cpsw.c 96.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio/consumer.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38
#include <linux/kmemleak.h>
39
#include <linux/sys_soc.h>
40

41
#include <linux/pinctrl/consumer.h>
42
#include <net/pkt_cls.h>
43

44
#include "cpsw.h"
45
#include "cpsw_ale.h"
46
#include "cpts.h"
47 48
#include "davinci_cpdma.h"

49 50
#include <net/pkt_sched.h>

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

84 85
#define ALE_ALL_PORTS		0x7

86 87 88 89
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

90 91
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
92
#define CPSW_VERSION_3		0x19010f
93
#define CPSW_VERSION_4		0x190112
94 95

#define HOST_PORT_NUM		0
96
#define CPSW_ALE_PORTS_NUM	3
97 98 99 100 101 102 103
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
104
#define CPSW1_HW_STATS		0x400
105 106 107 108 109 110 111 112
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
113
#define CPSW2_HW_STATS		0x900
114 115 116 117 118 119
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

120 121 122 123 124 125 126 127
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
128
#define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
129
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
130 131 132
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
				 ETH_FCS_LEN +\
				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133 134 135

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
136
#define CPDMA_TX_PRIORITY_MAP	0x76543210
137

138
#define CPSW_VLAN_AWARE		BIT(1)
139
#define CPSW_RX_VLAN_ENCAP	BIT(2)
140 141
#define CPSW_ALE_VLAN_AWARE	1

142 143 144
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
145

146 147 148 149 150 151 152
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

153 154 155
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
156
#define IRQ_NUM			2
157
#define CPSW_MAX_QUEUES		8
158
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 160 161
#define CPSW_FIFO_QUEUE_TYPE_SHIFT	16
#define CPSW_FIFO_SHAPE_EN_SHIFT	16
#define CPSW_FIFO_RATE_EN_SHIFT		20
162 163
#define CPSW_TC_NUM			4
#define CPSW_FIFO_SHAPERS_NUM		(CPSW_TC_NUM - 1)
164
#define CPSW_PCT_MASK			0x7f
165

166 167 168 169 170 171 172 173 174 175 176 177
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
#define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
enum {
	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
};

178 179 180 181 182 183 184 185 186 187 188 189
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

190 191 192 193
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

194
struct cpsw_wr_regs {
195 196 197 198 199 200 201 202
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
203 204 205 206 207 208 209 210 211
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

212 213
};

214
struct cpsw_ss_regs {
215 216 217 218 219
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
220 221 222 223 224 225 226 227
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
228 229
};

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
265 266 267 268
#define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
269
#define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
270 271 272 273 274 275 276 277 278 279 280 281 282
#define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
#define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
#define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
#define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
#define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
283

284 285 286
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
287

288 289 290 291 292 293
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
294
	(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295 296 297 298 299 300
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
301 302 303 304 305 306 307 308 309

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310

311 312 313 314 315 316 317 318
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

319 320 321 322
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

323 324 325
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
326
	u32	tx_in_ctl;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
struct cpsw_slave_data {
	struct device_node *phy_node;
	char		phy_id[MII_BUS_ID_SIZE];
	int		phy_if;
	u8		mac_addr[ETH_ALEN];
	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
};

struct cpsw_platform_data {
	struct cpsw_slave_data	*slave_data;
	u32	ss_reg_ofs;	/* Subsystem control register offset */
	u32	channels;	/* number of cpdma channels (symmetric) */
	u32	slaves;		/* number of slave cpgmac ports */
	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
	u32	ale_entries;	/* ale table size */
	u32	bd_ram_size;  /*buffer descriptor ram size */
	u32	mac_control;	/* Mac control register */
	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
	bool	dual_emac;	/* Enable Dual EMAC mode */
};

405
struct cpsw_slave {
406
	void __iomem			*regs;
407 408 409 410 411
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
412 413
	struct net_device		*ndev;
	u32				port_vlan;
414 415
};

416 417
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
418
	return readl_relaxed(slave->regs + offset);
419 420 421 422
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
423
	writel_relaxed(val, slave->regs + offset);
424 425
}

426 427 428 429 430
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

431
struct cpsw_common {
432
	struct device			*dev;
433
	struct cpsw_platform_data	data;
434 435
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
436 437 438 439
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
440 441 442 443
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
444
	struct cpsw_slave		*slaves;
445
	struct cpdma_ctlr		*dma;
446 447
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
448
	struct cpsw_ale			*ale;
449 450 451 452
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
453
	struct cpts			*cpts;
454
	int				rx_ch_num, tx_ch_num;
455
	int				speed;
456
	int				usage_count;
457 458 459
};

struct cpsw_priv {
460 461 462 463
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
464 465
	bool				rx_pause;
	bool				tx_pause;
466
	bool				mqprio_hw;
467 468
	int				fifo_bw[CPSW_TC_NUM];
	int				shp_cfg_speed;
469
	u32 emac_port;
470
	struct cpsw_common *cpsw;
471 472
};

473 474 475 476 477 478 479 480 481 482 483 484 485 486
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
487
				FIELD_SIZEOF(struct cpsw_hw_stats, m), \
488 489
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
490
				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
491 492
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
493
				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
551

552
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
553
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
554 555
#define for_each_slave(priv, func, arg...)				\
	do {								\
556
		struct cpsw_slave *slave;				\
557
		struct cpsw_common *cpsw = (priv)->cpsw;		\
558
		int n;							\
559 560
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
561
		else							\
562 563
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
564 565
					n; n--)				\
				(func)(slave++, ##arg);			\
566 567
	} while (0)

568
static inline int cpsw_get_slave_port(u32 slave_num)
569
{
570
	return slave_num + 1;
571
}
572

573
static void cpsw_add_mcast(struct cpsw_priv *priv, const u8 *addr)
574 575 576 577 578 579
{
	struct cpsw_common *cpsw = priv->cpsw;

	if (cpsw->data.dual_emac) {
		struct cpsw_slave *slave = cpsw->slaves + priv->emac_port;

580
		cpsw_ale_add_mcast(cpsw->ale, addr, ALE_PORT_HOST,
581 582 583 584 585 586 587
				   ALE_VLAN, slave->port_vlan, 0);
		return;
	}

	cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0);
}

588 589
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
590 591
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
592 593
	int i;

594
	if (cpsw->data.dual_emac) {
595 596 597 598 599 600
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
601 602
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

624
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
625
			for (i = 0; i <= cpsw->data.slaves; i++) {
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
642
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
643
			__dev_mc_unsync(ndev, NULL);
644 645 646 647 648

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
649
			/* Don't Flood All Unicast Packets to Host port */
650 651
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

652
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
653
			for (i = 0; i <= cpsw->data.slaves; i++) {
654 655 656 657 658 659 660 661 662 663
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

664 665 666 667 668 669 670 671 672
static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	cpsw_add_mcast(priv, addr);
	return 0;
}

static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr)
673 674
{
	struct cpsw_priv *priv = netdev_priv(ndev);
675
	struct cpsw_common *cpsw = priv->cpsw;
676
	int vid, flags;
677

