cpsw.c 65.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
20
#include <linux/net_tstamp.h>
21
#include <linux/phy.h>
22
#include <linux/phy/phy.h>
23 24
#include <linux/workqueue.h>
#include <linux/delay.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/gpio/consumer.h>
27
#include <linux/of.h>
28
#include <linux/of_mdio.h>
29 30
#include <linux/of_net.h>
#include <linux/of_device.h>
31
#include <linux/if_vlan.h>
32
#include <linux/kmemleak.h>
33
#include <linux/sys_soc.h>
34

35
#include <linux/pinctrl/consumer.h>
36
#include <net/pkt_cls.h>
37

38
#include "cpsw.h"
39
#include "cpsw_ale.h"
40
#include "cpsw_priv.h"
41
#include "cpsw_sl.h"
42
#include "cpts.h"
43 44
#include "davinci_cpdma.h"

45 46
#include <net/pkt_sched.h>

47 48 49 50 51 52 53 54 55 56 57 58
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

59 60 61 62
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

63 64
#define for_each_slave(priv, func, arg...)				\
	do {								\
65
		struct cpsw_slave *slave;				\
66
		struct cpsw_common *cpsw = (priv)->cpsw;		\
67
		int n;							\
68 69
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
70
		else							\
71 72
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
73 74
					n; n--)				\
				(func)(slave++, ##arg);			\
75 76
	} while (0)

77 78 79
static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
				    __be16 proto, u16 vid);

80 81
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
82 83
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
84 85
	int i;

86
	if (cpsw->data.dual_emac) {
87 88 89 90 91 92
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
93 94
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

116
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
117
			for (i = 0; i <= cpsw->data.slaves; i++) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
134
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
135
			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
136 137 138 139 140

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
141
			/* Don't Flood All Unicast Packets to Host port */
142 143
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

144
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
145
			for (i = 0; i <= cpsw->data.slaves; i++) {
146 147 148 149 150 151 152 153 154 155
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

156 157 158 159 160 161 162 163 164 165
/**
 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
 * if it's not deleted
 * @ndev: device to sync
 * @addr: address to be added or deleted
 * @vid: vlan id, if vid < 0 set/unset address for real device
 * @add: add address if the flag is set or remove otherwise
 */
static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
		       int vid, int add)
166 167
{
	struct cpsw_priv *priv = netdev_priv(ndev);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	struct cpsw_common *cpsw = priv->cpsw;
	int mask, flags, ret;

	if (vid < 0) {
		if (cpsw->data.dual_emac)
			vid = cpsw->slaves[priv->emac_port].port_vlan;
		else
			vid = 0;
	}

	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
	flags = vid ? ALE_VLAN : 0;

	if (add)
		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
	else
		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);

	return ret;
}

static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0, ret = 0;

	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
	}

	if (found)
		sync_ctx->consumed++;

	if (sync_ctx->flush) {
		if (!found)
			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
		return 0;
	}

	if (found)
		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);

	return ret;
}

static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;
	int ret;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 0;

	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num && !ret)
		ret = cpsw_set_mc(ndev, addr, -1, 1);

	return ret;
}

static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 1;

	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed == num)
		cpsw_set_mc(ndev, addr, -1, 0);
250 251 252 253

	return 0;
}

254
static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
255
{
256 257 258
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0;
259

260 261 262 263 264 265 266 267 268
	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
269 270
	}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	if (!found)
		return 0;

	sync_ctx->consumed++;
	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
	return 0;
}

static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.consumed = 0;

	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num)
		cpsw_set_mc(ndev, addr, -1, 0);

291 292 293 294 295
	return 0;
}

static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
296 297 298 299 300 301
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_port = -1;

	if (cpsw->data.dual_emac)
		slave_port = priv->emac_port + 1;
302 303 304

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
305
		cpsw_set_promiscious(ndev, true);
306
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
307
		return;
308 309 310
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
311 312
	}

313
	/* Restore allmulti on vlans if necessary */
314 315
	cpsw_ale_set_allmulti(cpsw->ale,
			      ndev->flags & IFF_ALLMULTI, slave_port);
316

317 318 319
	/* add/remove mcast address either for real netdev or for vlan */
	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
			       cpsw_del_mc_addr);
320 321
}

322
void cpsw_intr_enable(struct cpsw_common *cpsw)
323
{
324 325
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
326

327
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
328 329 330
	return;
}

331
void cpsw_intr_disable(struct cpsw_common *cpsw)
332
{
333 334
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
335

336
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
337 338 339
	return;
}

340
void cpsw_tx_handler(void *token, int len, int status)
341
{
342
	struct netdev_queue	*txq;
343 344
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
345
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
346

347 348 349
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
350 351 352 353
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

354
	cpts_tx_timestamp(cpsw->cpts, skb);
355 356
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
357 358 359
	dev_kfree_skb_any(skb);
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	struct cpsw_common *cpsw = priv->cpsw;
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;
	/* Ignore default vlans in dual mac mode */
	if (cpsw->data.dual_emac &&
	    vid == cpsw->slaves[priv->emac_port].port_vlan)
		return;

	prio = (rx_vlan_encap_hdr >>
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

403
static void cpsw_rx_handler(void *token, int len, int status)
404
{
405
	struct cpdma_chan	*ch;
406
	struct sk_buff		*skb = token;
407
	struct sk_buff		*new_skb;
408
	struct net_device	*ndev = skb->dev;
409
	int			ret = 0, port;
410
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
411
	struct cpsw_priv	*priv;
412

413 414 415 416 417 418 419
	if (cpsw->data.dual_emac) {
		port = CPDMA_RX_SOURCE_PORT(status);
		if (port) {
			ndev = cpsw->slaves[--port].ndev;
			skb->dev = ndev;
		}
	}
420

421
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
422
		/* In dual emac mode check for all interfaces */
423
		if (cpsw->data.dual_emac && cpsw->usage_count &&
424
		    (status >= 0)) {
425 426
			/* The packet received is for the interface which
			 * is already down and the other interface is up
427
			 * and running, instead of freeing which results
428 429 430 431 432 433 434
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

