cpsw.c 85.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90 91 92 93 94 95 96 97

#define HOST_PORT_NUM		0
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121 122 123 124 125 126
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
#define CPSW_MIN_PACKET_SIZE	60
#define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
127
#define CPDMA_TX_PRIORITY_MAP	0x01234567
128

129 130 131
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

132 133 134
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135

136 137 138 139 140 141 142
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

143 144 145
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
146
#define IRQ_NUM			2
147
#define CPSW_MAX_QUEUES		8
148
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149

150 151 152 153 154 155 156 157 158 159 160 161
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

162 163 164 165
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

166
struct cpsw_wr_regs {
167 168 169 170 171 172 173 174
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
175 176 177 178 179 180 181 182 183
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

184 185
};

186
struct cpsw_ss_regs {
187 188 189 190 191
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
192 193 194 195 196 197 198 199
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
200 201
};

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 248
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 250 251 252 253 254
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

255 256 257
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258

259 260 261 262 263 264 265 266 267 268 269 270 271
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 273 274 275 276 277 278 279 280

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281

282 283 284 285 286 287 288 289
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

290 291 292
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
293
	u32	tx_in_ctl;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

351
struct cpsw_slave {
352
	void __iomem			*regs;
353 354 355 356 357
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
358 359
	struct net_device		*ndev;
	u32				port_vlan;
360 361
};

362 363 364 365 366 367 368 369 370 371
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
	return __raw_readl(slave->regs + offset);
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
	__raw_writel(val, slave->regs + offset);
}

372 373 374 375 376
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

377
struct cpsw_common {
378
	struct device			*dev;
379
	struct cpsw_platform_data	data;
380 381
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
382 383 384 385
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
386 387 388 389
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
390
	struct cpsw_slave		*slaves;
391
	struct cpdma_ctlr		*dma;
392 393
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
394
	struct cpsw_ale			*ale;
395 396 397 398
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
399
	struct cpts			*cpts;
400
	int				rx_ch_num, tx_ch_num;
401
	int				speed;
402 403 404
};

struct cpsw_priv {
405 406 407 408
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
409 410
	bool				rx_pause;
	bool				tx_pause;
411
	u32 emac_port;
412
	struct cpsw_common *cpsw;
413 414
};

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
493

494
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
495
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
496 497
#define for_each_slave(priv, func, arg...)				\
	do {								\
498
		struct cpsw_slave *slave;				\
499
		struct cpsw_common *cpsw = (priv)->cpsw;		\
500
		int n;							\
501 502
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
503
		else							\
504 505
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
506 507
					n; n--)				\
				(func)(slave++, ##arg);			\
508 509
	} while (0)

510
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
511
	do {								\
512
		if (!cpsw->data.dual_emac)				\
513 514
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
515
			ndev = cpsw->slaves[0].ndev;			\
516 517
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
518
			ndev = cpsw->slaves[1].ndev;			\
519 520
			skb->dev = ndev;				\
		}							\
521
	} while (0)
522
#define cpsw_add_mcast(cpsw, priv, addr)				\
523
	do {								\
524 525
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
526
						priv->emac_port;	\
527
			int slave_port = cpsw_get_slave_port(		\
528
						slave->slave_num);	\
529
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
530
				1 << slave_port | ALE_PORT_HOST,	\
531 532
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
533
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
534
				ALE_ALL_PORTS,				\
535 536 537 538
				0, 0, 0);				\
		}							\
	} while (0)

539
static inline int cpsw_get_slave_port(u32 slave_num)
540
{
541
	return slave_num + 1;
542
}
543

544 545
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
546 547
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
548 549
	int i;

550
	if (cpsw->data.dual_emac) {
551 552 553 554 555 556
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
557 558
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

580
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
581
			for (i = 0; i <= cpsw->data.slaves; i++) {
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
598
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
599 600 601 602 603

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
604
			/* Don't Flood All Unicast Packets to Host port */
605 606
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

607
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
608
			for (i = 0; i <= cpsw->data.slaves; i++) {
609 610 611 612 613 614 615 616 617 618
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

619 620 621
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
622
	struct cpsw_common *cpsw = priv->cpsw;
623 624
	int vid;

625 626
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
627
	else
628
		vid = cpsw->data.default_vlan;
629 630 631

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
632
		cpsw_set_promiscious(ndev, true);
633
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
634
		return;
635 636 637
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
638 639
	}

640
	/* Restore allmulti on vlans if necessary */
641
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
642

643
	/* Clear all mcast from ALE */
644
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
645 646 647 648 649 650

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
651
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
652 653 654 655
		}
	}
}

656
static void cpsw_intr_enable(struct cpsw_common *cpsw)
657
{
658 659
	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
660

661
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
662 663 664
	return;
}

665
static void cpsw_intr_disable(struct cpsw_common *cpsw)
666
{
667 668
	__raw_writel(0, &cpsw->wr_regs->tx_en);
	__raw_writel(0, &cpsw->wr_regs->rx_en);
669

670
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
671 672 673
	return;
}

674 675 676 677 678 679
static int cpsw_get_usage_count(struct cpsw_common *cpsw)
{
	u32 i;
	u32 usage_count = 0;

	for (i = 0; i < cpsw->data.slaves; i++)
680
		if (cpsw->slaves[i].ndev && netif_running(cpsw->slaves[i].ndev))
681 682 683 684 685
			usage_count++;

	return usage_count;
}

686
static void cpsw_tx_handler(void *token, int len, int status)
687
{
688
	struct netdev_queue	*txq;
689 690
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
691
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
692

