cpsw.c 86.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90

#define HOST_PORT_NUM		0
91
#define CPSW_ALE_PORTS_NUM	3
92 93 94 95 96 97 98
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
99
#define CPSW1_HW_STATS		0x400
100 101 102 103 104 105 106 107
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
108
#define CPSW2_HW_STATS		0x900
109 110 111 112 113 114
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

115 116 117 118 119 120 121 122
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
123 124
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
125 126 127

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
128
#define CPDMA_TX_PRIORITY_MAP	0x01234567
129

130 131 132
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

133 134 135
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
136

137 138 139 140 141 142 143
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

144 145 146
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
147
#define IRQ_NUM			2
148
#define CPSW_MAX_QUEUES		8
149
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
150

151 152 153 154 155 156 157 158 159 160 161 162
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

163 164 165 166
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

167
struct cpsw_wr_regs {
168 169 170 171 172 173 174 175
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
176 177 178 179 180 181 182 183 184
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

185 186
};

187
struct cpsw_ss_regs {
188 189 190 191 192
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
193 194 195 196 197 198 199 200
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
201 202
};

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
248 249
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
250 251 252 253 254 255
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

256 257 258
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
259

260 261 262 263 264 265 266 267 268 269 270 271 272
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
273 274 275 276 277 278 279 280 281

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
282

283 284 285 286 287 288 289 290
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

291 292 293 294
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

295 296 297
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
298
	u32	tx_in_ctl;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
struct cpsw_slave_data {
	struct device_node *phy_node;
	char		phy_id[MII_BUS_ID_SIZE];
	int		phy_if;
	u8		mac_addr[ETH_ALEN];
	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
};

struct cpsw_platform_data {
	struct cpsw_slave_data	*slave_data;
	u32	ss_reg_ofs;	/* Subsystem control register offset */
	u32	channels;	/* number of cpdma channels (symmetric) */
	u32	slaves;		/* number of slave cpgmac ports */
	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
	u32	ale_entries;	/* ale table size */
	u32	bd_ram_size;  /*buffer descriptor ram size */
	u32	mac_control;	/* Mac control register */
	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
	bool	dual_emac;	/* Enable Dual EMAC mode */
};

377
struct cpsw_slave {
378
	void __iomem			*regs;
379 380 381 382 383
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
384 385
	struct net_device		*ndev;
	u32				port_vlan;
386 387
};

388 389
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
390
	return readl_relaxed(slave->regs + offset);
391 392 393 394
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
395
	writel_relaxed(val, slave->regs + offset);
396 397
}

398 399 400 401 402
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

403
struct cpsw_common {
404
	struct device			*dev;
405
	struct cpsw_platform_data	data;
406 407
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
408 409 410 411
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
412 413 414 415
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
416
	struct cpsw_slave		*slaves;
417
	struct cpdma_ctlr		*dma;
418 419
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
420
	struct cpsw_ale			*ale;
421 422 423 424
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
425
	struct cpts			*cpts;
426
	int				rx_ch_num, tx_ch_num;
427
	int				speed;
428
	int				usage_count;
429 430 431
};

struct cpsw_priv {
432 433 434 435
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
436 437
	bool				rx_pause;
	bool				tx_pause;
438
	u32 emac_port;
439
	struct cpsw_common *cpsw;
440 441
};

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
520

521
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
522
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
523 524
#define for_each_slave(priv, func, arg...)				\
	do {								\
525
		struct cpsw_slave *slave;				\
526
		struct cpsw_common *cpsw = (priv)->cpsw;		\
527
		int n;							\
528 529
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
530
		else							\
531 532
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
533 534
					n; n--)				\
				(func)(slave++, ##arg);			\
535 536
	} while (0)

537
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
538
	do {								\
539
		if (!cpsw->data.dual_emac)				\
540 541
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
542
			ndev = cpsw->slaves[0].ndev;			\
543 544
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
545
			ndev = cpsw->slaves[1].ndev;			\
546 547
			skb->dev = ndev;				\
		}							\
548
	} while (0)
549
#define cpsw_add_mcast(cpsw, priv, addr)				\
550
	do {								\
551 552
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
553
						priv->emac_port;	\
554
			int slave_port = cpsw_get_slave_port(		\
555
						slave->slave_num);	\
556
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
557
				1 << slave_port | ALE_PORT_HOST,	\
558 559
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
560
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
561
				ALE_ALL_PORTS,				\
562 563 564 565
				0, 0, 0);				\
		}							\
	} while (0)