678
	if (cpsw->data.dual_emac) {
679
		vid = cpsw->slaves[priv->emac_port].port_vlan;
680 681 682 683 684 685 686 687 688 689 690 691 692
		flags = ALE_VLAN;
	} else {
		vid = 0;
		flags = 0;
	}

	cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
	return 0;
}

static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
693 694 695

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
696
		cpsw_set_promiscious(ndev, true);
697
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
698
		return;
699 700 701
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
702 703
	}

704
	/* Restore allmulti on vlans if necessary */
705
	cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI);
706

707
	__dev_mc_sync(ndev, cpsw_add_mc_addr, cpsw_del_mc_addr);
708 709
}

710
static void cpsw_intr_enable(struct cpsw_common *cpsw)
711
{
712 713
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
714

715
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
716 717 718
	return;
}

719
static void cpsw_intr_disable(struct cpsw_common *cpsw)
720
{
721 722
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
723

724
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
725 726 727
	return;
}

728
static void cpsw_tx_handler(void *token, int len, int status)
729
{
730
	struct netdev_queue	*txq;
731 732
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
733
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
734

735 736 737
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
738 739 740 741
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

742
	cpts_tx_timestamp(cpsw->cpts, skb);
743 744
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
745 746 747
	dev_kfree_skb_any(skb);
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	struct cpsw_common *cpsw = priv->cpsw;
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;
	/* Ignore default vlans in dual mac mode */
	if (cpsw->data.dual_emac &&
	    vid == cpsw->slaves[priv->emac_port].port_vlan)
		return;

	prio = (rx_vlan_encap_hdr >>
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

791
static void cpsw_rx_handler(void *token, int len, int status)
792
{
793
	struct cpdma_chan	*ch;
794
	struct sk_buff		*skb = token;
795
	struct sk_buff		*new_skb;
796
	struct net_device	*ndev = skb->dev;
797
	int			ret = 0, port;
798
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
799

800 801 802 803 804 805 806
	if (cpsw->data.dual_emac) {
		port = CPDMA_RX_SOURCE_PORT(status);
		if (port) {
			ndev = cpsw->slaves[--port].ndev;
			skb->dev = ndev;
		}
	}
807

808
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
809
		/* In dual emac mode check for all interfaces */
810
		if (cpsw->data.dual_emac && cpsw->usage_count &&
811
		    (status >= 0)) {
812 813
			/* The packet received is for the interface which
			 * is already down and the other interface is up
814
			 * and running, instead of freeing which results
815 816 817 818 819 820 821
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

822
		/* the interface is going down, skbs are purged */
823 824 825
		dev_kfree_skb_any(skb);
		return;
	}
826

827
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
828
	if (new_skb) {
829
		skb_copy_queue_mapping(new_skb, skb);
830
		skb_put(skb, len);
831 832
		if (status & CPDMA_RX_VLAN_ENCAP)
			cpsw_rx_vlan_encap(skb);
833
		cpts_rx_timestamp(cpsw->cpts, skb);
834 835
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
836 837
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
838
		kmemleak_not_leak(new_skb);
839
	} else {
840
		ndev->stats.rx_dropped++;
841
		new_skb = skb;
842 843
	}

844
requeue:
845 846 847 848 849
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

850
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
851
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
852
				skb_tailroom(new_skb), 0);
853 854
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
855 856
}

857
static void cpsw_split_res(struct net_device *ndev)
858 859
{
	struct cpsw_priv *priv = netdev_priv(ndev);
860
	u32 consumed_rate = 0, bigest_rate = 0;
861 862
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
863
	int i, ch_weight, rlim_ch_num = 0;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
879 880 881 882
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
883
	} else {
884 885 886 887 888 889 890 891 892 893
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
894

895 896 897 898 899 900 901
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

902
	/* split tx weight/budget */
903 904 905 906 907 908
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
909
				txv[i].budget++;
910 911 912 913
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
914 915 916 917 918

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
919 920 921 922
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
923
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

944
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
945
{
946
	struct cpsw_common *cpsw = dev_id;
947

948
	writel(0, &cpsw->wr_regs->tx_en);
949
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
950

951 952 953
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
954 955
	}

956
	napi_schedule(&cpsw->napi_tx);
957 958 959 960 961
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
962
	struct cpsw_common *cpsw = dev_id;
963

964
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
965
	writel(0, &cpsw->wr_regs->rx_en);
966

967 968 969
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
970 971
	}

972
	napi_schedule(&cpsw->napi_rx);
973
	return IRQ_HANDLED;
974 975
}

976
static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
977
{
978
	u32			ch_map;
979
	int			num_tx, cur_budget, ch;
980
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
981
	struct cpsw_vector	*txv;
982

983 984
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
985 986
	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
		if (!(ch_map & 0x80))
987 988
			continue;

989 990 991 992 993 994 995
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
996 997
		if (num_tx >= budget)
			break;
998 999
	}

1000 1001
	if (num_tx < budget) {
		napi_complete(napi_tx);
1002
		writel(0xff, &cpsw->wr_regs->tx_en);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	}

	return num_tx;
}

static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
1018 1019
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1020
		}
1021 1022 1023 1024 1025
	}

	return num_tx;
}

1026
static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1027
{
1028
	u32			ch_map;
1029
	int			num_rx, cur_budget, ch;
1030
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1031
	struct cpsw_vector	*rxv;
1032

1033 1034
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1035
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1036 1037 1038
		if (!(ch_map & 0x01))
			continue;

1039 1040 1041 1042 1043 1044 1045
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1046 1047
		if (num_rx >= budget)
			break;
1048 1049
	}

1050
	if (num_rx < budget) {
1051
		napi_complete_done(napi_rx, num_rx);
1052
		writel(0xff, &cpsw->wr_regs->rx_en);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	}

	return num_rx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
1068 1069
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1070
		}
1071 1072 1073 1074 1075 1076 1077 1078 1079
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

1080
	writel_relaxed(1, reg);
1081 1082
	do {
		cpu_relax();
1083
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1084

1085
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1086 1087 1088 1089 1090
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
1091 1092
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = 7 << shift;
	val = val & mask;

	return !val;
}

static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = (1 << --fifo) << shift;
	val = on ? val | mask : val & ~mask;

	writel_relaxed(val, &cpsw->regs->ptype);
}

1127 1128 1129 1130 1131 1132
static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
1133
	struct cpsw_common *cpsw = priv->cpsw;
1134 1135 1136 1137

	if (!phy)
		return;

1138
	slave_port = cpsw_get_slave_port(slave->slave_num);
1139 1140

	if (phy->link) {
1141
		mac_control = cpsw->data.mac_control;
1142 1143

		/* enable forwarding */
1144
		cpsw_ale_control_set(cpsw->ale, slave_port,
1145 1146 1147 1148 1149 1150
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1151 1152 1153 1154

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1155 1156
		/* in band mode only works in 10Mbps RGMII mode */
		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1157
			mac_control |= BIT(18); /* In Band mode */
1158

1159 1160 1161 1162 1163 1164
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1165
		*link = true;
1166 1167 1168 1169 1170 1171