435
		/* the interface is going down, skbs are purged */
436 437 438
		dev_kfree_skb_any(skb);
		return;
	}
439

440
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
441
	if (new_skb) {
442
		skb_copy_queue_mapping(new_skb, skb);
443
		skb_put(skb, len);
444 445
		if (status & CPDMA_RX_VLAN_ENCAP)
			cpsw_rx_vlan_encap(skb);
446 447 448
		priv = netdev_priv(ndev);
		if (priv->rx_ts_enabled)
			cpts_rx_timestamp(cpsw->cpts, skb);
449 450
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
451 452
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
453
		kmemleak_not_leak(new_skb);
454
	} else {
455
		ndev->stats.rx_dropped++;
456
		new_skb = skb;
457 458
	}

459
requeue:
460 461 462 463 464
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

465
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
466
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
467
				skb_tailroom(new_skb), 0);
468 469
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
470 471
}

472
void cpsw_split_res(struct cpsw_common *cpsw)
473
{
474
	u32 consumed_rate = 0, bigest_rate = 0;
475
	struct cpsw_vector *txv = cpsw->txv;
476
	int i, ch_weight, rlim_ch_num = 0;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
492 493 494 495
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
496
	} else {
497 498 499 500 501 502 503 504 505 506
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
507

508 509 510 511 512 513 514
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

515
	/* split tx weight/budget */
516 517 518 519 520 521
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
522
				txv[i].budget++;
523 524 525 526
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
527 528 529 530 531

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
532 533 534 535
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
536
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

557
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
558
{
559
	struct cpsw_common *cpsw = dev_id;
560

561
	writel(0, &cpsw->wr_regs->tx_en);
562
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
563

564 565 566
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
567 568
	}

569
	napi_schedule(&cpsw->napi_tx);
570 571 572 573 574
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
575
	struct cpsw_common *cpsw = dev_id;
576

577
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
578
	writel(0, &cpsw->wr_regs->rx_en);
579

580 581 582
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
583 584
	}

585
	napi_schedule(&cpsw->napi_rx);
586
	return IRQ_HANDLED;
587 588
}

589
static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
590
{
591
	u32			ch_map;
592
	int			num_tx, cur_budget, ch;
593
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
594
	struct cpsw_vector	*txv;
595

596 597
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
598 599
	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
		if (!(ch_map & 0x80))
600 601
			continue;

602 603 604 605 606 607 608
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
609 610
		if (num_tx >= budget)
			break;
611 612
	}

613 614
	if (num_tx < budget) {
		napi_complete(napi_tx);
615
		writel(0xff, &cpsw->wr_regs->tx_en);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	}

	return num_tx;
}

static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
631 632
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
633
		}
634 635 636 637 638
	}

	return num_tx;
}

639
static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
640
{
641
	u32			ch_map;
642
	int			num_rx, cur_budget, ch;
643
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
644
	struct cpsw_vector	*rxv;
645

646 647
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
648
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
649 650 651
		if (!(ch_map & 0x01))
			continue;

652 653 654 655 656 657 658
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
659 660
		if (num_rx >= budget)
			break;
661 662
	}

663
	if (num_rx < budget) {
664
		napi_complete_done(napi_rx, num_rx);
665
		writel(0xff, &cpsw->wr_regs->rx_en);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	}

	return num_rx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
681 682
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
683
		}
684 685 686 687 688 689 690 691 692
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

693
	writel_relaxed(1, reg);
694 695
	do {
		cpu_relax();
696
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
697

698
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
699 700 701 702 703
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
704 705
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
706 707
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = 7 << shift;
	val = val & mask;

	return !val;
}

static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = (1 << --fifo) << shift;
	val = on ? val | mask : val & ~mask;

	writel_relaxed(val, &cpsw->regs->ptype);
}

740 741 742 743 744 745
static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
746
	struct cpsw_common *cpsw = priv->cpsw;
747 748 749 750

	if (!phy)
		return;

751
	slave_port = cpsw_get_slave_port(slave->slave_num);
752 753

	if (phy->link) {
754
		mac_control = CPSW_SL_CTL_GMII_EN;
755 756

		if (phy->speed == 1000)
757
			mac_control |= CPSW_SL_CTL_GIG;
758
		if (phy->duplex)
759
			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
760 761 762

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
763
			mac_control |= CPSW_SL_CTL_IFCTL_A;
764 765
		/* in band mode only works in 10Mbps RGMII mode */
		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
766
			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
767

768
		if (priv->rx_pause)
769
			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
770 771

		if (priv->tx_pause)
772 773 774 775 776 777 778 779
			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;

		if (mac_control != slave->mac_control)
			cpsw_sl_ctl_set(slave->mac_sl, mac_control);

		/* enable forwarding */
		cpsw_ale_control_set(cpsw->ale, slave_port,
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
780

781
		*link = true;
782 783 784 785 786 787

		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed &&
		    !cpsw_shp_is_off(priv))
			dev_warn(priv->dev,
				 "Speed was changed, CBS shaper speeds are changed!");
788 789 790
	} else {
		mac_control = 0;
		/* disable forwarding */
791
		cpsw_ale_control_set(cpsw->ale, slave_port,
792
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
793 794 795 796

		cpsw_sl_wait_for_idle(slave->mac_sl, 100);

		cpsw_sl_ctl_reset(slave->mac_sl);
797 798
	}

799
	if (mac_control != slave->mac_control)
800 801 802 803 804
		phy_print_status(phy);

	slave->mac_control = mac_control;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

843 844 845
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
846
	struct cpsw_common	*cpsw = priv->cpsw;
847 848 849 850 851
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
852
		if (cpsw_need_resplit(cpsw))
853
			cpsw_split_res(cpsw);
854

855 856
		netif_carrier_on(ndev);
		if (netif_running(ndev))
857
			netif_tx_wake_all_queues(ndev);
858 859
	} else {
		netif_carrier_off(ndev);
860
		netif_tx_stop_all_queues(ndev);
861 862 863
	}
}