566
static inline int cpsw_get_slave_port(u32 slave_num)
567
{
568
	return slave_num + 1;
569
}
570

571 572
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
573 574
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
575 576
	int i;

577
	if (cpsw->data.dual_emac) {
578 579 580 581 582 583
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
584 585
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

607
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
608
			for (i = 0; i <= cpsw->data.slaves; i++) {
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
625
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
626 627 628 629 630

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
631
			/* Don't Flood All Unicast Packets to Host port */
632 633
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

634
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
635
			for (i = 0; i <= cpsw->data.slaves; i++) {
636 637 638 639 640 641 642 643 644 645
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

646 647 648
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
649
	struct cpsw_common *cpsw = priv->cpsw;
650 651
	int vid;

652 653
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
654
	else
655
		vid = cpsw->data.default_vlan;
656 657 658

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
659
		cpsw_set_promiscious(ndev, true);
660
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
661
		return;
662 663 664
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
665 666
	}

667
	/* Restore allmulti on vlans if necessary */
668
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
669

670
	/* Clear all mcast from ALE */
671
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
672 673 674 675 676 677

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
678
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
679 680 681 682
		}
	}
}

683
static void cpsw_intr_enable(struct cpsw_common *cpsw)
684
{
685 686
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
687

688
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
689 690 691
	return;
}

692
static void cpsw_intr_disable(struct cpsw_common *cpsw)
693
{
694 695
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
696

697
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
698 699 700
	return;
}

701
static void cpsw_tx_handler(void *token, int len, int status)
702
{
703
	struct netdev_queue	*txq;
704 705
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
706
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
707

708 709 710
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
711 712 713 714
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

715
	cpts_tx_timestamp(cpsw->cpts, skb);
716 717
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
718 719 720
	dev_kfree_skb_any(skb);
}

721
static void cpsw_rx_handler(void *token, int len, int status)
722
{
723
	struct cpdma_chan	*ch;
724
	struct sk_buff		*skb = token;
725
	struct sk_buff		*new_skb;
726 727
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
728
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
729

730
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
731

732
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
733
		/* In dual emac mode check for all interfaces */
734
		if (cpsw->data.dual_emac && cpsw->usage_count &&
735
		    (status >= 0)) {
736 737
			/* The packet received is for the interface which
			 * is already down and the other interface is up
738
			 * and running, instead of freeing which results
739 740 741 742 743 744 745
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

746
		/* the interface is going down, skbs are purged */
747 748 749
		dev_kfree_skb_any(skb);
		return;
	}
750

751
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
752
	if (new_skb) {
753
		skb_copy_queue_mapping(new_skb, skb);
754
		skb_put(skb, len);
755
		cpts_rx_timestamp(cpsw->cpts, skb);
756 757
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
758 759
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
760
		kmemleak_not_leak(new_skb);
761
	} else {
762
		ndev->stats.rx_dropped++;
763
		new_skb = skb;
764 765
	}

766
requeue:
767 768 769 770 771
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

772
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
773
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
774
				skb_tailroom(new_skb), 0);
775 776
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
777 778
}

779
static void cpsw_split_res(struct net_device *ndev)
780 781
{
	struct cpsw_priv *priv = netdev_priv(ndev);
782
	u32 consumed_rate = 0, bigest_rate = 0;
783 784
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
785
	int i, ch_weight, rlim_ch_num = 0;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
801 802 803 804
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
805
	} else {
806 807 808 809 810 811 812 813 814 815
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
816

817 818 819 820 821 822 823
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

824
	/* split tx weight/budget */
825 826 827 828 829 830
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
831
				txv[i].budget++;
832 833 834 835
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
836 837 838 839 840

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
841 842 843 844
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
845
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

866
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
867
{
868
	struct cpsw_common *cpsw = dev_id;
869

870
	writel(0, &cpsw->wr_regs->tx_en);
871
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
872