		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed &&
		    !cpsw_shp_is_off(priv))
			dev_warn(priv->dev,
				 "Speed was changed, CBS shaper speeds are changed!");
1172 1173 1174
	} else {
		mac_control = 0;
		/* disable forwarding */
1175
		cpsw_ale_control_set(cpsw->ale, slave_port,
1176 1177 1178 1179 1180
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1181
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1182 1183 1184 1185 1186
	}

	slave->mac_control = mac_control;
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1225 1226 1227
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1228
	struct cpsw_common	*cpsw = priv->cpsw;
1229 1230 1231 1232 1233
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1234 1235 1236
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1237 1238
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1239
			netif_tx_wake_all_queues(ndev);
1240 1241
	} else {
		netif_carrier_off(ndev);
1242
		netif_tx_stop_all_queues(ndev);
1243 1244 1245
	}
}

1246 1247 1248
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1249
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1250

1251
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1264
	struct cpsw_common *cpsw = priv->cpsw;
1265 1266 1267

	coal_intvl = coal->rx_coalesce_usecs;

1268
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1269
	prescale = cpsw->bus_freq_mhz * 4;
1270

1271 1272 1273 1274 1275
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1297 1298
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1299 1300 1301 1302

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1303 1304

update_return:
1305
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1306 1307

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1308
	cpsw->coal_intvl = coal_intvl;
1309 1310 1311 1312

	return 0;
}

1313 1314
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1315 1316
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1317 1318
	switch (sset) {
	case ETH_SS_STATS:
1319 1320 1321
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1322 1323 1324 1325 1326
	default:
		return -EOPNOTSUPP;
	}
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
1337 1338
			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
			 (long)(i / CPSW_STATS_CH_LEN),
1339 1340 1341 1342 1343
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1344 1345
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1346
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1347 1348 1349 1350 1351
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1352
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1353 1354 1355 1356
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1357 1358 1359

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1360 1361 1362 1363 1364 1365 1366 1367
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1368
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1369 1370
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1371 1372

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1373 1374 1375 1376 1377
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1378
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1379 1380 1381 1382 1383 1384
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1385

1386
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1387
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1388 1389 1390 1391
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1392 1393 1394 1395
		}
	}
}

1396
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1397 1398
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1399
{
1400 1401
	struct cpsw_common *cpsw = priv->cpsw;

1402
	skb_tx_timestamp(skb);
1403
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1404
				 priv->emac_port + cpsw->data.dual_emac);
1405 1406 1407 1408 1409 1410
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1411
	struct cpsw_common *cpsw = priv->cpsw;
1412
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1413

1414
	if (cpsw->version == CPSW_VERSION_1)
1415 1416 1417
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1418
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1419
			  port_mask, port_mask, 0);
1420
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1421
			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
1422 1423 1424
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1425 1426
	cpsw_ale_control_set(cpsw->ale, slave_port,
			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1427 1428
}

1429
static void soft_reset_slave(struct cpsw_slave *slave)
1430 1431 1432
{
	char name[32];

1433
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1434
	soft_reset(name, &slave->sliver->soft_reset);
1435 1436 1437 1438 1439
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1440
	struct phy_device *phy;
1441
	struct cpsw_common *cpsw = priv->cpsw;
1442 1443

	soft_reset_slave(slave);
1444 1445

	/* setup priority mapping */
1446
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1447

1448
	switch (cpsw->version) {
1449 1450
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1451 1452 1453 1454 1455 1456
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1457 1458
		break;
	case CPSW_VERSION_2:
1459
	case CPSW_VERSION_3:
1460
	case CPSW_VERSION_4:
1461
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1462 1463 1464 1465 1466 1467
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1468 1469
		break;
	}
1470 1471

	/* setup max packet size, and mac address */
1472
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1473 1474 1475 1476
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1477
	slave_port = cpsw_get_slave_port(slave->slave_num);
1478

1479
	if (cpsw->data.dual_emac)
1480 1481
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1482
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1483
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1484

1485
	if (slave->data->phy_node) {
1486
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1487
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1488
		if (!phy) {
1489 1490
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1491 1492 1493 1494
				slave->slave_num);
			return;
		}
	} else {
1495
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1496
				 &cpsw_adjust_link, slave->data->phy_if);
1497
		if (IS_ERR(phy)) {
1498 1499 1500
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1501
				PTR_ERR(phy));
1502 1503 1504
			return;
		}
	}
1505

1506 1507
	slave->phy = phy;

1508
	phy_attached_info(slave->phy);
1509

1510 1511 1512
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1513
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1514 1515
}

1516 1517
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1518 1519
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1520 1521
	u32 reg;
	int i;
1522
	int unreg_mcast_mask;
1523

1524
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1525 1526
	       CPSW2_PORT_VLAN;

1527
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1528

1529 1530
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1531

1532 1533 1534 1535 1536
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1537
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1538 1539
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1540 1541
}

1542 1543
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1544
	u32 fifo_mode;
1545 1546
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1547

1548
	/* soft reset the controller and initialize ale */
1549
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1550
	cpsw_ale_start(cpsw->ale);
1551 1552

	/* switch to vlan unaware mode */
1553
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1554
			     CPSW_ALE_VLAN_AWARE);
1555
	control_reg = readl(&cpsw->regs->control);
1556
	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1557
	writel(control_reg, &cpsw->regs->control);
1558
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1559
		     CPSW_FIFO_NORMAL_MODE;
1560
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1561 1562

	/* setup host port priority mapping */
1563 1564 1565
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1566

1567
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1568 1569
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1570
	if (!cpsw->data.dual_emac) {
1571
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1572
				   0, 0);
1573
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1574
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1575
	}
1576 1577
}

1578 1579 1580 1581 1582
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1583 1584 1585
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1586
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1587 1588 1589 1590 1591 1592 1593 1594
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1595

1596
			skb_set_queue_mapping(skb, ch);
1597 1598 1599
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1600 1601 1602 1603 1604 1605 1606 1607
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1608 1609
		}

1610 1611 1612
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1613

1614
	return 0;
1615 1616
}

1617
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1618
{
1619 1620
	u32 slave_port;

1621
	slave_port = cpsw_get_slave_port(slave->slave_num);
1622

1623 1624 1625 1626 1627
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1628
	cpsw_ale_control_set(cpsw->ale, slave_port,
1629
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1630
	soft_reset_slave(slave);
1631 1632
}

1633 1634 1635 1636 1637 1638 1639 1640
static int cpsw_tc_to_fifo(int tc, int num_tc)
{
	if (tc == num_tc - 1)
		return 0;

	return CPSW_FIFO_SHAPERS_NUM - tc;
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 val = 0, send_pct, shift;
	struct cpsw_slave *slave;
	int pct = 0, i;

	if (bw > priv->shp_cfg_speed * 1000)
		goto err;

	/* shaping has to stay enabled for highest fifos linearly
	 * and fifo bw no more then interface can allow
	 */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	send_pct = slave_read(slave, SEND_PERCENT);
	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
		if (!bw) {
			if (i >= fifo || !priv->fifo_bw[i])
				continue;