693 694 695
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
696 697 698 699
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

700
	cpts_tx_timestamp(cpsw->cpts, skb);
701 702
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
703 704 705
	dev_kfree_skb_any(skb);
}

706
static void cpsw_rx_handler(void *token, int len, int status)
707
{
708
	struct cpdma_chan	*ch;
709
	struct sk_buff		*skb = token;
710
	struct sk_buff		*new_skb;
711 712
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
713
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
714

715
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
716

717
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
718 719 720 721
		/* In dual emac mode check for all interfaces */
		if (cpsw->data.dual_emac &&
		    cpsw_get_usage_count(cpsw) &&
		    (status >= 0)) {
722 723
			/* The packet received is for the interface which
			 * is already down and the other interface is up
724
			 * and running, instead of freeing which results
725 726 727 728 729 730 731
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

732
		/* the interface is going down, skbs are purged */
733 734 735
		dev_kfree_skb_any(skb);
		return;
	}
736

737
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
738
	if (new_skb) {
739
		skb_copy_queue_mapping(new_skb, skb);
740
		skb_put(skb, len);
741
		cpts_rx_timestamp(cpsw->cpts, skb);
742 743
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
744 745
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
746
		kmemleak_not_leak(new_skb);
747
	} else {
748
		ndev->stats.rx_dropped++;
749
		new_skb = skb;
750 751
	}

752
requeue:
753 754 755 756 757
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

758
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
759
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
760
				skb_tailroom(new_skb), 0);
761 762
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
763 764
}

765
static void cpsw_split_res(struct net_device *ndev)
766 767
{
	struct cpsw_priv *priv = netdev_priv(ndev);
768
	u32 consumed_rate = 0, bigest_rate = 0;
769 770
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
771
	int i, ch_weight, rlim_ch_num = 0;
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
787 788 789 790
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
791
	} else {
792 793 794 795 796 797 798 799 800 801
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
802

803 804 805 806 807 808 809
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

810
	/* split tx weight/budget */
811 812 813 814 815 816
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
817
				txv[i].budget++;
818 819 820 821
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
822 823 824 825 826

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
827 828 829 830
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
831
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

852
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
853
{
854
	struct cpsw_common *cpsw = dev_id;
855

856
	writel(0, &cpsw->wr_regs->tx_en);
857
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
858

859 860 861
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
862 863
	}

864
	napi_schedule(&cpsw->napi_tx);
865 866 867 868 869
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
870
	struct cpsw_common *cpsw = dev_id;
871

872
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
873
	writel(0, &cpsw->wr_regs->rx_en);
874

875 876 877
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
878 879
	}

880
	napi_schedule(&cpsw->napi_rx);
881
	return IRQ_HANDLED;
882 883
}

884 885
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
886
	u32			ch_map;
887
	int			num_tx, cur_budget, ch;
888
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
889
	struct cpsw_vector	*txv;
890

891 892
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
893
	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
894 895 896
		if (!(ch_map & 0x01))
			continue;

897 898 899 900 901 902 903
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
904 905
		if (num_tx >= budget)
			break;
906 907
	}

908 909
	if (num_tx < budget) {
		napi_complete(napi_tx);
910
		writel(0xff, &cpsw->wr_regs->tx_en);
911 912 913
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
914
		}
915 916 917 918 919 920
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
921
{
922
	u32			ch_map;
923
	int			num_rx, cur_budget, ch;
924
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
925
	struct cpsw_vector	*rxv;
926

927 928
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
929
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
930 931 932
		if (!(ch_map & 0x01))
			continue;

933 934 935 936 937 938 939
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
940 941
		if (num_rx >= budget)
			break;
942 943
	}

944
	if (num_rx < budget) {
945
		napi_complete_done(napi_rx, num_rx);
946
		writel(0xff, &cpsw->wr_regs->rx_en);
947 948 949
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
950
		}
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

	__raw_writel(1, reg);
	do {
		cpu_relax();
	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));

	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
}

#define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
			 ((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
975 976
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
977 978 979 980 981 982 983 984
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
985
	struct cpsw_common *cpsw = priv->cpsw;
986 987 988 989

	if (!phy)
		return;

990
	slave_port = cpsw_get_slave_port(slave->slave_num);
991 992

	if (phy->link) {
993
		mac_control = cpsw->data.mac_control;
994 995

		/* enable forwarding */
996
		cpsw_ale_control_set(cpsw->ale, slave_port,
997 998 999 1000 1001 1002
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1003 1004 1005 1006

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1007 1008
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
1009

1010 1011 1012 1013 1014 1015
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1016 1017 1018 1019
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
1020
		cpsw_ale_control_set(cpsw->ale, slave_port,
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
		__raw_writel(mac_control, &slave->sliver->mac_control);
	}

	slave->mac_control = mac_control;
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1070 1071 1072
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1073
	struct cpsw_common	*cpsw = priv->cpsw;
1074 1075 1076 1077 1078
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1079 1080 1081
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1082 1083
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1084
			netif_tx_wake_all_queues(ndev);
1085 1086
	} else {
		netif_carrier_off(ndev);
1087
		netif_tx_stop_all_queues(ndev);
1088 1089 1090
	}
}

1091 1092 1093
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1094
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1095

1096
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1109
	struct cpsw_common *cpsw = priv->cpsw;
1110 1111 1112

	coal_intvl = coal->rx_coalesce_usecs;

1113
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1114
	prescale = cpsw->bus_freq_mhz * 4;
1115