864 865 866 867
static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
868
	struct cpsw_common *cpsw = priv->cpsw;
869
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
870

871
	if (cpsw->version == CPSW_VERSION_1)
872 873 874
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
875
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
876
			  port_mask, port_mask, 0);
877
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
878
			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
879 880 881
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
882 883
	cpsw_ale_control_set(cpsw->ale, slave_port,
			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
884 885
}

886 887 888
static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
889
	struct phy_device *phy;
890
	struct cpsw_common *cpsw = priv->cpsw;
891

892 893
	cpsw_sl_reset(slave->mac_sl, 100);
	cpsw_sl_ctl_reset(slave->mac_sl);
894 895

	/* setup priority mapping */
896 897
	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
			  RX_PRIORITY_MAPPING);
898

899
	switch (cpsw->version) {
900 901
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
902 903 904 905 906 907
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
908 909
		break;
	case CPSW_VERSION_2:
910
	case CPSW_VERSION_3:
911
	case CPSW_VERSION_4:
912
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
913 914 915 916 917 918
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
919 920
		break;
	}
921 922

	/* setup max packet size, and mac address */
923 924
	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
			  cpsw->rx_packet_max);
925 926 927 928
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

929
	slave_port = cpsw_get_slave_port(slave->slave_num);
930

931
	if (cpsw->data.dual_emac)
932 933
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
934
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
935
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
936

937
	if (slave->data->phy_node) {
938
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
939
				 &cpsw_adjust_link, 0, slave->data->phy_if);
940
		if (!phy) {
941 942
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
943 944 945 946
				slave->slave_num);
			return;
		}
	} else {
947
		phy = phy_connect(priv->ndev, slave->data->phy_id,
948
				 &cpsw_adjust_link, slave->data->phy_if);
949
		if (IS_ERR(phy)) {
950 951 952
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
953
				PTR_ERR(phy));
954 955 956
			return;
		}
	}
957

958 959
	slave->phy = phy;

960
	phy_attached_info(slave->phy);
961

962 963 964
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
965 966 967 968 969 970
	if (!IS_ERR(slave->data->ifphy))
		phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
				 slave->data->phy_if);
	else
		cpsw_phy_sel(cpsw->dev, slave->phy->interface,
			     slave->slave_num);
971 972
}

973 974
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
975 976
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
977 978
	u32 reg;
	int i;
979
	int unreg_mcast_mask;
980

981
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
982 983
	       CPSW2_PORT_VLAN;

984
	writel(vlan, &cpsw->host_port_regs->port_vlan);
985

986 987
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
988

989 990 991 992 993
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

994
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
995 996
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
997 998
}

999 1000
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1001
	u32 fifo_mode;
1002 1003
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1004

1005
	/* soft reset the controller and initialize ale */
1006
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1007
	cpsw_ale_start(cpsw->ale);
1008 1009

	/* switch to vlan unaware mode */
1010
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1011
			     CPSW_ALE_VLAN_AWARE);
1012
	control_reg = readl(&cpsw->regs->control);
1013
	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1014
	writel(control_reg, &cpsw->regs->control);
1015
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1016
		     CPSW_FIFO_NORMAL_MODE;
1017
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1018 1019

	/* setup host port priority mapping */
1020 1021 1022
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1023

1024
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1025 1026
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1027
	if (!cpsw->data.dual_emac) {
1028
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1029
				   0, 0);
1030
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1031
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1032
	}
1033 1034
}

1035
int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1036 1037 1038 1039
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1040 1041 1042
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1043
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1044 1045 1046 1047 1048 1049 1050 1051
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1052

1053
			skb_set_queue_mapping(skb, ch);
1054 1055 1056
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1057 1058 1059 1060 1061 1062 1063 1064
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1065 1066
		}

1067 1068 1069
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1070

1071
	return 0;
1072 1073
}

1074
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1075
{
1076 1077
	u32 slave_port;

1078
	slave_port = cpsw_get_slave_port(slave->slave_num);
1079

1080 1081 1082 1083 1084
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1085
	cpsw_ale_control_set(cpsw->ale, slave_port,
1086
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1087 1088
	cpsw_sl_reset(slave->mac_sl, 100);
	cpsw_sl_ctl_reset(slave->mac_sl);
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098
static int cpsw_tc_to_fifo(int tc, int num_tc)
{
	if (tc == num_tc - 1)
		return 0;

	return CPSW_FIFO_SHAPERS_NUM - tc;
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 val = 0, send_pct, shift;
	struct cpsw_slave *slave;
	int pct = 0, i;

	if (bw > priv->shp_cfg_speed * 1000)
		goto err;

	/* shaping has to stay enabled for highest fifos linearly
	 * and fifo bw no more then interface can allow
	 */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	send_pct = slave_read(slave, SEND_PERCENT);
	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
		if (!bw) {
			if (i >= fifo || !priv->fifo_bw[i])
				continue;

			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
			continue;
		}

		if (!priv->fifo_bw[i] && i > fifo) {
			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
			return -EINVAL;
		}

		shift = (i - 1) * 8;
		if (i == fifo) {
			send_pct &= ~(CPSW_PCT_MASK << shift);
			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
			if (!val)
				val = 1;

			send_pct |= val << shift;
			pct += val;
			continue;
		}

		if (priv->fifo_bw[i])
			pct += (send_pct >> shift) & CPSW_PCT_MASK;
	}

	if (pct >= 100)
		goto err;

	slave_write(slave, send_pct, SEND_PERCENT);
	priv->fifo_bw[fifo] = bw;

	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));

	return 0;
err:
	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
	return -EINVAL;
}

static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 tx_in_ctl_rg, val;
	int ret;

	ret = cpsw_set_fifo_bw(priv, fifo, bw);
	if (ret)
		return ret;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;

	if (!bw)
		cpsw_fifo_shp_on(priv, fifo, bw);

	val = slave_read(slave, tx_in_ctl_rg);
	if (cpsw_shp_is_off(priv)) {
		/* disable FIFOs rate limited queues */
		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);

		/* set type of FIFO queues to normal priority mode */
		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);

