2331
	SET_NETDEV_DEV(ndev, cpsw->dev);
2332
	ret = register_netdev(ndev);
2333
	if (ret)
2334
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2335 2336 2337 2338

	return ret;
}

2339
static const struct of_device_id cpsw_of_mtable[] = {
2340 2341 2342 2343
	{ .compatible = "ti,cpsw"},
	{ .compatible = "ti,am335x-cpsw"},
	{ .compatible = "ti,am4372-cpsw"},
	{ .compatible = "ti,dra7-cpsw"},
2344 2345 2346 2347
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

2348 2349 2350 2351 2352
static const struct soc_device_attribute cpsw_soc_devices[] = {
	{ .family = "AM33xx", .revision = "ES1.0"},
	{ /* sentinel */ }
};

B
Bill Pemberton 已提交
2353
static int cpsw_probe(struct platform_device *pdev)
2354
{
2355
	struct device			*dev = &pdev->dev;
2356
	struct clk			*clk;
2357
	struct cpsw_platform_data	*data;
2358 2359
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
2360 2361
	void __iomem			*ss_regs;
	struct resource			*res, *ss_res;
2362
	struct gpio_descs		*mode;
2363
	const struct soc_device_attribute *soc;
2364
	struct cpsw_common		*cpsw;
2365
	int ret = 0, ch;
2366
	int irq;
2367

2368
	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
2369 2370 2371
	if (!cpsw)
		return -ENOMEM;

2372
	cpsw->dev = dev;
2373

2374
	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
2375 2376
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
2377
		dev_err(dev, "gpio request failed, ret %d\n", ret);
2378
		return ret;
2379 2380
	}

2381 2382
	clk = devm_clk_get(dev, "fck");
	if (IS_ERR(clk)) {
2383
		ret = PTR_ERR(clk);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
		dev_err(dev, "fck is not found %d\n", ret);
		return ret;
	}
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;

	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(dev, ss_res);
	if (IS_ERR(ss_regs))
		return PTR_ERR(ss_regs);
	cpsw->regs = ss_regs;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	cpsw->wr_regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(cpsw->wr_regs))
		return PTR_ERR(cpsw->wr_regs);

	/* RX IRQ */
	irq = platform_get_irq(pdev, 1);
	if (irq < 0)
		return irq;
	cpsw->irqs_table[0] = irq;

	/* TX IRQ */
	irq = platform_get_irq(pdev, 2);
	if (irq < 0)
		return irq;
	cpsw->irqs_table[1] = irq;

2412 2413 2414
	/*
	 * This may be required here for child devices.
	 */
2415
	pm_runtime_enable(dev);
2416

2417 2418 2419
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
2420
	ret = pm_runtime_get_sync(dev);
2421
	if (ret < 0) {
2422
		pm_runtime_put_noidle(dev);
2423
		goto clean_runtime_disable_ret;
2424
	}
2425

2426 2427
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2428
		goto clean_dt_ret;
2429

2430 2431 2432
	soc = soc_device_match(cpsw_soc_devices);
	if (soc)
		cpsw->quirk_irq = 1;
2433

2434
	data = &cpsw->data;
2435
	cpsw->slaves = devm_kcalloc(dev,
2436
				    data->slaves, sizeof(struct cpsw_slave),
2437
				    GFP_KERNEL);
2438
	if (!cpsw->slaves) {
2439
		ret = -ENOMEM;
2440
		goto clean_dt_ret;
2441 2442
	}

2443
	cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
2444
	cpsw->descs_pool_size = descs_pool_size;
2445

2446 2447 2448 2449
	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
			       ss_res->start + CPSW2_BD_OFFSET,
			       descs_pool_size);
	if (ret)
2450
		goto clean_dt_ret;
2451

2452 2453
	ch = cpsw->quirk_irq ? 0 : 7;
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
2454
	if (IS_ERR(cpsw->txv[0].ch)) {
2455
		dev_err(dev, "error initializing tx dma channel\n");
2456
		ret = PTR_ERR(cpsw->txv[0].ch);
2457
		goto clean_cpts;
2458 2459
	}

2460
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2461
	if (IS_ERR(cpsw->rxv[0].ch)) {
2462
		dev_err(dev, "error initializing rx dma channel\n");
2463
		ret = PTR_ERR(cpsw->rxv[0].ch);
2464
		goto clean_cpts;
2465
	}
2466
	cpsw_split_res(cpsw);
2467