873 874 875
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
876 877
	}

878
	napi_schedule(&cpsw->napi_tx);
879 880 881 882 883
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
884
	struct cpsw_common *cpsw = dev_id;
885

886
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
887
	writel(0, &cpsw->wr_regs->rx_en);
888

889 890 891
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
892 893
	}

894
	napi_schedule(&cpsw->napi_rx);
895
	return IRQ_HANDLED;
896 897
}

898 899
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
900
	u32			ch_map;
901
	int			num_tx, cur_budget, ch;
902
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
903
	struct cpsw_vector	*txv;
904

905 906
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
907
	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
908 909 910
		if (!(ch_map & 0x01))
			continue;

911 912 913 914 915 916 917
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
918 919
		if (num_tx >= budget)
			break;
920 921
	}

922 923
	if (num_tx < budget) {
		napi_complete(napi_tx);
924
		writel(0xff, &cpsw->wr_regs->tx_en);
925 926 927
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
928
		}
929 930 931 932 933 934
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
935
{
936
	u32			ch_map;
937
	int			num_rx, cur_budget, ch;
938
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
939
	struct cpsw_vector	*rxv;
940

941 942
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
943
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
944 945 946
		if (!(ch_map & 0x01))
			continue;

947 948 949 950 951 952 953
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
954 955
		if (num_rx >= budget)
			break;
956 957
	}

958
	if (num_rx < budget) {
959
		napi_complete_done(napi_rx, num_rx);
960
		writel(0xff, &cpsw->wr_regs->rx_en);
961 962 963
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
964
		}
965 966 967 968 969 970 971 972 973
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

974
	writel_relaxed(1, reg);
975 976
	do {
		cpu_relax();
977
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
978

979
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
980 981 982 983 984
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
985 986
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
987 988 989 990 991 992 993 994
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
995
	struct cpsw_common *cpsw = priv->cpsw;
996 997 998 999

	if (!phy)
		return;

1000
	slave_port = cpsw_get_slave_port(slave->slave_num);
1001 1002

	if (phy->link) {
1003
		mac_control = cpsw->data.mac_control;
1004 1005

		/* enable forwarding */
1006
		cpsw_ale_control_set(cpsw->ale, slave_port,
1007 1008 1009 1010 1011 1012
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1013 1014 1015 1016

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1017 1018
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
1019

1020 1021 1022 1023 1024 1025
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1026 1027 1028 1029
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
1030
		cpsw_ale_control_set(cpsw->ale, slave_port,
1031 1032 1033 1034 1035
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1036
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1037 1038 1039 1040 1041
	}

	slave->mac_control = mac_control;
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1080 1081 1082
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1083
	struct cpsw_common	*cpsw = priv->cpsw;
1084 1085 1086 1087 1088
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1089 1090 1091
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1092 1093
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1094
			netif_tx_wake_all_queues(ndev);
1095 1096
	} else {
		netif_carrier_off(ndev);
1097
		netif_tx_stop_all_queues(ndev);
1098 1099 1100
	}
}

1101 1102 1103
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1104
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1105

1106
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1119
	struct cpsw_common *cpsw = priv->cpsw;
1120 1121 1122

	coal_intvl = coal->rx_coalesce_usecs;

1123
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1124
	prescale = cpsw->bus_freq_mhz * 4;
1125

1126 1127 1128 1129 1130
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1152 1153
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1154 1155 1156 1157

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1158 1159

update_return:
1160
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1161 1162

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1163
	cpsw->coal_intvl = coal_intvl;
1164 1165 1166 1167

	return 0;
}

1168 1169
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1170 1171
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1172 1173
	switch (sset) {
	case ETH_SS_STATS:
1174 1175 1176
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1177 1178 1179 1180 1181
	default:
		return -EOPNOTSUPP;
	}
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1199 1200
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1201
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 1203 1204 1205 1206
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1207
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1208 1209 1210 1211
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1212 1213 1214

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1215 1216 1217 1218 1219 1220 1221 1222
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1223
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1224 1225
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1226 1227

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1228 1229 1230 1231 1232
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1233
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1234 1235 1236 1237 1238 1239
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1240

1241
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1242
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1243 1244 1245 1246
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1247 1248 1249 1250
		}
	}
}