		/* set type of FIFO queues to be rate limited */
		if (bw)
			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
		else
			priv->shp_cfg_speed = 0;
	}

	/* toggle a FIFO rate limited queue */
	if (bw)
		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	else
		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	slave_write(slave, val, tx_in_ctl_rg);

	/* FIFO transmit shape enable */
	cpsw_fifo_shp_on(priv, fifo, bw);
	return 0;
}

/* Defaults:
 * class A - prio 3
 * class B - prio 2
 * shaping for class A should be set first
 */
static int cpsw_set_cbs(struct net_device *ndev,
			struct tc_cbs_qopt_offload *qopt)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int prev_speed = 0;
	int tc, ret, fifo;
	u32 bw = 0;

	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);

	/* enable channels in backward order, as highest FIFOs must be rate
	 * limited first and for compliance with CPDMA rate limited channels
	 * that also used in bacward order. FIFO0 cannot be rate limited.
	 */
	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
	if (!fifo) {
		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
		return -EINVAL;
	}

	/* do nothing, it's disabled anyway */
	if (!qopt->enable && !priv->fifo_bw[fifo])
		return 0;

	/* shapers can be set if link speed is known */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	if (slave->phy && slave->phy->link) {
		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed)
			prev_speed = priv->shp_cfg_speed;

		priv->shp_cfg_speed = slave->phy->speed;
	}

	if (!priv->shp_cfg_speed) {
		dev_err(priv->dev, "Link speed is not known");
		return -1;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	bw = qopt->enable ? qopt->idleslope : 0;
	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
	if (ret) {
		priv->shp_cfg_speed = prev_speed;
		prev_speed = 0;
	}

	if (bw && prev_speed)
		dev_warn(priv->dev,
			 "Speed was changed, CBS shaper speeds are changed!");

	pm_runtime_put_sync(cpsw->dev);
	return ret;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	int fifo, bw;

	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
		bw = priv->fifo_bw[fifo];
		if (!bw)
			continue;

		cpsw_set_fifo_rlimit(priv, fifo, bw);
	}
}

static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 tx_prio_map = 0;
	int i, tc, fifo;
	u32 tx_prio_rg;

	if (!priv->mqprio_hw)
		return;

	for (i = 0; i < 8; i++) {
		tc = netdev_get_prio_tc_map(priv->ndev, i);
		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
		tx_prio_map |= fifo << (4 * i);
	}

	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave_write(slave, tx_prio_map, tx_prio_rg);
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
{
	struct cpsw_priv *priv = arg;

	if (!vdev)
		return 0;

	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
	return 0;
}

1317 1318 1319
/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
1320 1321 1322
	/* restore vlan configurations */
	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);

1323 1324 1325 1326 1327 1328 1329
	/* restore MQPRIO offload */
	for_each_slave(priv, cpsw_mqprio_resume, priv);

	/* restore CBS offload */
	for_each_slave(priv, cpsw_cbs_resume, priv);
}

1330 1331 1332
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1333
	struct cpsw_common *cpsw = priv->cpsw;
1334
	int ret;
1335 1336
	u32 reg;

1337
	ret = pm_runtime_get_sync(cpsw->dev);
1338
	if (ret < 0) {
1339
		pm_runtime_put_noidle(cpsw->dev);
1340 1341
		return ret;
	}
1342

1343 1344
	netif_carrier_off(ndev);

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1358
	reg = cpsw->version;
1359 1360 1361 1362 1363

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1364 1365
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1366
		cpsw_init_host_port(priv);
1367 1368
	for_each_slave(priv, cpsw_slave_open, priv);

1369
	/* Add default VLAN */
1370
	if (!cpsw->data.dual_emac)
1371 1372
		cpsw_add_default_vlan(priv);
	else
1373
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1374
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1375

1376 1377
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1378
		/* disable priority elevation */
1379
		writel_relaxed(0, &cpsw->regs->ptype);
1380

1381
		/* enable statistics collection only on all ports */
1382
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1383

1384
		/* Enable internal fifo flow control */
1385
		writel(0x7, &cpsw->regs->flow_control);
1386

1387 1388
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1389

1390 1391 1392
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1393 1394
		}

1395 1396 1397
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1398 1399
		}

1400 1401 1402
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1403

1404
		if (cpts_register(cpsw->cpts))
1405 1406
			dev_err(priv->dev, "error registering cpts device\n");

1407 1408
	}

1409 1410
	cpsw_restore(priv);

1411
	/* Enable Interrupt pacing if configured */
1412
	if (cpsw->coal_intvl != 0) {
1413 1414
		struct ethtool_coalesce coal;

1415
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1416 1417 1418
		cpsw_set_coalesce(ndev, &coal);
	}

1419 1420
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1421
	cpsw->usage_count++;
1422

1423 1424
	return 0;

1425
err_cleanup:
1426 1427 1428 1429 1430
	if (!cpsw->usage_count) {
		cpdma_ctlr_stop(cpsw->dma);
		for_each_slave(priv, cpsw_slave_stop, cpsw);
	}

1431
	pm_runtime_put_sync(cpsw->dev);
1432 1433
	netif_carrier_off(priv->ndev);
	return ret;
1434 1435 1436 1437 1438
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1439
	struct cpsw_common *cpsw = priv->cpsw;
1440 1441

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1442
	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
1443
	netif_tx_stop_all_queues(priv->ndev);
1444
	netif_carrier_off(priv->ndev);
1445

1446
	if (cpsw->usage_count <= 1) {
1447 1448
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1449
		cpts_unregister(cpsw->cpts);
1450 1451
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1452
		cpsw_ale_stop(cpsw->ale);
1453
	}
1454
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1455 1456

	if (cpsw_need_resplit(cpsw))
1457
		cpsw_split_res(cpsw);
1458

1459
	cpsw->usage_count--;
1460
	pm_runtime_put_sync(cpsw->dev);
1461 1462 1463 1464 1465 1466 1467
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1468
	struct cpsw_common *cpsw = priv->cpsw;
1469
	struct cpts *cpts = cpsw->cpts;
1470 1471 1472
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1473 1474 1475