1116 1117 1118 1119 1120
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1142 1143
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1144 1145 1146 1147

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1148 1149

update_return:
1150
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1151 1152

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1153
	cpsw->coal_intvl = coal_intvl;
1154 1155 1156 1157

	return 0;
}

1158 1159
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1160 1161
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1162 1163
	switch (sset) {
	case ETH_SS_STATS:
1164 1165 1166
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1167 1168 1169 1170 1171
	default:
		return -EOPNOTSUPP;
	}
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1189 1190
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1191
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1192 1193 1194 1195 1196
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1197
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1198 1199 1200 1201
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1202 1203 1204

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1205 1206 1207 1208 1209 1210 1211 1212
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1213
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1214 1215
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1216 1217

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1218 1219 1220 1221 1222
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1223
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1224 1225 1226 1227 1228 1229
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1230

1231
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1232
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1233 1234 1235 1236
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1237 1238 1239 1240
		}
	}
}

1241
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1242 1243
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1244
{
1245 1246
	struct cpsw_common *cpsw = priv->cpsw;

1247
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1248
				 priv->emac_port + cpsw->data.dual_emac);
1249 1250 1251 1252 1253 1254
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1255
	struct cpsw_common *cpsw = priv->cpsw;
1256
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1257

1258
	if (cpsw->version == CPSW_VERSION_1)
1259 1260 1261
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1262
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1263
			  port_mask, port_mask, 0);
1264
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1265
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1266 1267 1268
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1269 1270
}

1271
static void soft_reset_slave(struct cpsw_slave *slave)
1272 1273 1274
{
	char name[32];

1275
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1276
	soft_reset(name, &slave->sliver->soft_reset);
1277 1278 1279 1280 1281
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1282
	struct cpsw_common *cpsw = priv->cpsw;
1283 1284

	soft_reset_slave(slave);
1285 1286 1287

	/* setup priority mapping */
	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1288

1289
	switch (cpsw->version) {
1290 1291 1292 1293
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
		break;
	case CPSW_VERSION_2:
1294
	case CPSW_VERSION_3:
1295
	case CPSW_VERSION_4:
1296 1297 1298
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
		break;
	}
1299 1300

	/* setup max packet size, and mac address */
1301
	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1302 1303 1304 1305
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1306
	slave_port = cpsw_get_slave_port(slave->slave_num);
1307

1308
	if (cpsw->data.dual_emac)
1309 1310
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1311
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1312
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1313

1314
	if (slave->data->phy_node) {
1315
		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1316
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1317 1318 1319 1320 1321 1322 1323
		if (!slave->phy) {
			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
				slave->data->phy_node->full_name,
				slave->slave_num);
			return;
		}
	} else {
1324
		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1325
				 &cpsw_adjust_link, slave->data->phy_if);
1326 1327 1328 1329 1330 1331 1332 1333 1334
		if (IS_ERR(slave->phy)) {
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
				PTR_ERR(slave->phy));
			slave->phy = NULL;
			return;
		}
	}
1335

1336
	phy_attached_info(slave->phy);
1337

1338 1339 1340
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1341
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1342 1343
}

1344 1345
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1346 1347
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1348 1349
	u32 reg;
	int i;
1350
	int unreg_mcast_mask;
1351

1352
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1353 1354
	       CPSW2_PORT_VLAN;

1355
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1356

1357 1358
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1359

1360 1361 1362 1363 1364
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1365
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1366 1367
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1368 1369
}

1370 1371
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1372
	u32 fifo_mode;
1373 1374
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1375

1376
	/* soft reset the controller and initialize ale */
1377
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1378
	cpsw_ale_start(cpsw->ale);
1379 1380

	/* switch to vlan unaware mode */
1381
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1382
			     CPSW_ALE_VLAN_AWARE);
1383
	control_reg = readl(&cpsw->regs->control);
1384
	control_reg |= CPSW_VLAN_AWARE;
1385
	writel(control_reg, &cpsw->regs->control);
1386
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1387
		     CPSW_FIFO_NORMAL_MODE;
1388
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1389 1390 1391

	/* setup host port priority mapping */
	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1392 1393
		     &cpsw->host_port_regs->cpdma_tx_pri_map);
	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1394

1395
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1396 1397
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1398
	if (!cpsw->data.dual_emac) {
1399
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1400
				   0, 0);
1401
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1402
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1403
	}
1404 1405
}

1406 1407 1408 1409 1410
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1411 1412 1413
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1414
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1415 1416 1417 1418 1419 1420 1421 1422
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1423

1424
			skb_set_queue_mapping(skb, ch);
1425 1426 1427
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1428 1429 1430 1431 1432 1433 1434 1435
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1436 1437
		}

1438 1439 1440
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1441

1442
	return 0;
1443 1444
}

1445
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1446
{
1447 1448
	u32 slave_port;

1449
	slave_port = cpsw_get_slave_port(slave->slave_num);
1450

1451 1452 1453 1454 1455
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1456
	cpsw_ale_control_set(cpsw->ale, slave_port,
1457
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1458
	soft_reset_slave(slave);
1459 1460
}

1461 1462 1463
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1464
	struct cpsw_common *cpsw = priv->cpsw;
1465
	int ret;
1466 1467
	u32 reg;

1468
	ret = pm_runtime_get_sync(cpsw->dev);
1469
	if (ret < 0) {
1470
		pm_runtime_put_noidle(cpsw->dev);
1471 1472
		return ret;
	}
1473