1251
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1252 1253
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1254
{
1255 1256
	struct cpsw_common *cpsw = priv->cpsw;

1257
	skb_tx_timestamp(skb);
1258
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1259
				 priv->emac_port + cpsw->data.dual_emac);
1260 1261 1262 1263 1264 1265
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1266
	struct cpsw_common *cpsw = priv->cpsw;
1267
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1268

1269
	if (cpsw->version == CPSW_VERSION_1)
1270 1271 1272
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1273
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1274
			  port_mask, port_mask, 0);
1275
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1276
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1277 1278 1279
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1280 1281
}

1282
static void soft_reset_slave(struct cpsw_slave *slave)
1283 1284 1285
{
	char name[32];

1286
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1287
	soft_reset(name, &slave->sliver->soft_reset);
1288 1289 1290 1291 1292
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1293
	struct phy_device *phy;
1294
	struct cpsw_common *cpsw = priv->cpsw;
1295 1296

	soft_reset_slave(slave);
1297 1298

	/* setup priority mapping */
1299
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1300

1301
	switch (cpsw->version) {
1302 1303
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1304 1305 1306 1307 1308 1309
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1310 1311
		break;
	case CPSW_VERSION_2:
1312
	case CPSW_VERSION_3:
1313
	case CPSW_VERSION_4:
1314
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1315 1316 1317 1318 1319 1320
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1321 1322
		break;
	}
1323 1324

	/* setup max packet size, and mac address */
1325
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1326 1327 1328 1329
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1330
	slave_port = cpsw_get_slave_port(slave->slave_num);
1331

1332
	if (cpsw->data.dual_emac)
1333 1334
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1335
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1336
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1337

1338
	if (slave->data->phy_node) {
1339
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1340
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1341
		if (!phy) {
1342 1343
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1344 1345 1346 1347
				slave->slave_num);
			return;
		}
	} else {
1348
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1349
				 &cpsw_adjust_link, slave->data->phy_if);
1350
		if (IS_ERR(phy)) {
1351 1352 1353
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1354
				PTR_ERR(phy));
1355 1356 1357
			return;
		}
	}
1358

1359 1360
	slave->phy = phy;

1361
	phy_attached_info(slave->phy);
1362

1363 1364 1365
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1366
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1367 1368
}

1369 1370
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1371 1372
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1373 1374
	u32 reg;
	int i;
1375
	int unreg_mcast_mask;
1376

1377
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1378 1379
	       CPSW2_PORT_VLAN;

1380
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1381

1382 1383
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1384

1385 1386 1387 1388 1389
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1390
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1391 1392
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1393 1394
}

1395 1396
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1397
	u32 fifo_mode;
1398 1399
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1400

1401
	/* soft reset the controller and initialize ale */
1402
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1403
	cpsw_ale_start(cpsw->ale);
1404 1405

	/* switch to vlan unaware mode */
1406
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1407
			     CPSW_ALE_VLAN_AWARE);
1408
	control_reg = readl(&cpsw->regs->control);
1409
	control_reg |= CPSW_VLAN_AWARE;
1410
	writel(control_reg, &cpsw->regs->control);
1411
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1412
		     CPSW_FIFO_NORMAL_MODE;
1413
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1414 1415

	/* setup host port priority mapping */
1416 1417 1418
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1419

1420
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1421 1422
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1423
	if (!cpsw->data.dual_emac) {
1424
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1425
				   0, 0);
1426
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1427
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1428
	}
1429 1430
}

1431 1432 1433 1434 1435
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1436 1437 1438
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1439
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1440 1441 1442 1443 1444 1445 1446 1447
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1448

1449
			skb_set_queue_mapping(skb, ch);
1450 1451 1452
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1453 1454 1455 1456 1457 1458 1459 1460
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1461 1462
		}

1463 1464 1465
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1466

1467
	return 0;
1468 1469
}

1470
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1471
{
1472 1473
	u32 slave_port;

1474
	slave_port = cpsw_get_slave_port(slave->slave_num);
1475

1476 1477 1478 1479 1480
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1481
	cpsw_ale_control_set(cpsw->ale, slave_port,
1482
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1483
	soft_reset_slave(slave);
1484 1485
}