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1476
		ndev->stats.tx_dropped++;
1477
		return NET_XMIT_DROP;
1478 1479
	}

1480
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1481
	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
1482 1483
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

1484 1485 1486 1487
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1488
	txch = cpsw->txv[q_idx].ch;
1489
	txq = netdev_get_tx_queue(ndev, q_idx);
1490 1491 1492
	skb_tx_timestamp(skb);
	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
				priv->emac_port + cpsw->data.dual_emac);
1493 1494 1495 1496 1497
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1498 1499 1500
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1501 1502
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
1503 1504 1505 1506 1507 1508

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
1509
	}
1510

1511 1512
	return NETDEV_TX_OK;
fail:
1513
	ndev->stats.tx_dropped++;
1514
	netif_tx_stop_queue(txq);
1515 1516 1517 1518 1519 1520 1521

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

1522 1523 1524
	return NETDEV_TX_BUSY;
}

1525
#if IS_ENABLED(CONFIG_TI_CPTS)
1526

1527
static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1528
{
1529
	struct cpsw_common *cpsw = priv->cpsw;
1530
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1531 1532
	u32 ts_en, seq_id;

1533
	if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
1534 1535 1536 1537 1538 1539 1540
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1541
	if (priv->tx_ts_enabled)
1542 1543
		ts_en |= CPSW_V1_TS_TX_EN;

1544
	if (priv->rx_ts_enabled)
1545 1546 1547 1548 1549 1550 1551 1552
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1553
	struct cpsw_slave *slave;
1554
	struct cpsw_common *cpsw = priv->cpsw;
1555 1556
	u32 ctrl, mtype;

1557
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1558

1559
	ctrl = slave_read(slave, CPSW2_CONTROL);
1560
	switch (cpsw->version) {
1561 1562
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1563

1564
		if (priv->tx_ts_enabled)
1565
			ctrl |= CTRL_V2_TX_TS_BITS;
1566

1567
		if (priv->rx_ts_enabled)
1568
			ctrl |= CTRL_V2_RX_TS_BITS;
1569
		break;
1570 1571 1572 1573
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1574
		if (priv->tx_ts_enabled)
1575 1576
			ctrl |= CTRL_V3_TX_TS_BITS;

1577
		if (priv->rx_ts_enabled)
1578
			ctrl |= CTRL_V3_RX_TS_BITS;
1579
		break;
1580
	}
1581 1582 1583 1584 1585

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1586
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1587
	writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
1588 1589
}

1590
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1591
{
1592
	struct cpsw_priv *priv = netdev_priv(dev);
1593
	struct hwtstamp_config cfg;
1594
	struct cpsw_common *cpsw = priv->cpsw;
1595

1596 1597 1598
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1599 1600
		return -EOPNOTSUPP;

1601 1602 1603 1604 1605 1606 1607
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1608
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1609 1610 1611 1612
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1613
		priv->rx_ts_enabled = 0;
1614 1615
		break;
	case HWTSTAMP_FILTER_ALL:
1616 1617
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
1618 1619 1620
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1621
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1622 1623
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
1624 1625 1626 1627 1628 1629 1630 1631 1632
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1633
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
1634 1635 1636 1637 1638 1639
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1640
	priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
1641

1642
	switch (cpsw->version) {
1643
	case CPSW_VERSION_1:
1644
		cpsw_hwtstamp_v1(priv);
1645 1646
		break;
	case CPSW_VERSION_2:
1647
	case CPSW_VERSION_3:
1648 1649 1650
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1651
		WARN_ON(1);
1652 1653 1654 1655 1656
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1657 1658
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1659
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1660
	struct cpsw_priv *priv = netdev_priv(dev);
1661 1662
	struct hwtstamp_config cfg;

1663 1664 1665
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1666 1667 1668
		return -EOPNOTSUPP;

	cfg.flags = 0;
1669 1670
	cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = priv->rx_ts_enabled;
1671 1672 1673

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1674 1675 1676 1677 1678
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1679

1680 1681 1682 1683
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1684 1685 1686 1687
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1688
	struct cpsw_priv *priv = netdev_priv(dev);
1689 1690
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1691

1692 1693 1694
	if (!netif_running(dev))
		return -EINVAL;

1695 1696
	switch (cmd) {
	case SIOCSHWTSTAMP:
1697 1698 1699
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1700 1701
	}

1702
	if (!cpsw->slaves[slave_no].phy)
1703
		return -EOPNOTSUPP;
1704
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1705 1706
}

1707 1708 1709
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1710
	struct cpsw_common *cpsw = priv->cpsw;
1711
	int ch;
1712 1713

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1714
	ndev->stats.tx_errors++;
1715
	cpsw_intr_disable(cpsw);
1716
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1717 1718
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1719 1720
	}

1721
	cpsw_intr_enable(cpsw);
1722 1723
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
1724 1725
}

1726 1727 1728 1729
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1730
	struct cpsw_common *cpsw = priv->cpsw;
1731 1732
	int flags = 0;
	u16 vid = 0;
1733
	int ret;
1734 1735 1736 1737

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1738
	ret = pm_runtime_get_sync(cpsw->dev);
1739
	if (ret < 0) {
1740
		pm_runtime_put_noidle(cpsw->dev);
1741 1742 1743
		return ret;
	}

1744 1745
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1746 1747 1748
		flags = ALE_VLAN;
	}

1749
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1750
			   flags, vid);
1751
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1752 1753 1754 1755 1756 1757
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1758
	pm_runtime_put(cpsw->dev);
1759

1760 1761 1762
	return 0;
}

1763 1764 1765 1766
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1767
	int unreg_mcast_mask = 0;
1768
	int mcast_mask;
1769
	u32 port_mask;
1770
	struct cpsw_common *cpsw = priv->cpsw;
1771

1772
	if (cpsw->data.dual_emac) {
1773
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1774

1775
		mcast_mask = ALE_PORT_HOST;
1776
		if (priv->ndev->flags & IFF_ALLMULTI)
1777
			unreg_mcast_mask = mcast_mask;
1778 1779
	} else {
		port_mask = ALE_ALL_PORTS;
1780
		mcast_mask = port_mask;
1781 1782 1783 1784 1785 1786