2468 2469 2470 2471 2472 2473
	/* setup netdev */
	ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
	if (!ndev) {
		dev_err(dev, "error allocating net_device\n");
		goto clean_cpts;
2474 2475
	}

2476
	platform_set_drvdata(pdev, cpsw);
2477 2478 2479 2480 2481 2482
	priv = netdev_priv(ndev);
	priv->cpsw = cpsw;
	priv->ndev = ndev;
	priv->dev  = dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
	priv->emac_port = 0;
2483

2484 2485 2486 2487 2488 2489
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
		dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
	} else {
		eth_random_addr(priv->mac_addr);
		dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
2490 2491
	}

2492 2493 2494 2495
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

	cpsw->slaves[0].ndev = ndev;

2496
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2497 2498 2499

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2500 2501 2502 2503 2504 2505
	netif_napi_add(ndev, &cpsw->napi_rx,
		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
		       CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx,
			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
			  CPSW_POLL_WEIGHT);
2506 2507

	/* register the network device */
2508
	SET_NETDEV_DEV(ndev, dev);
2509 2510
	ret = register_netdev(ndev);
	if (ret) {
2511
		dev_err(dev, "error registering net device\n");
2512
		ret = -ENODEV;
2513
		goto clean_cpts;
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

2524 2525 2526 2527 2528 2529 2530
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
2531
	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
2532
			       0, dev_name(dev), cpsw);
2533
	if (ret < 0) {
2534
		dev_err(dev, "error attaching irq (%d)\n", ret);
2535
		goto clean_unregister_netdev_ret;
2536 2537 2538
	}


2539
	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
2540
			       0, dev_name(&pdev->dev), cpsw);
2541
	if (ret < 0) {
2542
		dev_err(dev, "error attaching irq (%d)\n", ret);
2543
		goto clean_unregister_netdev_ret;
2544
	}
2545

2546 2547
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
2548
		    &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
2549

2550 2551
	pm_runtime_put(&pdev->dev);

2552 2553
	return 0;

2554 2555
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
2556 2557
clean_cpts:
	cpts_release(cpsw->cpts);
2558
	cpdma_ctlr_destroy(cpsw->dma);
2559 2560
clean_dt_ret:
	cpsw_remove_dt(pdev);
2561
	pm_runtime_put_sync(&pdev->dev);
2562
clean_runtime_disable_ret:
2563
	pm_runtime_disable(&pdev->dev);
2564 2565 2566
	return ret;
}

B
Bill Pemberton 已提交
2567
static int cpsw_remove(struct platform_device *pdev)
2568
{
2569 2570
	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
	int i, ret;
2571 2572 2573 2574 2575 2576

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
2577

2578 2579 2580
	for (i = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].ndev)
			unregister_netdev(cpsw->slaves[i].ndev);
2581

2582
	cpts_release(cpsw->cpts);
2583
	cpdma_ctlr_destroy(cpsw->dma);
2584
	cpsw_remove_dt(pdev);
2585 2586
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
2587 2588 2589
	return 0;
}

2590
#ifdef CONFIG_PM_SLEEP
2591 2592
static int cpsw_suspend(struct device *dev)
{
2593
	struct net_device	*ndev = dev_get_drvdata(dev);
2594
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2595

2596
	if (cpsw->data.dual_emac) {
2597
		int i;
2598

2599 2600 2601
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
2602 2603 2604 2605 2606
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
2607

2608
	/* Select sleep pin state */
2609
	pinctrl_pm_select_sleep_state(dev);
2610

2611 2612 2613 2614 2615
	return 0;
}

static int cpsw_resume(struct device *dev)
{
2616
	struct net_device	*ndev = dev_get_drvdata(dev);
2617
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2618

2619
	/* Select default pin state */
2620
	pinctrl_pm_select_default_state(dev);
2621

2622 2623
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
2624
	if (cpsw->data.dual_emac) {
2625 2626
		int i;

2627 2628 2629
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
2630 2631 2632 2633 2634
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
2635 2636
	rtnl_unlock();

2637 2638
	return 0;
}
2639
#endif
2640

2641
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2642 2643 2644 2645 2646

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
2647
		.of_match_table = cpsw_of_mtable,
2648 2649
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
2650
	.remove = cpsw_remove,
2651 2652
};

2653
module_platform_driver(cpsw_driver);
2654 2655 2656 2657 2658

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");