1486 1487 1488
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1489
	struct cpsw_common *cpsw = priv->cpsw;
1490
	int ret;
1491 1492
	u32 reg;

1493
	ret = pm_runtime_get_sync(cpsw->dev);
1494
	if (ret < 0) {
1495
		pm_runtime_put_noidle(cpsw->dev);
1496 1497
		return ret;
	}
1498

1499 1500
	netif_carrier_off(ndev);

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1514
	reg = cpsw->version;
1515 1516 1517 1518 1519

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1520 1521
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1522
		cpsw_init_host_port(priv);
1523 1524
	for_each_slave(priv, cpsw_slave_open, priv);

1525
	/* Add default VLAN */
1526
	if (!cpsw->data.dual_emac)
1527 1528
		cpsw_add_default_vlan(priv);
	else
1529
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1530
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1531

1532 1533
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1534
		/* disable priority elevation */
1535
		writel_relaxed(0, &cpsw->regs->ptype);
1536

1537
		/* enable statistics collection only on all ports */
1538
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1539

1540
		/* Enable internal fifo flow control */
1541
		writel(0x7, &cpsw->regs->flow_control);
1542

1543 1544
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1545

1546 1547 1548
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1549 1550
		}

1551 1552 1553
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1554 1555
		}

1556 1557 1558
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1559

1560
		if (cpts_register(cpsw->cpts))
1561 1562
			dev_err(priv->dev, "error registering cpts device\n");

1563 1564
	}

1565
	/* Enable Interrupt pacing if configured */
1566
	if (cpsw->coal_intvl != 0) {
1567 1568
		struct ethtool_coalesce coal;

1569
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1570 1571 1572
		cpsw_set_coalesce(ndev, &coal);
	}

1573 1574
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1575
	cpsw->usage_count++;
1576

1577 1578
	return 0;

1579
err_cleanup:
1580
	cpdma_ctlr_stop(cpsw->dma);
1581
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1582
	pm_runtime_put_sync(cpsw->dev);
1583 1584
	netif_carrier_off(priv->ndev);
	return ret;
1585 1586 1587 1588 1589
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1590
	struct cpsw_common *cpsw = priv->cpsw;
1591 1592

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1593
	netif_tx_stop_all_queues(priv->ndev);
1594
	netif_carrier_off(priv->ndev);
1595

1596
	if (cpsw->usage_count <= 1) {
1597 1598
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1599
		cpts_unregister(cpsw->cpts);
1600 1601
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1602
		cpsw_ale_stop(cpsw->ale);
1603
	}
1604
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1605 1606 1607 1608

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1609
	cpsw->usage_count--;
1610
	pm_runtime_put_sync(cpsw->dev);
1611 1612 1613 1614 1615 1616 1617
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1618
	struct cpsw_common *cpsw = priv->cpsw;
1619
	struct cpts *cpts = cpsw->cpts;
1620 1621 1622
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1623 1624 1625

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1626
		ndev->stats.tx_dropped++;
1627
		return NET_XMIT_DROP;
1628 1629
	}

1630
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1631
	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1632 1633
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

1634 1635 1636 1637
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1638
	txch = cpsw->txv[q_idx].ch;
1639
	txq = netdev_get_tx_queue(ndev, q_idx);
1640
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1641 1642 1643 1644 1645
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1646 1647 1648
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1649 1650
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
1651 1652 1653 1654 1655 1656

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
1657
	}
1658

1659 1660
	return NETDEV_TX_OK;
fail:
1661
	ndev->stats.tx_dropped++;
1662
	netif_tx_stop_queue(txq);
1663 1664 1665 1666 1667 1668 1669

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

1670 1671 1672
	return NETDEV_TX_BUSY;
}

1673
#if IS_ENABLED(CONFIG_TI_CPTS)
1674

1675
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1676
{
1677
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1678 1679
	u32 ts_en, seq_id;

1680 1681
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
1682 1683 1684 1685 1686 1687 1688
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1689
	if (cpts_is_tx_enabled(cpsw->cpts))
1690 1691
		ts_en |= CPSW_V1_TS_TX_EN;

1692
	if (cpts_is_rx_enabled(cpsw->cpts))
1693 1694 1695 1696 1697 1698 1699 1700
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1701
	struct cpsw_slave *slave;
1702
	struct cpsw_common *cpsw = priv->cpsw;
1703 1704
	u32 ctrl, mtype;