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1787

1788
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1789
				unreg_mcast_mask);
1790 1791 1792
	if (ret != 0)
		return ret;

1793
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1794
				 HOST_PORT_NUM, ALE_VLAN, vid);
1795 1796 1797
	if (ret != 0)
		goto clean_vid;

1798
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1799
				 mcast_mask, ALE_VLAN, vid, 0);
1800 1801 1802 1803 1804
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1805
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1806
			   HOST_PORT_NUM, ALE_VLAN, vid);
1807
clean_vid:
1808
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1809 1810 1811 1812
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1813
				    __be16 proto, u16 vid)
1814 1815
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1816
	struct cpsw_common *cpsw = priv->cpsw;
1817
	int ret;
1818

1819
	if (vid == cpsw->data.default_vlan)
1820 1821
		return 0;

1822
	ret = pm_runtime_get_sync(cpsw->dev);
1823
	if (ret < 0) {
1824
		pm_runtime_put_noidle(cpsw->dev);
1825 1826 1827
		return ret;
	}

1828
	if (cpsw->data.dual_emac) {
1829 1830 1831 1832 1833 1834
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1835
		for (i = 0; i < cpsw->data.slaves; i++) {
1836 1837 1838 1839
			if (vid == cpsw->slaves[i].port_vlan) {
				ret = -EINVAL;
				goto err;
			}
1840 1841 1842
		}
	}

1843
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1844
	ret = cpsw_add_vlan_ale_entry(priv, vid);
1845
err:
1846
	pm_runtime_put(cpsw->dev);
1847
	return ret;
1848 1849 1850
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1851
				     __be16 proto, u16 vid)
1852 1853
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1854
	struct cpsw_common *cpsw = priv->cpsw;
1855 1856
	int ret;

1857
	if (vid == cpsw->data.default_vlan)
1858 1859
		return 0;

1860
	ret = pm_runtime_get_sync(cpsw->dev);
1861
	if (ret < 0) {
1862
		pm_runtime_put_noidle(cpsw->dev);
1863 1864 1865
		return ret;
	}

1866
	if (cpsw->data.dual_emac) {
1867 1868
		int i;

1869 1870
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1871
				goto err;
1872 1873 1874
		}
	}

1875
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1876
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1877 1878 1879 1880
	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
				  HOST_PORT_NUM, ALE_VLAN, vid);
	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
				  0, ALE_VLAN, vid);
1881
	ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
1882
err:
1883
	pm_runtime_put(cpsw->dev);
1884
	return ret;
1885 1886
}

1887 1888 1889 1890
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
1891
	struct cpsw_slave *slave;
1892
	u32 min_rate;
1893
	u32 ch_rate;
1894
	int i, ret;
1895 1896 1897 1898 1899

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

1900 1901 1902 1903 1904
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
1905 1906 1907
		return -EINVAL;
	}

1908
	if (rate > cpsw->speed) {
1909
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
1910 1911 1912 1913 1914 1915 1916 1917 1918
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

1919 1920
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
1921

1922 1923
	if (ret)
		return ret;
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

1934
	cpsw_split_res(cpsw);
1935 1936 1937
	return ret;
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
	struct tc_mqprio_qopt_offload *mqprio = type_data;
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int fifo, num_tc, count, offset;
	struct cpsw_slave *slave;
	u32 tx_prio_map = 0;
	int i, tc, ret;

	num_tc = mqprio->qopt.num_tc;
	if (num_tc > CPSW_TC_NUM)
		return -EINVAL;

	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
		return -EINVAL;

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	if (num_tc) {
		for (i = 0; i < 8; i++) {
			tc = mqprio->qopt.prio_tc_map[i];
			fifo = cpsw_tc_to_fifo(tc, num_tc);
			tx_prio_map |= fifo << (4 * i);
		}

		netdev_set_num_tc(ndev, num_tc);
		for (i = 0; i < num_tc; i++) {
			count = mqprio->qopt.count[i];
			offset = mqprio->qopt.offset[i];
			netdev_set_tc_queue(ndev, i, count, offset);
		}
	}

	if (!mqprio->qopt.hw) {
		/* restore default configuration */
		netdev_reset_tc(ndev);
		tx_prio_map = TX_PRIORITY_MAPPING;
	}

	priv->mqprio_hw = mqprio->qopt.hw;

	offset = cpsw->version == CPSW_VERSION_1 ?
		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	slave_write(slave, tx_prio_map, offset);

	pm_runtime_put_sync(cpsw->dev);

	return 0;
}

static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			     void *type_data)
{
	switch (type) {
1999 2000 2001
	case TC_SETUP_QDISC_CBS:
		return cpsw_set_cbs(ndev, type_data);

2002 2003 2004 2005 2006 2007 2008 2009
	case TC_SETUP_QDISC_MQPRIO:
		return cpsw_set_mqprio(ndev, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
}
#endif

2022 2023 2024 2025
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2026
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2027
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2028 2029
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2030
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2031
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2032 2033 2034
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2035 2036
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2037
	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2038 2039 2040 2041 2042
};

static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2043
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2044
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2045

2046
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2047
	strlcpy(info->version, "1.0", sizeof(info->version));
2048
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2049 2050
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2064 2065 2066
static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
2067
	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
2068 2069
}

2070 2071 2072 2073 2074
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2075
	.get_ts_info	= cpsw_get_ts_info,
2076 2077
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2078 2079 2080
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2081 2082
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2083 2084
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2085 2086
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2087 2088
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2089 2090
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2091 2092
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2093 2094
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2095
	.nway_reset	= cpsw_nway_reset,
2096 2097
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2098 2099
};

2100
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2112
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2113 2114 2115 2116
		return -EINVAL;
	}
	data->slaves = prop;

2117
	if (of_property_read_u32(node, "active_slave", &prop)) {
2118
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2119
		return -EINVAL;
2120
	}
2121
	data->active_slave = prop;
2122