1474 1475
	netif_carrier_off(ndev);

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1489
	reg = cpsw->version;
1490 1491 1492 1493 1494

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1495 1496 1497 1498 1499
	/* Initialize host and slave ports.
	 * Given ndev is marked as opened already, so init port only if 1 ndev
	 * is opened
	 */
	if (cpsw_get_usage_count(cpsw) < 2)
1500
		cpsw_init_host_port(priv);
1501 1502
	for_each_slave(priv, cpsw_slave_open, priv);

1503
	/* Add default VLAN */
1504
	if (!cpsw->data.dual_emac)
1505 1506
		cpsw_add_default_vlan(priv);
	else
1507
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1508
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1509

1510 1511 1512 1513
	/* Given ndev is marked as opened already, so if more ndev
	 * are opened - no need to init shared resources.
	 */
	if (cpsw_get_usage_count(cpsw) < 2) {
1514
		/* disable priority elevation */
1515
		__raw_writel(0, &cpsw->regs->ptype);
1516

1517
		/* enable statistics collection only on all ports */
1518
		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1519

1520
		/* Enable internal fifo flow control */
1521
		writel(0x7, &cpsw->regs->flow_control);
1522

1523 1524
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1525

1526 1527 1528
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1529 1530
		}

1531 1532 1533
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1534 1535
		}

1536 1537 1538
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1539

1540
		if (cpts_register(cpsw->cpts))
1541 1542
			dev_err(priv->dev, "error registering cpts device\n");

1543 1544
	}

1545
	/* Enable Interrupt pacing if configured */
1546
	if (cpsw->coal_intvl != 0) {
1547 1548
		struct ethtool_coalesce coal;

1549
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1550 1551 1552
		cpsw_set_coalesce(ndev, &coal);
	}

1553 1554
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1555

1556 1557
	return 0;

1558
err_cleanup:
1559
	cpdma_ctlr_stop(cpsw->dma);
1560
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1561
	pm_runtime_put_sync(cpsw->dev);
1562 1563
	netif_carrier_off(priv->ndev);
	return ret;
1564 1565 1566 1567 1568
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1569
	struct cpsw_common *cpsw = priv->cpsw;
1570 1571

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1572
	netif_tx_stop_all_queues(priv->ndev);
1573
	netif_carrier_off(priv->ndev);
1574

1575 1576 1577 1578
	/* Given ndev is marked as close already,
	 * so disable shared resources if no open devices
	 */
	if (!cpsw_get_usage_count(cpsw)) {
1579 1580
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1581
		cpts_unregister(cpsw->cpts);
1582 1583
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1584
		cpsw_ale_stop(cpsw->ale);
1585
	}
1586
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1587 1588 1589 1590

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1591
	pm_runtime_put_sync(cpsw->dev);
1592 1593 1594 1595 1596 1597 1598
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1599
	struct cpsw_common *cpsw = priv->cpsw;
1600 1601 1602
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1603 1604 1605

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1606
		ndev->stats.tx_dropped++;
1607
		return NET_XMIT_DROP;
1608 1609
	}

1610
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1611
	    cpts_is_tx_enabled(cpsw->cpts))
1612 1613 1614 1615
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

	skb_tx_timestamp(skb);

1616 1617 1618 1619
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1620
	txch = cpsw->txv[q_idx].ch;
1621
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1622 1623 1624 1625 1626
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1627 1628 1629
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1630 1631 1632 1633
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1634

1635 1636
	return NETDEV_TX_OK;
fail:
1637
	ndev->stats.tx_dropped++;
1638 1639
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1640 1641 1642
	return NETDEV_TX_BUSY;
}

1643
#if IS_ENABLED(CONFIG_TI_CPTS)
1644

1645
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1646
{
1647
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1648 1649
	u32 ts_en, seq_id;

1650 1651
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
1652 1653 1654 1655 1656 1657 1658
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1659
	if (cpts_is_tx_enabled(cpsw->cpts))
1660 1661
		ts_en |= CPSW_V1_TS_TX_EN;

1662
	if (cpts_is_rx_enabled(cpsw->cpts))
1663 1664 1665 1666 1667 1668 1669 1670
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1671
	struct cpsw_slave *slave;
1672
	struct cpsw_common *cpsw = priv->cpsw;
1673 1674
	u32 ctrl, mtype;

1675
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1676

1677
	ctrl = slave_read(slave, CPSW2_CONTROL);
1678
	switch (cpsw->version) {
1679 1680
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1681

1682
		if (cpts_is_tx_enabled(cpsw->cpts))
1683
			ctrl |= CTRL_V2_TX_TS_BITS;
1684

1685
		if (cpts_is_rx_enabled(cpsw->cpts))
1686
			ctrl |= CTRL_V2_RX_TS_BITS;
1687
		break;
1688 1689 1690 1691
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1692
		if (cpts_is_tx_enabled(cpsw->cpts))
1693 1694
			ctrl |= CTRL_V3_TX_TS_BITS;

1695
		if (cpts_is_rx_enabled(cpsw->cpts))
1696
			ctrl |= CTRL_V3_RX_TS_BITS;
1697
		break;
1698
	}
1699 1700 1701 1702 1703

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1704
	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1705 1706
}

1707
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1708
{
1709
	struct cpsw_priv *priv = netdev_priv(dev);
1710
	struct hwtstamp_config cfg;
1711 1712
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1713

1714 1715 1716
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1717 1718
		return -EOPNOTSUPP;