			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
			continue;
		}

		if (!priv->fifo_bw[i] && i > fifo) {
			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
			return -EINVAL;
		}

		shift = (i - 1) * 8;
		if (i == fifo) {
			send_pct &= ~(CPSW_PCT_MASK << shift);
			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
			if (!val)
				val = 1;

			send_pct |= val << shift;
			pct += val;
			continue;
		}

		if (priv->fifo_bw[i])
			pct += (send_pct >> shift) & CPSW_PCT_MASK;
	}

	if (pct >= 100)
		goto err;

	slave_write(slave, send_pct, SEND_PERCENT);
	priv->fifo_bw[fifo] = bw;

	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));

	return 0;
err:
	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
	return -EINVAL;
}

static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 tx_in_ctl_rg, val;
	int ret;

	ret = cpsw_set_fifo_bw(priv, fifo, bw);
	if (ret)
		return ret;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;

	if (!bw)
		cpsw_fifo_shp_on(priv, fifo, bw);

	val = slave_read(slave, tx_in_ctl_rg);
	if (cpsw_shp_is_off(priv)) {
		/* disable FIFOs rate limited queues */
		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);

		/* set type of FIFO queues to normal priority mode */
		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);

		/* set type of FIFO queues to be rate limited */
		if (bw)
			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
		else
			priv->shp_cfg_speed = 0;
	}

	/* toggle a FIFO rate limited queue */
	if (bw)
		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	else
		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	slave_write(slave, val, tx_in_ctl_rg);

	/* FIFO transmit shape enable */
	cpsw_fifo_shp_on(priv, fifo, bw);
	return 0;
}

/* Defaults:
 * class A - prio 3
 * class B - prio 2
 * shaping for class A should be set first
 */
static int cpsw_set_cbs(struct net_device *ndev,
			struct tc_cbs_qopt_offload *qopt)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int prev_speed = 0;
	int tc, ret, fifo;
	u32 bw = 0;

	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);

	/* enable channels in backward order, as highest FIFOs must be rate
	 * limited first and for compliance with CPDMA rate limited channels
	 * that also used in bacward order. FIFO0 cannot be rate limited.
	 */
	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
	if (!fifo) {
		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
		return -EINVAL;
	}

	/* do nothing, it's disabled anyway */
	if (!qopt->enable && !priv->fifo_bw[fifo])
		return 0;

	/* shapers can be set if link speed is known */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	if (slave->phy && slave->phy->link) {
		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed)
			prev_speed = priv->shp_cfg_speed;

		priv->shp_cfg_speed = slave->phy->speed;
	}

	if (!priv->shp_cfg_speed) {
		dev_err(priv->dev, "Link speed is not known");
		return -1;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	bw = qopt->enable ? qopt->idleslope : 0;
	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
	if (ret) {
		priv->shp_cfg_speed = prev_speed;
		prev_speed = 0;
	}

	if (bw && prev_speed)
		dev_warn(priv->dev,
			 "Speed was changed, CBS shaper speeds are changed!");

	pm_runtime_put_sync(cpsw->dev);
	return ret;
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	int fifo, bw;

	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
		bw = priv->fifo_bw[fifo];
		if (!bw)
			continue;

		cpsw_set_fifo_rlimit(priv, fifo, bw);
	}
}

static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 tx_prio_map = 0;
	int i, tc, fifo;
	u32 tx_prio_rg;

	if (!priv->mqprio_hw)
		return;

	for (i = 0; i < 8; i++) {
		tc = netdev_get_prio_tc_map(priv->ndev, i);
		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
		tx_prio_map |= fifo << (4 * i);
	}

	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave_write(slave, tx_prio_map, tx_prio_rg);
}

/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
	/* restore MQPRIO offload */
	for_each_slave(priv, cpsw_mqprio_resume, priv);

	/* restore CBS offload */
	for_each_slave(priv, cpsw_cbs_resume, priv);
}

1858 1859 1860
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1861
	struct cpsw_common *cpsw = priv->cpsw;
1862
	int ret;
1863 1864
	u32 reg;

1865
	ret = pm_runtime_get_sync(cpsw->dev);
1866
	if (ret < 0) {
1867
		pm_runtime_put_noidle(cpsw->dev);
1868 1869
		return ret;
	}
1870

1871 1872
	netif_carrier_off(ndev);

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1886
	reg = cpsw->version;
1887 1888 1889 1890 1891

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1892 1893
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1894
		cpsw_init_host_port(priv);
1895 1896
	for_each_slave(priv, cpsw_slave_open, priv);

1897
	/* Add default VLAN */
1898
	if (!cpsw->data.dual_emac)
1899 1900
		cpsw_add_default_vlan(priv);
	else
1901
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1902
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1903

1904 1905
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1906
		/* disable priority elevation */
1907
		writel_relaxed(0, &cpsw->regs->ptype);
1908

1909
		/* enable statistics collection only on all ports */
1910
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1911

1912
		/* Enable internal fifo flow control */
1913
		writel(0x7, &cpsw->regs->flow_control);
1914

1915 1916
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1917

1918 1919 1920
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1921 1922
		}

1923 1924 1925
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1926 1927
		}

1928 1929 1930
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1931

1932
		if (cpts_register(cpsw->cpts))
1933 1934
			dev_err(priv->dev, "error registering cpts device\n");

1935 1936
	}

1937 1938
	cpsw_restore(priv);

1939
	/* Enable Interrupt pacing if configured */
1940
	if (cpsw->coal_intvl != 0) {
1941 1942
		struct ethtool_coalesce coal;

1943
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1944 1945 1946
		cpsw_set_coalesce(ndev, &coal);
	}

1947 1948
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1949
	cpsw->usage_count++;
1950

1951 1952
	return 0;

1953
err_cleanup:
1954
	cpdma_ctlr_stop(cpsw->dma);
1955
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1956
	pm_runtime_put_sync(cpsw->dev);
1957 1958
	netif_carrier_off(priv->ndev);
	return ret;
1959 1960 1961 1962 1963
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1964
	struct cpsw_common *cpsw = priv->cpsw;
1965 1966

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1967
	__dev_mc_unsync(priv->ndev, cpsw_del_mc_addr);
1968
	netif_tx_stop_all_queues(priv->ndev);
1969
	netif_carrier_off(priv->ndev);
1970

1971
	if (cpsw->usage_count <= 1) {
1972 1973
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1974
		cpts_unregister(cpsw->cpts);
1975 1976
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1977
		cpsw_ale_stop(cpsw->ale);
1978
	}
1979
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1980 1981 1982 1983

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1984
	cpsw->usage_count--;
1985
	pm_runtime_put_sync(cpsw->dev);
1986 1987 1988 1989 1990 1991 1992
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1993
	struct cpsw_common *cpsw = priv->cpsw;
1994
	struct cpts *cpts = cpsw->cpts;
1995 1996 1997
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1998 1999 2000

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
2001
		ndev->stats.tx_dropped++;
2002
		return NET_XMIT_DROP;
2003 2004
	}

2005
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2006
	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
2007 2008
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

2009 2010 2011 2012
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

2013
	txch = cpsw->txv[q_idx].ch;
2014
	txq = netdev_get_tx_queue(ndev, q_idx);
2015
	ret = cpsw_tx_packet_submit(priv, skb, txch);
2016 2017 2018 2019 2020
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