1705
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1706

1707
	ctrl = slave_read(slave, CPSW2_CONTROL);
1708
	switch (cpsw->version) {
1709 1710
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1711

1712
		if (cpts_is_tx_enabled(cpsw->cpts))
1713
			ctrl |= CTRL_V2_TX_TS_BITS;
1714

1715
		if (cpts_is_rx_enabled(cpsw->cpts))
1716
			ctrl |= CTRL_V2_RX_TS_BITS;
1717
		break;
1718 1719 1720 1721
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1722
		if (cpts_is_tx_enabled(cpsw->cpts))
1723 1724
			ctrl |= CTRL_V3_TX_TS_BITS;

1725
		if (cpts_is_rx_enabled(cpsw->cpts))
1726
			ctrl |= CTRL_V3_RX_TS_BITS;
1727
		break;
1728
	}
1729 1730 1731 1732 1733

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1734
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1735 1736
}

1737
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1738
{
1739
	struct cpsw_priv *priv = netdev_priv(dev);
1740
	struct hwtstamp_config cfg;
1741 1742
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1743

1744 1745 1746
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1747 1748
		return -EOPNOTSUPP;

1749 1750 1751 1752 1753 1754 1755
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1756
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1757 1758 1759 1760
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1761
		cpts_rx_enable(cpts, 0);
1762 1763
		break;
	case HWTSTAMP_FILTER_ALL:
1764 1765
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
1766 1767 1768
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1769 1770 1771
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
1772 1773 1774 1775 1776 1777 1778 1779 1780
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1781
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1782 1783 1784 1785 1786 1787
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1788
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1789

1790
	switch (cpsw->version) {
1791
	case CPSW_VERSION_1:
1792
		cpsw_hwtstamp_v1(cpsw);
1793 1794
		break;
	case CPSW_VERSION_2:
1795
	case CPSW_VERSION_3:
1796 1797 1798
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1799
		WARN_ON(1);
1800 1801 1802 1803 1804
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1805 1806
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1807 1808
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1809 1810
	struct hwtstamp_config cfg;

1811 1812 1813
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1814 1815 1816
		return -EOPNOTSUPP;

	cfg.flags = 0;
1817 1818 1819
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1820
			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1821 1822 1823

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1824 1825 1826 1827 1828
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1829

1830 1831 1832 1833
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1834 1835 1836 1837
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1838
	struct cpsw_priv *priv = netdev_priv(dev);
1839 1840
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1841

1842 1843 1844
	if (!netif_running(dev))
		return -EINVAL;

1845 1846
	switch (cmd) {
	case SIOCSHWTSTAMP:
1847 1848 1849
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1850 1851
	}

1852
	if (!cpsw->slaves[slave_no].phy)
1853
		return -EOPNOTSUPP;
1854
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1855 1856
}

1857 1858 1859
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1860
	struct cpsw_common *cpsw = priv->cpsw;
1861
	int ch;
1862 1863

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1864
	ndev->stats.tx_errors++;
1865
	cpsw_intr_disable(cpsw);
1866
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1867 1868
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1869 1870
	}

1871
	cpsw_intr_enable(cpsw);
1872 1873
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
1874 1875
}

1876 1877 1878 1879
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1880
	struct cpsw_common *cpsw = priv->cpsw;
1881 1882
	int flags = 0;
	u16 vid = 0;
1883
	int ret;
1884 1885 1886 1887

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1888
	ret = pm_runtime_get_sync(cpsw->dev);
1889
	if (ret < 0) {
1890
		pm_runtime_put_noidle(cpsw->dev);
1891 1892 1893
		return ret;
	}

1894 1895
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1896 1897 1898
		flags = ALE_VLAN;
	}

1899
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1900
			   flags, vid);
1901
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1902 1903 1904 1905 1906 1907
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1908
	pm_runtime_put(cpsw->dev);
1909

1910 1911 1912
	return 0;
}

1913 1914 1915
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1916
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1917

1918 1919 1920 1921
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1922 1923 1924
}
#endif