1719 1720 1721 1722 1723 1724 1725
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1726
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1727 1728 1729 1730
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1731
		cpts_rx_enable(cpts, 0);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		return -ERANGE;
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1747
		cpts_rx_enable(cpts, 1);
1748 1749 1750 1751 1752 1753
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1754
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1755

1756
	switch (cpsw->version) {
1757
	case CPSW_VERSION_1:
1758
		cpsw_hwtstamp_v1(cpsw);
1759 1760
		break;
	case CPSW_VERSION_2:
1761
	case CPSW_VERSION_3:
1762 1763 1764
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1765
		WARN_ON(1);
1766 1767 1768 1769 1770
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1771 1772
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1773 1774
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1775 1776
	struct hwtstamp_config cfg;

1777 1778 1779
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1780 1781 1782
		return -EOPNOTSUPP;

	cfg.flags = 0;
1783 1784 1785
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1786 1787 1788 1789
			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1790 1791 1792 1793 1794
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1795

1796 1797 1798 1799
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1800 1801 1802 1803
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1804
	struct cpsw_priv *priv = netdev_priv(dev);
1805 1806
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1807

1808 1809 1810
	if (!netif_running(dev))
		return -EINVAL;

1811 1812
	switch (cmd) {
	case SIOCSHWTSTAMP:
1813 1814 1815
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1816 1817
	}

1818
	if (!cpsw->slaves[slave_no].phy)
1819
		return -EOPNOTSUPP;
1820
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1821 1822
}

1823 1824 1825
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1826
	struct cpsw_common *cpsw = priv->cpsw;
1827
	int ch;
1828 1829

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1830
	ndev->stats.tx_errors++;
1831
	cpsw_intr_disable(cpsw);
1832
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1833 1834
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1835 1836
	}

1837
	cpsw_intr_enable(cpsw);
1838 1839
}

1840 1841 1842 1843
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1844
	struct cpsw_common *cpsw = priv->cpsw;
1845 1846
	int flags = 0;
	u16 vid = 0;
1847
	int ret;
1848 1849 1850 1851

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1852
	ret = pm_runtime_get_sync(cpsw->dev);
1853
	if (ret < 0) {
1854
		pm_runtime_put_noidle(cpsw->dev);
1855 1856 1857
		return ret;
	}

1858 1859
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1860 1861 1862
		flags = ALE_VLAN;
	}

1863
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1864
			   flags, vid);
1865
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1866 1867 1868 1869 1870 1871
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1872
	pm_runtime_put(cpsw->dev);
1873

1874 1875 1876
	return 0;
}

1877 1878 1879
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1880
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1881

1882 1883 1884 1885
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1886 1887 1888
}
#endif

1889 1890 1891 1892
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1893 1894
	int unreg_mcast_mask = 0;
	u32 port_mask;
1895
	struct cpsw_common *cpsw = priv->cpsw;
1896

1897
	if (cpsw->data.dual_emac) {
1898
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1910

1911
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1912
				unreg_mcast_mask);
1913 1914 1915
	if (ret != 0)
		return ret;

1916
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1917
				 HOST_PORT_NUM, ALE_VLAN, vid);
1918 1919 1920
	if (ret != 0)
		goto clean_vid;

1921
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1922
				 port_mask, ALE_VLAN, vid, 0);
1923 1924 1925 1926 1927
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1928
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1929
			   HOST_PORT_NUM, ALE_VLAN, vid);
1930
clean_vid:
1931
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1932 1933 1934 1935
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1936
				    __be16 proto, u16 vid)
1937 1938
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1939
	struct cpsw_common *cpsw = priv->cpsw;
1940
	int ret;
1941

1942
	if (vid == cpsw->data.default_vlan)
1943 1944
		return 0;

1945
	ret = pm_runtime_get_sync(cpsw->dev);
1946
	if (ret < 0) {
1947
		pm_runtime_put_noidle(cpsw->dev);
1948 1949 1950
		return ret;
	}

1951
	if (cpsw->data.dual_emac) {
1952 1953 1954 1955 1956 1957
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1958 1959
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1960 1961 1962 1963
				return -EINVAL;
		}
	}

1964
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1965 1966
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1967
	pm_runtime_put(cpsw->dev);
1968
	return ret;
1969 1970 1971
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1972
				     __be16 proto, u16 vid)
1973 1974
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1975
	struct cpsw_common *cpsw = priv->cpsw;
1976 1977
	int ret;

1978
	if (vid == cpsw->data.default_vlan)
1979 1980
		return 0;

1981
	ret = pm_runtime_get_sync(cpsw->dev);
1982
	if (ret < 0) {
1983
		pm_runtime_put_noidle(cpsw->dev);
1984 1985 1986
		return ret;
	}

1987
	if (cpsw->data.dual_emac) {
1988 1989
		int i;

1990 1991
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1992 1993 1994 1995
				return -EINVAL;
		}
	}

1996
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1997
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1998 1999 2000
	if (ret != 0)
		return ret;

2001
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2002
				 HOST_PORT_NUM, ALE_VLAN, vid);
2003 2004 2005
	if (ret != 0)
		return ret;

2006
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2007
				 0, ALE_VLAN, vid);
2008
	pm_runtime_put(cpsw->dev);
2009
	return ret;
2010 2011
}

2012 2013 2014 2015
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2016
	struct cpsw_slave *slave;
2017
	u32 min_rate;
2018
	u32 ch_rate;
2019
	int i, ret;
2020 2021 2022 2023 2024

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2025 2026 2027 2028 2029
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2030 2031 2032
		return -EINVAL;
	}