2021 2022 2023
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
2024 2025
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
2026 2027 2028 2029 2030 2031

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
2032
	}
2033

2034 2035
	return NETDEV_TX_OK;
fail:
2036
	ndev->stats.tx_dropped++;
2037
	netif_tx_stop_queue(txq);
2038 2039 2040 2041 2042 2043 2044

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

2045 2046 2047
	return NETDEV_TX_BUSY;
}

2048
#if IS_ENABLED(CONFIG_TI_CPTS)
2049

2050
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
2051
{
2052
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2053 2054
	u32 ts_en, seq_id;

2055 2056
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
2057 2058 2059 2060 2061 2062 2063
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

2064
	if (cpts_is_tx_enabled(cpsw->cpts))
2065 2066
		ts_en |= CPSW_V1_TS_TX_EN;

2067
	if (cpts_is_rx_enabled(cpsw->cpts))
2068 2069 2070 2071 2072 2073 2074 2075
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
2076
	struct cpsw_slave *slave;
2077
	struct cpsw_common *cpsw = priv->cpsw;
2078 2079
	u32 ctrl, mtype;

2080
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2081

2082
	ctrl = slave_read(slave, CPSW2_CONTROL);
2083
	switch (cpsw->version) {
2084 2085
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
2086

2087
		if (cpts_is_tx_enabled(cpsw->cpts))
2088
			ctrl |= CTRL_V2_TX_TS_BITS;
2089

2090
		if (cpts_is_rx_enabled(cpsw->cpts))
2091
			ctrl |= CTRL_V2_RX_TS_BITS;
2092
		break;
2093 2094 2095 2096
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

2097
		if (cpts_is_tx_enabled(cpsw->cpts))
2098 2099
			ctrl |= CTRL_V3_TX_TS_BITS;

2100
		if (cpts_is_rx_enabled(cpsw->cpts))
2101
			ctrl |= CTRL_V3_RX_TS_BITS;
2102
		break;
2103
	}
2104 2105 2106 2107 2108

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
2109
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2110 2111
}

2112
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2113
{
2114
	struct cpsw_priv *priv = netdev_priv(dev);
2115
	struct hwtstamp_config cfg;
2116 2117
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
2118

2119 2120 2121
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
2122 2123
		return -EOPNOTSUPP;

2124 2125 2126 2127 2128 2129 2130
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

2131
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2132 2133 2134 2135
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
2136
		cpts_rx_enable(cpts, 0);
2137 2138
		break;
	case HWTSTAMP_FILTER_ALL:
2139 2140
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
2141 2142 2143
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2144 2145 2146
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
2147 2148 2149 2150 2151 2152 2153 2154 2155
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2156
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
2157 2158 2159 2160 2161 2162
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

2163
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
2164

2165
	switch (cpsw->version) {
2166
	case CPSW_VERSION_1:
2167
		cpsw_hwtstamp_v1(cpsw);
2168 2169
		break;
	case CPSW_VERSION_2:
2170
	case CPSW_VERSION_3:
2171 2172 2173
		cpsw_hwtstamp_v2(priv);
		break;
	default:
2174
		WARN_ON(1);
2175 2176 2177 2178 2179
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

2180 2181
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
2182 2183
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
2184 2185
	struct hwtstamp_config cfg;

2186 2187 2188
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
2189 2190 2191
		return -EOPNOTSUPP;

	cfg.flags = 0;
2192 2193 2194
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
2195
			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
2196 2197 2198

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
2199 2200 2201 2202 2203
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
2204

2205 2206 2207 2208
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
2209 2210 2211 2212
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2213
	struct cpsw_priv *priv = netdev_priv(dev);
2214 2215
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2216

2217 2218 2219
	if (!netif_running(dev))
		return -EINVAL;

2220 2221
	switch (cmd) {
	case SIOCSHWTSTAMP:
2222 2223 2224
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
2225 2226
	}

2227
	if (!cpsw->slaves[slave_no].phy)
2228
		return -EOPNOTSUPP;
2229
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2230 2231
}

2232 2233 2234
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2235
	struct cpsw_common *cpsw = priv->cpsw;
2236
	int ch;
2237 2238

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2239
	ndev->stats.tx_errors++;
2240
	cpsw_intr_disable(cpsw);
2241
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2242 2243
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
2244 2245
	}

2246
	cpsw_intr_enable(cpsw);
2247 2248
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
2249 2250
}

2251 2252 2253 2254
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
2255
	struct cpsw_common *cpsw = priv->cpsw;
2256 2257
	int flags = 0;
	u16 vid = 0;
2258
	int ret;
2259 2260 2261 2262

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

2263
	ret = pm_runtime_get_sync(cpsw->dev);
2264
	if (ret < 0) {
2265
		pm_runtime_put_noidle(cpsw->dev);
2266 2267 2268
		return ret;
	}

2269 2270
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
2271 2272 2273
		flags = ALE_VLAN;
	}

2274
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2275
			   flags, vid);
2276
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2277 2278 2279 2280 2281 2282
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

2283
	pm_runtime_put(cpsw->dev);
2284

2285 2286 2287
	return 0;
}

2288 2289 2290
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
2291
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2292

2293 2294 2295 2296
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
2297 2298 2299
}
#endif

2300 2301 2302 2303
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
2304
	int unreg_mcast_mask = 0;
2305
	int mcast_mask;
2306
	u32 port_mask;
2307
	struct cpsw_common *cpsw = priv->cpsw;
2308

2309
	if (cpsw->data.dual_emac) {
2310
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2311

2312
		mcast_mask = ALE_PORT_HOST;
2313
		if (priv->ndev->flags & IFF_ALLMULTI)
2314
			unreg_mcast_mask = mcast_mask;
2315 2316
	} else {
		port_mask = ALE_ALL_PORTS;
2317
		mcast_mask = port_mask;
2318 2319 2320 2321 2322 2323

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
2324

2325
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2326
				unreg_mcast_mask);
2327 2328 2329
	if (ret != 0)
		return ret;

2330
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2331
				 HOST_PORT_NUM, ALE_VLAN, vid);
2332 2333 2334
	if (ret != 0)
		goto clean_vid;

2335
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2336
				 mcast_mask, ALE_VLAN, vid, 0);
2337 2338 2339 2340 2341
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
2342
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2343
			   HOST_PORT_NUM, ALE_VLAN, vid);
2344
clean_vid:
2345
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2346 2347 2348 2349
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2350
				    __be16 proto, u16 vid)
2351 2352
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2353
	struct cpsw_common *cpsw = priv->cpsw;
2354
	int ret;
2355

2356
	if (vid == cpsw->data.default_vlan)
2357 2358
		return 0;

2359
	ret = pm_runtime_get_sync(cpsw->dev);
2360
	if (ret < 0) {
2361
		pm_runtime_put_noidle(cpsw->dev);
2362 2363 2364
		return ret;
	}

2365
	if (cpsw->data.dual_emac) {
2366 2367 2368 2369 2370 2371
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