1925 1926 1927 1928
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1929 1930
	int unreg_mcast_mask = 0;
	u32 port_mask;
1931
	struct cpsw_common *cpsw = priv->cpsw;
1932

1933
	if (cpsw->data.dual_emac) {
1934
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1935

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1946

1947
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1948
				unreg_mcast_mask);
1949 1950 1951
	if (ret != 0)
		return ret;

1952
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1953
				 HOST_PORT_NUM, ALE_VLAN, vid);
1954 1955 1956
	if (ret != 0)
		goto clean_vid;

1957
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1958
				 port_mask, ALE_VLAN, vid, 0);
1959 1960 1961 1962 1963
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1964
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1965
			   HOST_PORT_NUM, ALE_VLAN, vid);
1966
clean_vid:
1967
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1968 1969 1970 1971
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1972
				    __be16 proto, u16 vid)
1973 1974
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1975
	struct cpsw_common *cpsw = priv->cpsw;
1976
	int ret;
1977

1978
	if (vid == cpsw->data.default_vlan)
1979 1980
		return 0;

1981
	ret = pm_runtime_get_sync(cpsw->dev);
1982
	if (ret < 0) {
1983
		pm_runtime_put_noidle(cpsw->dev);
1984 1985 1986
		return ret;
	}

1987
	if (cpsw->data.dual_emac) {
1988 1989 1990 1991 1992 1993
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1994 1995
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1996 1997 1998 1999
				return -EINVAL;
		}
	}

2000
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2001 2002
	ret = cpsw_add_vlan_ale_entry(priv, vid);

2003
	pm_runtime_put(cpsw->dev);
2004
	return ret;
2005 2006 2007
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2008
				     __be16 proto, u16 vid)
2009 2010
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2011
	struct cpsw_common *cpsw = priv->cpsw;
2012 2013
	int ret;

2014
	if (vid == cpsw->data.default_vlan)
2015 2016
		return 0;

2017
	ret = pm_runtime_get_sync(cpsw->dev);
2018
	if (ret < 0) {
2019
		pm_runtime_put_noidle(cpsw->dev);
2020 2021 2022
		return ret;
	}

2023
	if (cpsw->data.dual_emac) {
2024 2025
		int i;

2026 2027
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2028 2029 2030 2031
				return -EINVAL;
		}
	}

2032
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2033
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2034 2035 2036
	if (ret != 0)
		return ret;

2037
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2038
				 HOST_PORT_NUM, ALE_VLAN, vid);
2039 2040 2041
	if (ret != 0)
		return ret;

2042
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2043
				 0, ALE_VLAN, vid);
2044
	pm_runtime_put(cpsw->dev);
2045
	return ret;
2046 2047
}

2048 2049 2050 2051
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2052
	struct cpsw_slave *slave;
2053
	u32 min_rate;
2054
	u32 ch_rate;
2055
	int i, ret;
2056 2057 2058 2059 2060

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2061 2062 2063 2064 2065
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2066 2067 2068
		return -EINVAL;
	}

2069
	if (rate > cpsw->speed) {
2070
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2071 2072 2073 2074 2075 2076 2077 2078 2079
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2080 2081
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2082

2083 2084
	if (ret)
		return ret;
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2095
	cpsw_split_res(ndev);
2096 2097 2098
	return ret;
}

2099 2100 2101 2102
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2103
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2104
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2105 2106
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2107
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2108
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2109 2110 2111
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2112 2113
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2114 2115
};

2116 2117
static int cpsw_get_regs_len(struct net_device *ndev)
{
2118
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2119

2120
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2121 2122 2123 2124 2125 2126
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2127
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2128 2129

	/* update CPSW IP version */
2130
	regs->version = cpsw->version;
2131

2132
	cpsw_ale_dump(cpsw->ale, reg);
2133 2134
}

2135 2136 2137
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2138
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2139
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2140

2141
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2142
	strlcpy(info->version, "1.0", sizeof(info->version));
2143
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2158
#if IS_ENABLED(CONFIG_TI_CPTS)
2159 2160 2161
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2162
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2163 2164 2165 2166 2167 2168 2169 2170

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2171
	info->phc_index = cpsw->cpts->phc_index;
2172 2173 2174 2175 2176
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2177
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2178
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2179 2180
	return 0;
}
2181
#else
2182 2183 2184
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2185 2186 2187 2188 2189 2190 2191 2192 2193
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2194
#endif
2195