2033
	if (rate > cpsw->speed) {
2034
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2035 2036 2037 2038 2039 2040 2041 2042 2043
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2044 2045
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2046

2047 2048
	if (ret)
		return ret;
2049

2050 2051 2052 2053 2054 2055 2056 2057 2058
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2059
	cpsw_split_res(ndev);
2060 2061 2062
	return ret;
}

2063 2064 2065 2066
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2067
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2068
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2069 2070
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2071
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2072
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2073 2074 2075
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2076 2077
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2078 2079
};

2080 2081
static int cpsw_get_regs_len(struct net_device *ndev)
{
2082
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2083

2084
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2085 2086 2087 2088 2089 2090
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2091
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2092 2093

	/* update CPSW IP version */
2094
	regs->version = cpsw->version;
2095

2096
	cpsw_ale_dump(cpsw->ale, reg);
2097 2098
}

2099 2100 2101
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2102
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2103
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2104

2105
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2106
	strlcpy(info->version, "1.0", sizeof(info->version));
2107
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2122
#if IS_ENABLED(CONFIG_TI_CPTS)
2123 2124 2125
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2126
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2127 2128 2129 2130 2131 2132 2133 2134

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2135
	info->phc_index = cpsw->cpts->phc_index;
2136 2137 2138 2139 2140 2141
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2142 2143
	return 0;
}
2144
#else
2145 2146 2147
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2148 2149 2150 2151 2152 2153 2154 2155 2156
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2157
#endif
2158

2159 2160
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2161 2162
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2163 2164
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2165

2166
	if (cpsw->slaves[slave_no].phy)
2167 2168
		return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
						 ecmd);
2169 2170 2171 2172
	else
		return -EOPNOTSUPP;
}

2173 2174
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2175 2176
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2177 2178
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2179

2180
	if (cpsw->slaves[slave_no].phy)
2181 2182
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2183 2184 2185 2186
	else
		return -EOPNOTSUPP;
}

2187 2188 2189
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2190 2191
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2192 2193 2194 2195

	wol->supported = 0;
	wol->wolopts = 0;

2196 2197
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2198 2199 2200 2201 2202
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2203 2204
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2205

2206 2207
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2208 2209 2210 2211
	else
		return -EOPNOTSUPP;
}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2235 2236 2237
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2238
	struct cpsw_common *cpsw = priv->cpsw;
2239 2240
	int ret;

2241
	ret = pm_runtime_get_sync(cpsw->dev);
2242 2243
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2244
		pm_runtime_put_noidle(cpsw->dev);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2255
	ret = pm_runtime_put(priv->cpsw->dev);
2256 2257 2258 2259
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	int (*poll)(struct napi_struct *, int);
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2297
	struct netdev_queue *queue;
2298
	struct cpsw_vector *vec;
2299 2300 2301 2302
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
2303
		vec = cpsw->rxv;
2304 2305 2306 2307
		handler = cpsw_rx_handler;
		poll = cpsw_rx_poll;
	} else {
		ch = &cpsw->tx_ch_num;
2308
		vec = cpsw->txv;
2309 2310 2311 2312 2313
		handler = cpsw_tx_handler;
		poll = cpsw_tx_poll;
	}

	while (*ch < ch_num) {
2314
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2315 2316
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2317

2318 2319
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2320

2321
		if (!vec[*ch].ch)
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2332
		ret = cpdma_chan_destroy(vec[*ch].ch);
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2359
static void cpsw_suspend_data_pass(struct net_device *ndev)
2360
{
2361
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2362
	struct cpsw_slave *slave;
2363
	int i;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
	if (cpsw_get_usage_count(cpsw)) {
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2450
	if (cpsw_get_usage_count(cpsw))
2451
		cpsw_split_res(ndev);
2452

2453 2454 2455
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2456 2457 2458 2459 2460 2461
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2498 2499 2500 2501 2502 2503 2504 2505 2506
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2507
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2508 2509 2510 2511 2512 2513 2514 2515
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2516
	int ret;
2517 2518 2519 2520

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2521 2522
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2523 2524 2525 2526 2527
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

2528
	cpsw_suspend_data_pass(ndev);
2529 2530 2531

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

2532
	if (cpsw_get_usage_count(cpsw))
2533 2534
		cpdma_chan_split_pool(cpsw->dma);

2535 2536 2537
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2538

2539
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2540 2541 2542 2543
	dev_close(ndev);
	return ret;
}

2544 2545 2546 2547 2548
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2549
	.get_ts_info	= cpsw_get_ts_info,
2550 2551
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2552 2553 2554
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2555 2556
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2557 2558
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2559 2560
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2561 2562
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2563 2564
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2565 2566
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2567 2568
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2569
	.nway_reset	= cpsw_nway_reset,
2570 2571
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2572 2573
};

2574
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2575
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2576
{
2577
	void __iomem		*regs = cpsw->regs;
2578
	int			slave_num = slave->slave_num;
2579
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2580 2581

	slave->data	= data;
2582 2583
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2584
	slave->port_vlan = data->dual_emac_res_vlan;
2585 2586
}

2587
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2599
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2600 2601 2602 2603
		return -EINVAL;
	}
	data->slaves = prop;

2604
	if (of_property_read_u32(node, "active_slave", &prop)) {
2605
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2606
		return -EINVAL;
2607
	}
2608
	data->active_slave = prop;
2609

2610 2611 2612
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2613
	if (!data->slave_data)
2614
		return -ENOMEM;
2615 2616