2372
		for (i = 0; i < cpsw->data.slaves; i++) {
2373 2374 2375 2376
			if (vid == cpsw->slaves[i].port_vlan) {
				ret = -EINVAL;
				goto err;
			}
2377 2378 2379
		}
	}

2380
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2381
	ret = cpsw_add_vlan_ale_entry(priv, vid);
2382
err:
2383
	pm_runtime_put(cpsw->dev);
2384
	return ret;
2385 2386 2387
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2388
				     __be16 proto, u16 vid)
2389 2390
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2391
	struct cpsw_common *cpsw = priv->cpsw;
2392 2393
	int ret;

2394
	if (vid == cpsw->data.default_vlan)
2395 2396
		return 0;

2397
	ret = pm_runtime_get_sync(cpsw->dev);
2398
	if (ret < 0) {
2399
		pm_runtime_put_noidle(cpsw->dev);
2400 2401 2402
		return ret;
	}

2403
	if (cpsw->data.dual_emac) {
2404 2405
		int i;

2406 2407
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2408
				goto err;
2409 2410 2411
		}
	}

2412
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2413
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2414 2415 2416 2417
	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
				  HOST_PORT_NUM, ALE_VLAN, vid);
	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
				  0, ALE_VLAN, vid);
2418
err:
2419
	pm_runtime_put(cpsw->dev);
2420
	return ret;
2421 2422
}

2423 2424 2425 2426
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2427
	struct cpsw_slave *slave;
2428
	u32 min_rate;
2429
	u32 ch_rate;
2430
	int i, ret;
2431 2432 2433 2434 2435

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2436 2437 2438 2439 2440
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2441 2442 2443
		return -EINVAL;
	}

2444
	if (rate > cpsw->speed) {
2445
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2446 2447 2448 2449 2450 2451 2452 2453 2454
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2455 2456
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2457

2458 2459
	if (ret)
		return ret;
2460

2461 2462 2463 2464 2465 2466 2467 2468 2469
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2470
	cpsw_split_res(ndev);
2471 2472 2473
	return ret;
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
	struct tc_mqprio_qopt_offload *mqprio = type_data;
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int fifo, num_tc, count, offset;
	struct cpsw_slave *slave;
	u32 tx_prio_map = 0;
	int i, tc, ret;

	num_tc = mqprio->qopt.num_tc;
	if (num_tc > CPSW_TC_NUM)
		return -EINVAL;

	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
		return -EINVAL;

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	if (num_tc) {
		for (i = 0; i < 8; i++) {
			tc = mqprio->qopt.prio_tc_map[i];
			fifo = cpsw_tc_to_fifo(tc, num_tc);
			tx_prio_map |= fifo << (4 * i);
		}

		netdev_set_num_tc(ndev, num_tc);
		for (i = 0; i < num_tc; i++) {
			count = mqprio->qopt.count[i];
			offset = mqprio->qopt.offset[i];
			netdev_set_tc_queue(ndev, i, count, offset);
		}
	}

	if (!mqprio->qopt.hw) {
		/* restore default configuration */
		netdev_reset_tc(ndev);
		tx_prio_map = TX_PRIORITY_MAPPING;
	}

	priv->mqprio_hw = mqprio->qopt.hw;

	offset = cpsw->version == CPSW_VERSION_1 ?
		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	slave_write(slave, tx_prio_map, offset);

	pm_runtime_put_sync(cpsw->dev);

	return 0;
}

static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			     void *type_data)
{
	switch (type) {
2535 2536 2537
	case TC_SETUP_QDISC_CBS:
		return cpsw_set_cbs(ndev, type_data);

2538 2539 2540 2541 2542 2543 2544 2545
	case TC_SETUP_QDISC_MQPRIO:
		return cpsw_set_mqprio(ndev, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

2546 2547 2548 2549
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2550
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2551
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2552 2553
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2554
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2555
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2556 2557 2558
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2559 2560
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2561
	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2562 2563
};

2564 2565
static int cpsw_get_regs_len(struct net_device *ndev)
{
2566
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2567

2568
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2569 2570 2571 2572 2573 2574
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2575
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2576 2577

	/* update CPSW IP version */
2578
	regs->version = cpsw->version;
2579

2580
	cpsw_ale_dump(cpsw->ale, reg);
2581 2582
}

2583 2584 2585
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2586
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2587
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2588

2589
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2590
	strlcpy(info->version, "1.0", sizeof(info->version));
2591
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2606
#if IS_ENABLED(CONFIG_TI_CPTS)
2607 2608 2609
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2610
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2611 2612 2613 2614 2615 2616 2617 2618

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2619
	info->phc_index = cpsw->cpts->phc_index;
2620 2621 2622 2623 2624
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2625
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2626
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2627 2628
	return 0;
}
2629
#else
2630 2631 2632
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2633 2634 2635 2636 2637 2638 2639 2640 2641
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2642
#endif
2643

2644 2645
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2646 2647
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2648 2649
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2650

2651
	if (!cpsw->slaves[slave_no].phy)
2652
		return -EOPNOTSUPP;
2653 2654 2655

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2656 2657
}

2658 2659
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2660 2661
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2662 2663
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2664

2665
	if (cpsw->slaves[slave_no].phy)
2666 2667
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2668 2669 2670 2671
	else
		return -EOPNOTSUPP;
}

2672 2673 2674
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2675 2676
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2677 2678 2679 2680

	wol->supported = 0;
	wol->wolopts = 0;

2681 2682
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2683 2684 2685 2686 2687
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2688 2689
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2690

2691 2692
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2693 2694 2695 2696
	else
		return -EOPNOTSUPP;
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2720 2721 2722
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2723
	struct cpsw_common *cpsw = priv->cpsw;
2724 2725
	int ret;

2726
	ret = pm_runtime_get_sync(cpsw->dev);
2727 2728
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2729
		pm_runtime_put_noidle(cpsw->dev);
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2740
	ret = pm_runtime_put(priv->cpsw->dev);
2741 2742 2743 2744
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2745 2746 2747 2748 2749
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

2750 2751
	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	ch->max_combined = 0;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
2763 2764 2765 2766 2767
	if (cpsw->quirk_irq) {
		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
		return -EOPNOTSUPP;
	}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2786
	struct netdev_queue *queue;
2787
	struct cpsw_vector *vec;
2788
	int ret, *ch, vch;
2789 2790 2791

	if (rx) {
		ch = &cpsw->rx_ch_num;
2792
		vec = cpsw->rxv;
2793 2794 2795
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2796
		vec = cpsw->txv;
2797 2798 2799 2800
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2801 2802
		vch = rx ? *ch : 7 - *ch;
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2803 2804
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2805

2806 2807
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2808

2809
		if (!vec[*ch].ch)
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2820
		ret = cpdma_chan_destroy(vec[*ch].ch);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2847
static void cpsw_suspend_data_pass(struct net_device *ndev)
2848
{
2849
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2850
	struct cpsw_slave *slave;
2851
	int i;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
2884
	if (cpsw->usage_count) {
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2938
	if (cpsw->usage_count)
2939
		cpsw_split_res(ndev);
2940