2123 2124 2125
	data->slave_data = devm_kcalloc(&pdev->dev,
					data->slaves,
					sizeof(struct cpsw_slave_data),
2126
					GFP_KERNEL);
2127
	if (!data->slave_data)
2128
		return -ENOMEM;
2129 2130

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2131
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2132
		return -EINVAL;
2133 2134 2135 2136
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2137
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2138
		return -EINVAL;
2139 2140 2141 2142
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2143
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2144
		return -EINVAL;
2145 2146 2147 2148
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2149
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2150
		return -EINVAL;
2151 2152 2153
	}
	data->mac_control = prop;

2154 2155
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2156

2157 2158 2159 2160 2161 2162
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2163
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2164

2165
	for_each_available_child_of_node(node, slave_node) {
2166 2167
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2168 2169 2170
		int lenp;
		const __be32 *parp;

2171
		/* This is no slave child node, continue */
2172
		if (!of_node_name_eq(slave_node, "slave"))
2173 2174
			continue;

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
		slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
						    NULL);
		if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
		    IS_ERR(slave_data->ifphy)) {
			ret = PTR_ERR(slave_data->ifphy);
			dev_err(&pdev->dev,
				"%d: Error retrieving port phy: %d\n", i, ret);
			return ret;
		}

2185 2186
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2187
		parp = of_get_property(slave_node, "phy_id", &lenp);
2188 2189
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
2190 2191
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
2192
		} else if (of_phy_is_fixed_link(slave_node)) {
2193 2194 2195
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2196
			ret = of_phy_register_fixed_link(slave_node);
2197 2198 2199
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2200
				return ret;
2201
			}
2202
			slave_data->phy_node = of_node_get(slave_node);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2222
			put_device(&mdio->dev);
2223
		} else {
2224 2225 2226
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2227
			goto no_phy_slave;
2228
		}
2229 2230 2231 2232 2233 2234 2235 2236
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2237
		mac_addr = of_get_mac_address(slave_node);
2238
		if (!IS_ERR(mac_addr)) {
2239
			ether_addr_copy(slave_data->mac_addr, mac_addr);
2240
		} else {
2241 2242 2243 2244
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2245
		}
2246
		if (data->dual_emac) {
2247
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2248
						 &prop)) {
2249
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2250
				slave_data->dual_emac_res_vlan = i+1;
2251 2252
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2253 2254 2255 2256 2257
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2258
		i++;
2259 2260
		if (i == data->slaves)
			break;
2261 2262 2263 2264 2265
	}

	return 0;
}

2266 2267
static void cpsw_remove_dt(struct platform_device *pdev)
{
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

2278
		if (!of_node_name_eq(slave_node, "slave"))
2279 2280
			continue;

2281 2282
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2283 2284 2285 2286 2287 2288 2289 2290

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2291 2292 2293
	of_platform_depopulate(&pdev->dev);
}

2294
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2295
{
2296 2297
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2298 2299
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2300
	int ret = 0;
2301

2302 2303
	ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
2304
	if (!ndev) {
2305
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2306 2307 2308 2309
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2310
	priv_sl2->cpsw = cpsw;
2311 2312 2313 2314 2315 2316 2317
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2318 2319
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2320
	} else {
2321
		eth_random_addr(priv_sl2->mac_addr);
2322 2323
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2324 2325 2326 2327
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2328
	cpsw->slaves[1].ndev = ndev;
2329
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2330 2331

	ndev->netdev_ops = &cpsw_netdev_ops;
2332
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2333 2334

	/* register the network device */
2335
	SET_NETDEV_DEV(ndev, cpsw->dev);
2336
	ret = register_netdev(ndev);
2337
	if (ret)
2338
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2339 2340 2341 2342

	return ret;
}

2343
static const struct of_device_id cpsw_of_mtable[] = {
2344 2345 2346 2347
	{ .compatible = "ti,cpsw"},
	{ .compatible = "ti,am335x-cpsw"},
	{ .compatible = "ti,am4372-cpsw"},
	{ .compatible = "ti,dra7-cpsw"},
2348 2349 2350 2351
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

2352 2353 2354 2355 2356
static const struct soc_device_attribute cpsw_soc_devices[] = {
	{ .family = "AM33xx", .revision = "ES1.0"},
	{ /* sentinel */ }
};

B
Bill Pemberton 已提交
2357
static int cpsw_probe(struct platform_device *pdev)
2358
{
2359
	struct device			*dev = &pdev->dev;
2360
	struct clk			*clk;
2361
	struct cpsw_platform_data	*data;
2362 2363
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
2364 2365
	void __iomem			*ss_regs;
	struct resource			*res, *ss_res;
2366
	struct gpio_descs		*mode;
2367
	const struct soc_device_attribute *soc;
2368
	struct cpsw_common		*cpsw;
2369
	int ret = 0, ch;
2370
	int irq;
2371

2372
	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
2373 2374 2375
	if (!cpsw)
		return -ENOMEM;

2376
	cpsw->dev = dev;
2377

2378
	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
2379 2380
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
2381
		dev_err(dev, "gpio request failed, ret %d\n", ret);
2382
		return ret;
2383 2384
	}

2385 2386
	clk = devm_clk_get(dev, "fck");
	if (IS_ERR(clk)) {
2387
		ret = PTR_ERR(clk);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
		dev_err(dev, "fck is not found %d\n", ret);
		return ret;
	}
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;

	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(dev, ss_res);
	if (IS_ERR(ss_regs))
		return PTR_ERR(ss_regs);
	cpsw->regs = ss_regs;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	cpsw->wr_regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(cpsw->wr_regs))
		return PTR_ERR(cpsw->wr_regs);

	/* RX IRQ */
	irq = platform_get_irq(pdev, 1);
	if (irq < 0)
		return irq;
	cpsw->irqs_table[0] = irq;

	/* TX IRQ */
	irq = platform_get_irq(pdev, 2);
	if (irq < 0)
		return irq;
	cpsw->irqs_table[1] = irq;

2416 2417 2418
	/*
	 * This may be required here for child devices.
	 */
2419
	pm_runtime_enable(dev);
2420