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2617
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2618
		return -EINVAL;
2619 2620 2621 2622
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2623
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2624
		return -EINVAL;
2625 2626 2627 2628
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2629
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2630
		return -EINVAL;
2631 2632 2633 2634
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2635
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2636
		return -EINVAL;
2637 2638 2639
	}
	data->mac_control = prop;

2640 2641
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2642

2643 2644 2645 2646 2647 2648
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2649
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2650

2651
	for_each_available_child_of_node(node, slave_node) {
2652 2653
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2654 2655 2656
		int lenp;
		const __be32 *parp;

2657 2658 2659 2660
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2661 2662
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2663
		parp = of_get_property(slave_node, "phy_id", &lenp);
2664 2665 2666 2667 2668
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
				"slave[%d] using phy-handle=\"%s\"\n",
				i, slave_data->phy_node->full_name);
		} else if (of_phy_is_fixed_link(slave_node)) {
2669 2670 2671
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2672
			ret = of_phy_register_fixed_link(slave_node);
2673 2674 2675
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2676
				return ret;
2677
			}
2678
			slave_data->phy_node = of_node_get(slave_node);
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2698
			put_device(&mdio->dev);
2699
		} else {
2700 2701 2702
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2703
			goto no_phy_slave;
2704
		}
2705 2706 2707 2708 2709 2710 2711 2712
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2713
		mac_addr = of_get_mac_address(slave_node);
2714
		if (mac_addr) {
2715
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2716
		} else {
2717 2718 2719 2720
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2721
		}
2722
		if (data->dual_emac) {
2723
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2724
						 &prop)) {
2725
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2726
				slave_data->dual_emac_res_vlan = i+1;
2727 2728
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2729 2730 2731 2732 2733
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2734
		i++;
2735 2736
		if (i == data->slaves)
			break;
2737 2738 2739 2740 2741
	}

	return 0;
}

2742 2743
static void cpsw_remove_dt(struct platform_device *pdev)
{
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

2757 2758
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2759 2760 2761 2762 2763 2764 2765 2766

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2767 2768 2769
	of_platform_depopulate(&pdev->dev);
}

2770
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2771
{
2772 2773
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2774 2775
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2776
	int ret = 0;
2777

2778
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2779
	if (!ndev) {
2780
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2781 2782 2783 2784
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2785
	priv_sl2->cpsw = cpsw;
2786 2787 2788 2789 2790 2791 2792
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2793 2794
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2795 2796
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2797 2798
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2799 2800 2801 2802
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2803
	cpsw->slaves[1].ndev = ndev;
2804
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2805 2806

	ndev->netdev_ops = &cpsw_netdev_ops;
2807
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2808 2809

	/* register the network device */
2810
	SET_NETDEV_DEV(ndev, cpsw->dev);
2811 2812
	ret = register_netdev(ndev);
	if (ret) {
2813
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2814 2815 2816 2817 2818 2819 2820
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
#define CPSW_QUIRK_IRQ		BIT(0)

static struct platform_device_id cpsw_devtype[] = {
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2859
static int cpsw_probe(struct platform_device *pdev)
2860
{
2861
	struct clk			*clk;
2862
	struct cpsw_platform_data	*data;
2863 2864 2865 2866
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2867
	void __iomem			*ss_regs;
2868
	void __iomem			*cpts_regs;
2869
	struct resource			*res, *ss_res;
2870
	const struct of_device_id	*of_id;
2871
	struct gpio_descs		*mode;
2872
	u32 slave_offset, sliver_offset, slave_size;
2873
	struct cpsw_common		*cpsw;
2874 2875
	int ret = 0, i;
	int irq;
2876

2877
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2878 2879 2880
	if (!cpsw)
		return -ENOMEM;

2881
	cpsw->dev = &pdev->dev;
2882

2883
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2884
	if (!ndev) {
2885
		dev_err(&pdev->dev, "error allocating net_device\n");
2886 2887 2888 2889 2890
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2891
	priv->cpsw = cpsw;
2892 2893 2894
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2895
	cpsw->rx_packet_max = max(rx_packet_max, 128);
2896

2897 2898 2899 2900 2901 2902 2903
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2904 2905 2906 2907 2908
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2909 2910 2911
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2912 2913 2914 2915 2916 2917
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
2918
		goto clean_runtime_disable_ret;
2919
	}
2920

2921 2922
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2923
		goto clean_dt_ret;
2924

2925
	data = &cpsw->data;
2926 2927
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2928

2929 2930
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2931
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2932
	} else {
J
Joe Perches 已提交
2933
		eth_random_addr(priv->mac_addr);
2934
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2935 2936 2937 2938
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2939
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2940 2941
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2942
	if (!cpsw->slaves) {
2943
		ret = -ENOMEM;
2944
		goto clean_dt_ret;
2945 2946
	}
	for (i = 0; i < data->slaves; i++)
2947
		cpsw->slaves[i].slave_num = i;
2948

2949
	cpsw->slaves[0].ndev = ndev;
2950 2951
	priv->emac_port = 0;

2952 2953
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2954
		dev_err(priv->dev, "fck is not found\n");
2955
		ret = -ENODEV;
2956
		goto clean_dt_ret;
2957
	}
2958
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2959

2960 2961 2962 2963
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
2964
		goto clean_dt_ret;
2965
	}
2966
	cpsw->regs = ss_regs;
2967