2941 2942 2943
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2944 2945 2946 2947 2948 2949
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2986 2987 2988 2989 2990 2991 2992 2993 2994
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2995
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2996 2997 2998 2999 3000 3001 3002 3003
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
3004
	int ret;
3005 3006 3007 3008

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
3009 3010
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
3011 3012 3013 3014 3015
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

3016
	cpsw_suspend_data_pass(ndev);
3017 3018 3019

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

3020
	if (cpsw->usage_count)
3021 3022
		cpdma_chan_split_pool(cpsw->dma);

3023 3024 3025
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
3026

3027
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3028 3029 3030 3031
	dev_close(ndev);
	return ret;
}

3032 3033 3034 3035 3036
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
3037
	.get_ts_info	= cpsw_get_ts_info,
3038 3039
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
3040 3041 3042
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
3043 3044
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
3045 3046
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
3047 3048
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
3049 3050
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
3051 3052
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
3053 3054
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
3055 3056
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
3057
	.nway_reset	= cpsw_nway_reset,
3058 3059
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
3060 3061
};

3062
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3063
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
3064
{
3065
	void __iomem		*regs = cpsw->regs;
3066
	int			slave_num = slave->slave_num;
3067
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
3068 3069

	slave->data	= data;
3070 3071
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
3072
	slave->port_vlan = data->dual_emac_res_vlan;
3073 3074
}

3075
static int cpsw_probe_dt(struct cpsw_platform_data *data,
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
3087
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3088 3089 3090 3091
		return -EINVAL;
	}
	data->slaves = prop;

3092
	if (of_property_read_u32(node, "active_slave", &prop)) {
3093
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3094
		return -EINVAL;
3095
	}
3096
	data->active_slave = prop;
3097

3098 3099 3100
	data->slave_data = devm_kcalloc(&pdev->dev,
					data->slaves,
					sizeof(struct cpsw_slave_data),
3101
					GFP_KERNEL);
3102
	if (!data->slave_data)
3103
		return -ENOMEM;
3104 3105

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3106
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3107
		return -EINVAL;
3108 3109 3110 3111
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
3112
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3113
		return -EINVAL;
3114 3115 3116 3117
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3118
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3119
		return -EINVAL;
3120 3121 3122 3123
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
3124
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3125
		return -EINVAL;
3126 3127 3128
	}
	data->mac_control = prop;

3129 3130
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
3131

3132 3133 3134 3135 3136 3137
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
3138
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
3139

3140
	for_each_available_child_of_node(node, slave_node) {
3141 3142
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
3143 3144 3145
		int lenp;
		const __be32 *parp;

3146 3147 3148 3149
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

3150 3151
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
3152
		parp = of_get_property(slave_node, "phy_id", &lenp);
3153 3154
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
3155 3156
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
3157
		} else if (of_phy_is_fixed_link(slave_node)) {
3158 3159 3160
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
3161
			ret = of_phy_register_fixed_link(slave_node);
3162 3163 3164
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3165
				return ret;
3166
			}
3167
			slave_data->phy_node = of_node_get(slave_node);
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
3187
			put_device(&mdio->dev);
3188
		} else {
3189 3190 3191
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
3192
			goto no_phy_slave;
3193
		}
3194 3195 3196 3197 3198 3199 3200 3201
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
3202
		mac_addr = of_get_mac_address(slave_node);
3203
		if (mac_addr) {
3204
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3205
		} else {
3206 3207 3208 3209
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
3210
		}
3211
		if (data->dual_emac) {
3212
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3213
						 &prop)) {
3214
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3215
				slave_data->dual_emac_res_vlan = i+1;
3216 3217
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
3218 3219 3220 3221 3222
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

3223
		i++;
3224 3225
		if (i == data->slaves)
			break;
3226 3227 3228 3229 3230
	}

	return 0;
}

3231 3232
static void cpsw_remove_dt(struct platform_device *pdev)
{
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

3246 3247
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
3248 3249 3250 3251 3252 3253 3254 3255

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

3256 3257 3258
	of_platform_depopulate(&pdev->dev);
}

3259
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3260
{
3261 3262
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
3263 3264
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
3265
	int ret = 0;
3266

3267
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3268
	if (!ndev) {
3269
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3270 3271 3272 3273
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
3274
	priv_sl2->cpsw = cpsw;
3275 3276 3277 3278 3279 3280 3281
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
3282 3283
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
3284
	} else {
3285
		eth_random_addr(priv_sl2->mac_addr);
3286 3287
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
3288 3289 3290 3291
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
3292
	cpsw->slaves[1].ndev = ndev;
3293
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3294 3295

	ndev->netdev_ops = &cpsw_netdev_ops;
3296
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3297 3298

	/* register the network device */
3299
	SET_NETDEV_DEV(ndev, cpsw->dev);
3300 3301
	ret = register_netdev(ndev);
	if (ret) {
3302
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
3303 3304 3305 3306 3307 3308 3309
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

3310
static const struct of_device_id cpsw_of_mtable[] = {
3311 3312 3313 3314
	{ .compatible = "ti,cpsw"},
	{ .compatible = "ti,am335x-cpsw"},
	{ .compatible = "ti,am4372-cpsw"},
	{ .compatible = "ti,dra7-cpsw"},
3315 3316 3317 3318
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

3319 3320 3321 3322 3323
static const struct soc_device_attribute cpsw_soc_devices[] = {
	{ .family = "AM33xx", .revision = "ES1.0"},
	{ /* sentinel */ }
};

B
Bill Pemberton 已提交
3324
static int cpsw_probe(struct platform_device *pdev)
3325
{
3326
	struct clk			*clk;
3327
	struct cpsw_platform_data	*data;
3328 3329 3330 3331
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
3332
	void __iomem			*ss_regs;
3333
	void __iomem			*cpts_regs;
3334
	struct resource			*res, *ss_res;
3335
	struct gpio_descs		*mode;
3336
	u32 slave_offset, sliver_offset, slave_size;
3337
	const struct soc_device_attribute *soc;
3338
	struct cpsw_common		*cpsw;
3339
	int ret = 0, i, ch;
3340
	int irq;
3341

3342
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3343 3344 3345
	if (!cpsw)
		return -ENOMEM;

3346
	cpsw->dev = &pdev->dev;
3347

3348
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3349
	if (!ndev) {
3350
		dev_err(&pdev->dev, "error allocating net_device\n");
3351 3352 3353 3354 3355
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
3356
	priv->cpsw = cpsw;
3357 3358 3359
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3360
	cpsw->rx_packet_max = max(rx_packet_max, 128);
3361

3362 3363 3364 3365 3366 3367 3368
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

3369 3370 3371 3372 3373
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

3374 3375 3376
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

3377 3378 3379 3380 3381 3382
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
3383
		goto clean_runtime_disable_ret;
3384
	}
3385

3386 3387
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
3388
		goto clean_dt_ret;
3389

3390
	data = &cpsw->data;
3391 3392
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
3393

3394 3395
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3396
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3397
	} else {
J
Joe Perches 已提交
3398
		eth_random_addr(priv->mac_addr);
3399
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3400 3401 3402 3403
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