2421 2422 2423
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
2424
	ret = pm_runtime_get_sync(dev);
2425
	if (ret < 0) {
2426
		pm_runtime_put_noidle(dev);
2427
		goto clean_runtime_disable_ret;
2428
	}
2429

2430 2431
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2432
		goto clean_dt_ret;
2433

2434 2435 2436
	soc = soc_device_match(cpsw_soc_devices);
	if (soc)
		cpsw->quirk_irq = 1;
2437

2438
	data = &cpsw->data;
2439
	cpsw->slaves = devm_kcalloc(dev,
2440
				    data->slaves, sizeof(struct cpsw_slave),
2441
				    GFP_KERNEL);
2442
	if (!cpsw->slaves) {
2443
		ret = -ENOMEM;
2444
		goto clean_dt_ret;
2445 2446
	}

2447
	cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
2448
	cpsw->descs_pool_size = descs_pool_size;
2449

2450 2451 2452 2453
	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
			       ss_res->start + CPSW2_BD_OFFSET,
			       descs_pool_size);
	if (ret)
2454
		goto clean_dt_ret;
2455

2456 2457
	ch = cpsw->quirk_irq ? 0 : 7;
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
2458
	if (IS_ERR(cpsw->txv[0].ch)) {
2459
		dev_err(dev, "error initializing tx dma channel\n");
2460
		ret = PTR_ERR(cpsw->txv[0].ch);
2461
		goto clean_cpts;
2462 2463
	}

2464
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2465
	if (IS_ERR(cpsw->rxv[0].ch)) {
2466
		dev_err(dev, "error initializing rx dma channel\n");
2467
		ret = PTR_ERR(cpsw->rxv[0].ch);
2468
		goto clean_cpts;
2469
	}
2470
	cpsw_split_res(cpsw);
2471

2472 2473 2474 2475 2476 2477
	/* setup netdev */
	ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
	if (!ndev) {
		dev_err(dev, "error allocating net_device\n");
		goto clean_cpts;
2478 2479
	}

2480 2481 2482 2483 2484 2485 2486
	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
	priv->cpsw = cpsw;
	priv->ndev = ndev;
	priv->dev  = dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
	priv->emac_port = 0;
2487

2488 2489 2490 2491 2492 2493
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
		dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
	} else {
		eth_random_addr(priv->mac_addr);
		dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
2494 2495
	}

2496 2497 2498 2499
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

	cpsw->slaves[0].ndev = ndev;

2500
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2501 2502 2503

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2504 2505 2506 2507 2508 2509
	netif_napi_add(ndev, &cpsw->napi_rx,
		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
		       CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx,
			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
			  CPSW_POLL_WEIGHT);
2510 2511

	/* register the network device */
2512
	SET_NETDEV_DEV(ndev, dev);
2513 2514
	ret = register_netdev(ndev);
	if (ret) {
2515
		dev_err(dev, "error registering net device\n");
2516
		ret = -ENODEV;
2517
		goto clean_cpts;
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

2528 2529 2530 2531 2532 2533 2534
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
2535
	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
2536
			       0, dev_name(dev), cpsw);
2537
	if (ret < 0) {
2538
		dev_err(dev, "error attaching irq (%d)\n", ret);
2539
		goto clean_unregister_netdev_ret;
2540 2541 2542
	}


2543
	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
2544
			       0, dev_name(&pdev->dev), cpsw);
2545
	if (ret < 0) {
2546
		dev_err(dev, "error attaching irq (%d)\n", ret);
2547
		goto clean_unregister_netdev_ret;
2548
	}
2549

2550 2551
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
2552
		    &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
2553

2554 2555
	pm_runtime_put(&pdev->dev);

2556 2557
	return 0;

2558 2559
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
2560 2561
clean_cpts:
	cpts_release(cpsw->cpts);
2562
	cpdma_ctlr_destroy(cpsw->dma);
2563 2564
clean_dt_ret:
	cpsw_remove_dt(pdev);
2565
	pm_runtime_put_sync(&pdev->dev);
2566
clean_runtime_disable_ret:
2567
	pm_runtime_disable(&pdev->dev);
2568 2569 2570
	return ret;
}

B
Bill Pemberton 已提交
2571
static int cpsw_remove(struct platform_device *pdev)
2572 2573
{
	struct net_device *ndev = platform_get_drvdata(pdev);
2574
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2575 2576 2577 2578 2579 2580 2581
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
2582

2583 2584
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
2585
	unregister_netdev(ndev);
2586

2587
	cpts_release(cpsw->cpts);
2588
	cpdma_ctlr_destroy(cpsw->dma);
2589
	cpsw_remove_dt(pdev);
2590 2591
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
2592 2593 2594
	return 0;
}

2595
#ifdef CONFIG_PM_SLEEP
2596 2597
static int cpsw_suspend(struct device *dev)
{
2598
	struct net_device	*ndev = dev_get_drvdata(dev);
2599
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2600

2601
	if (cpsw->data.dual_emac) {
2602
		int i;
2603

2604 2605 2606
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
2607 2608 2609 2610 2611
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
2612

2613
	/* Select sleep pin state */
2614
	pinctrl_pm_select_sleep_state(dev);
2615

2616 2617 2618 2619 2620
	return 0;
}

static int cpsw_resume(struct device *dev)
{
2621
	struct net_device	*ndev = dev_get_drvdata(dev);
2622
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2623

2624
	/* Select default pin state */
2625
	pinctrl_pm_select_default_state(dev);
2626

2627 2628
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
2629
	if (cpsw->data.dual_emac) {
2630 2631
		int i;

2632 2633 2634
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
2635 2636 2637 2638 2639
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
2640 2641
	rtnl_unlock();

2642 2643
	return 0;
}
2644
#endif
2645

2646
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2647 2648 2649 2650 2651

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
2652
		.of_match_table = cpsw_of_mtable,
2653 2654
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
2655
	.remove = cpsw_remove,
2656 2657
};

2658
module_platform_driver(cpsw_driver);
2659 2660 2661 2662 2663

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");