2968
	cpsw->version = readl(&cpsw->regs->id_ver);
2969

2970
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2971 2972 2973
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
2974
		goto clean_dt_ret;
2975 2976 2977
	}

	memset(&dma_params, 0, sizeof(dma_params));
2978 2979
	memset(&ale_params, 0, sizeof(ale_params));

2980
	switch (cpsw->version) {
2981
	case CPSW_VERSION_1:
2982
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2983
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
2984
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2985 2986 2987 2988 2989 2990 2991 2992 2993
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
2994
	case CPSW_VERSION_3:
2995
	case CPSW_VERSION_4:
2996
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2997
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
2998
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2999 3000 3001 3002 3003 3004 3005
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3006
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3007 3008
		break;
	default:
3009
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3010
		ret = -ENODEV;
3011
		goto clean_dt_ret;
3012
	}
3013 3014 3015 3016
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3017 3018 3019 3020
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3021
	dma_params.dev		= &pdev->dev;
3022 3023 3024 3025 3026
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3027 3028 3029 3030 3031 3032 3033

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3034
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3035
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3036
	dma_params.descs_pool_size	= descs_pool_size;
3037

3038 3039
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3040 3041
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3042
		goto clean_dt_ret;
3043 3044
	}

3045 3046 3047
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

	ale_params.dev			= &ndev->dev;
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= data->slaves;

3058 3059
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3060 3061 3062 3063 3064
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3065
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3066 3067 3068 3069 3070
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
		goto clean_ale_ret;
	}

3071
	ndev->irq = platform_get_irq(pdev, 1);
3072 3073
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3074
		ret = ndev->irq;
3075 3076 3077
		goto clean_ale_ret;
	}

3078 3079 3080 3081
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
3082
			cpsw->quirk_irq = true;
3083 3084
	}

3085 3086 3087 3088 3089 3090 3091
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3092

3093
	/* RX IRQ */
3094
	irq = platform_get_irq(pdev, 1);
3095 3096
	if (irq < 0) {
		ret = irq;
3097
		goto clean_ale_ret;
3098
	}
3099

3100
	cpsw->irqs_table[0] = irq;
3101
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3102
			       0, dev_name(&pdev->dev), cpsw);
3103 3104 3105 3106 3107
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
	}

3108
	/* TX IRQ */
3109
	irq = platform_get_irq(pdev, 2);
3110 3111
	if (irq < 0) {
		ret = irq;
3112
		goto clean_ale_ret;
3113
	}
3114

3115
	cpsw->irqs_table[1] = irq;
3116
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3117
			       0, dev_name(&pdev->dev), cpsw);
3118 3119 3120
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
3121
	}
3122

3123
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3124 3125

	ndev->netdev_ops = &cpsw_netdev_ops;
3126
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3127 3128
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3129
	cpsw_split_res(ndev);
3130 3131 3132 3133 3134 3135 3136

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3137
		goto clean_ale_ret;
3138 3139
	}

3140 3141 3142
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3143
	if (cpsw->data.dual_emac) {
3144
		ret = cpsw_probe_dual_emac(priv);
3145 3146
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3147
			goto clean_unregister_netdev_ret;
3148 3149 3150
		}
	}

3151 3152
	pm_runtime_put(&pdev->dev);

3153 3154
	return 0;

3155 3156
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3157
clean_ale_ret:
3158
	cpsw_ale_destroy(cpsw->ale);
3159
clean_dma_ret:
3160
	cpdma_ctlr_destroy(cpsw->dma);
3161 3162
clean_dt_ret:
	cpsw_remove_dt(pdev);
3163
	pm_runtime_put_sync(&pdev->dev);
3164
clean_runtime_disable_ret:
3165
	pm_runtime_disable(&pdev->dev);
3166
clean_ndev_ret:
3167
	free_netdev(priv->ndev);
3168 3169 3170
	return ret;
}

B
Bill Pemberton 已提交
3171
static int cpsw_remove(struct platform_device *pdev)
3172 3173
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3174
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3175 3176 3177 3178 3179 3180 3181
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3182

3183 3184
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3185
	unregister_netdev(ndev);
3186

3187
	cpts_release(cpsw->cpts);
3188
	cpsw_ale_destroy(cpsw->ale);
3189
	cpdma_ctlr_destroy(cpsw->dma);
3190
	cpsw_remove_dt(pdev);
3191 3192
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3193 3194
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3195 3196 3197 3198
	free_netdev(ndev);
	return 0;
}

3199
#ifdef CONFIG_PM_SLEEP
3200 3201 3202 3203
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3204
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3205

3206
	if (cpsw->data.dual_emac) {
3207
		int i;
3208

3209 3210 3211
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3212 3213 3214 3215 3216
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3217

3218
	/* Select sleep pin state */
3219
	pinctrl_pm_select_sleep_state(dev);
3220

3221 3222 3223 3224 3225 3226 3227
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3228
	struct cpsw_common	*cpsw = netdev_priv(ndev);
3229

3230
	/* Select default pin state */
3231
	pinctrl_pm_select_default_state(dev);
3232

3233 3234
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3235
	if (cpsw->data.dual_emac) {
3236 3237
		int i;

3238 3239 3240
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3241 3242 3243 3244 3245
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3246 3247
	rtnl_unlock();

3248 3249
	return 0;
}
3250
#endif
3251

3252
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3253 3254 3255 3256 3257

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3258
		.of_match_table = cpsw_of_mtable,
3259 3260
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3261
	.remove = cpsw_remove,
3262 3263
};

3264
module_platform_driver(cpsw_driver);
3265 3266 3267 3268 3269

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");