3404 3405
	cpsw->slaves = devm_kcalloc(&pdev->dev,
				    data->slaves, sizeof(struct cpsw_slave),
3406
				    GFP_KERNEL);
3407
	if (!cpsw->slaves) {
3408
		ret = -ENOMEM;
3409
		goto clean_dt_ret;
3410 3411
	}
	for (i = 0; i < data->slaves; i++)
3412
		cpsw->slaves[i].slave_num = i;
3413

3414
	cpsw->slaves[0].ndev = ndev;
3415 3416
	priv->emac_port = 0;

3417 3418
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
3419
		dev_err(priv->dev, "fck is not found\n");
3420
		ret = -ENODEV;
3421
		goto clean_dt_ret;
3422
	}
3423
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3424

3425 3426 3427 3428
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
3429
		goto clean_dt_ret;
3430
	}
3431
	cpsw->regs = ss_regs;
3432

3433
	cpsw->version = readl(&cpsw->regs->id_ver);
3434

3435
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3436 3437 3438
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
3439
		goto clean_dt_ret;
3440 3441 3442
	}

	memset(&dma_params, 0, sizeof(dma_params));
3443 3444
	memset(&ale_params, 0, sizeof(ale_params));

3445
	switch (cpsw->version) {
3446
	case CPSW_VERSION_1:
3447
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3448
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3449
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3450 3451 3452 3453 3454 3455 3456 3457 3458
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3459
	case CPSW_VERSION_3:
3460
	case CPSW_VERSION_4:
3461
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3462
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3463
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3464 3465 3466 3467 3468 3469 3470
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3471
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3472 3473
		break;
	default:
3474
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3475
		ret = -ENODEV;
3476
		goto clean_dt_ret;
3477
	}
3478 3479 3480 3481
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3482 3483 3484 3485
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3486
	dma_params.dev		= &pdev->dev;
3487 3488 3489 3490 3491
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3492 3493 3494 3495 3496 3497 3498

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3499
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3500
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3501
	dma_params.descs_pool_size	= descs_pool_size;
3502

3503 3504
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3505 3506
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3507
		goto clean_dt_ret;
3508 3509
	}

3510 3511 3512 3513
	soc = soc_device_match(cpsw_soc_devices);
	if (soc)
		cpsw->quirk_irq = 1;

3514 3515
	ch = cpsw->quirk_irq ? 0 : 7;
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3516 3517 3518 3519 3520 3521
	if (IS_ERR(cpsw->txv[0].ch)) {
		dev_err(priv->dev, "error initializing tx dma channel\n");
		ret = PTR_ERR(cpsw->txv[0].ch);
		goto clean_dma_ret;
	}

3522
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3523 3524 3525
	if (IS_ERR(cpsw->rxv[0].ch)) {
		dev_err(priv->dev, "error initializing rx dma channel\n");
		ret = PTR_ERR(cpsw->rxv[0].ch);
3526 3527 3528
		goto clean_dma_ret;
	}

3529
	ale_params.dev			= &pdev->dev;
3530 3531
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
3532
	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3533

3534 3535
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3536 3537 3538 3539 3540
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3541
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3542 3543
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
3544
		goto clean_dma_ret;
3545 3546
	}

3547
	ndev->irq = platform_get_irq(pdev, 1);
3548 3549
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3550
		ret = ndev->irq;
3551
		goto clean_dma_ret;
3552 3553
	}

3554
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3555 3556 3557

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3558 3559 3560 3561 3562 3563
	netif_napi_add(ndev, &cpsw->napi_rx,
		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
		       CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx,
			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
			  CPSW_POLL_WEIGHT);
3564 3565 3566 3567 3568 3569 3570 3571
	cpsw_split_res(ndev);

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3572
		goto clean_dma_ret;
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3583 3584 3585 3586 3587 3588 3589
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3590

3591
	/* RX IRQ */
3592
	irq = platform_get_irq(pdev, 1);
3593 3594
	if (irq < 0) {
		ret = irq;
3595
		goto clean_dma_ret;
3596
	}
3597

3598
	cpsw->irqs_table[0] = irq;
3599
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3600
			       0, dev_name(&pdev->dev), cpsw);
3601 3602
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3603
		goto clean_dma_ret;
3604 3605
	}

3606
	/* TX IRQ */
3607
	irq = platform_get_irq(pdev, 2);
3608 3609
	if (irq < 0) {
		ret = irq;
3610
		goto clean_dma_ret;
3611
	}
3612

3613
	cpsw->irqs_table[1] = irq;
3614
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3615
			       0, dev_name(&pdev->dev), cpsw);
3616 3617
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3618
		goto clean_dma_ret;
3619
	}
3620

3621 3622 3623
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3624

3625 3626
	pm_runtime_put(&pdev->dev);

3627 3628
	return 0;

3629 3630
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3631
clean_dma_ret:
3632
	cpdma_ctlr_destroy(cpsw->dma);
3633 3634
clean_dt_ret:
	cpsw_remove_dt(pdev);
3635
	pm_runtime_put_sync(&pdev->dev);
3636
clean_runtime_disable_ret:
3637
	pm_runtime_disable(&pdev->dev);
3638
clean_ndev_ret:
3639
	free_netdev(priv->ndev);
3640 3641 3642
	return ret;
}

B
Bill Pemberton 已提交
3643
static int cpsw_remove(struct platform_device *pdev)
3644 3645
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3646
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3647 3648 3649 3650 3651 3652 3653
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3654

3655 3656
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3657
	unregister_netdev(ndev);
3658

3659
	cpts_release(cpsw->cpts);
3660
	cpdma_ctlr_destroy(cpsw->dma);
3661
	cpsw_remove_dt(pdev);
3662 3663
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3664 3665
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3666 3667 3668 3669
	free_netdev(ndev);
	return 0;
}

3670
#ifdef CONFIG_PM_SLEEP
3671 3672
static int cpsw_suspend(struct device *dev)
{
3673
	struct net_device	*ndev = dev_get_drvdata(dev);
3674
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3675

3676
	if (cpsw->data.dual_emac) {
3677
		int i;
3678

3679 3680 3681
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3682 3683 3684 3685 3686
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3687

3688
	/* Select sleep pin state */
3689
	pinctrl_pm_select_sleep_state(dev);
3690

3691 3692 3693 3694 3695
	return 0;
}

static int cpsw_resume(struct device *dev)
{
3696
	struct net_device	*ndev = dev_get_drvdata(dev);
3697
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3698

3699
	/* Select default pin state */
3700
	pinctrl_pm_select_default_state(dev);
3701

3702 3703
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3704
	if (cpsw->data.dual_emac) {
3705 3706
		int i;

3707 3708 3709
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3710 3711 3712 3713 3714
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3715 3716
	rtnl_unlock();

3717 3718
	return 0;
}
3719
#endif
3720

3721
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3722 3723 3724 3725 3726

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3727
		.of_match_table = cpsw_of_mtable,
3728 3729
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3730
	.remove = cpsw_remove,
3731 3732
};

3733
module_platform_driver(cpsw_driver);
3734 3735 3736 3737 3738

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");