2196 2197
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2198 2199
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2200 2201
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2202

2203
	if (!cpsw->slaves[slave_no].phy)
2204
		return -EOPNOTSUPP;
2205 2206 2207

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2208 2209
}

2210 2211
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2212 2213
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2214 2215
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2216

2217
	if (cpsw->slaves[slave_no].phy)
2218 2219
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2220 2221 2222 2223
	else
		return -EOPNOTSUPP;
}

2224 2225 2226
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2227 2228
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2229 2230 2231 2232

	wol->supported = 0;
	wol->wolopts = 0;

2233 2234
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2235 2236 2237 2238 2239
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2240 2241
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2242

2243 2244
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2245 2246 2247 2248
	else
		return -EOPNOTSUPP;
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2272 2273 2274
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2275
	struct cpsw_common *cpsw = priv->cpsw;
2276 2277
	int ret;

2278
	ret = pm_runtime_get_sync(cpsw->dev);
2279 2280
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2281
		pm_runtime_put_noidle(cpsw->dev);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2292
	ret = pm_runtime_put(priv->cpsw->dev);
2293 2294 2295 2296
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2333
	struct netdev_queue *queue;
2334
	struct cpsw_vector *vec;
2335 2336 2337 2338
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
2339
		vec = cpsw->rxv;
2340 2341 2342
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2343
		vec = cpsw->txv;
2344 2345 2346 2347
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2348
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2349 2350
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2351

2352 2353
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2354

2355
		if (!vec[*ch].ch)
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2366
		ret = cpdma_chan_destroy(vec[*ch].ch);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2393
static void cpsw_suspend_data_pass(struct net_device *ndev)
2394
{
2395
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2396
	struct cpsw_slave *slave;
2397
	int i;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
2430
	if (cpsw->usage_count) {
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2484
	if (cpsw->usage_count)
2485
		cpsw_split_res(ndev);
2486

2487 2488 2489
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2490 2491 2492 2493 2494 2495
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2532 2533 2534 2535 2536 2537 2538 2539 2540
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2541
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2542 2543 2544 2545 2546 2547 2548 2549
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2550
	int ret;
2551 2552 2553 2554

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2555 2556
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2557 2558 2559 2560 2561
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

2562
	cpsw_suspend_data_pass(ndev);
2563 2564 2565

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

2566
	if (cpsw->usage_count)
2567 2568
		cpdma_chan_split_pool(cpsw->dma);

2569 2570 2571
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2572

2573
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2574 2575 2576 2577
	dev_close(ndev);
	return ret;
}

2578 2579 2580 2581 2582
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2583
	.get_ts_info	= cpsw_get_ts_info,
2584 2585
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2586 2587 2588
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2589 2590
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2591 2592
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2593 2594
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2595 2596
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2597 2598
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2599 2600
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2601 2602
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2603
	.nway_reset	= cpsw_nway_reset,
2604 2605
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2606 2607
};

2608
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2609
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2610
{
2611
	void __iomem		*regs = cpsw->regs;
2612
	int			slave_num = slave->slave_num;
2613
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2614 2615

	slave->data	= data;
2616 2617
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2618
	slave->port_vlan = data->dual_emac_res_vlan;
2619 2620
}

2621
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2633
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2634 2635 2636 2637
		return -EINVAL;
	}
	data->slaves = prop;

2638
	if (of_property_read_u32(node, "active_slave", &prop)) {
2639
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2640
		return -EINVAL;
2641
	}
2642
	data->active_slave = prop;
2643

2644 2645 2646
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2647
	if (!data->slave_data)
2648
		return -ENOMEM;
2649 2650

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2651
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2652
		return -EINVAL;
2653 2654 2655 2656
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2657
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2658
		return -EINVAL;
2659 2660 2661 2662
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2663
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2664
		return -EINVAL;
2665 2666 2667 2668
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2669
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2670
		return -EINVAL;
2671 2672 2673
	}
	data->mac_control = prop;

2674 2675
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2676

2677 2678 2679 2680 2681 2682
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2683
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2684

2685
	for_each_available_child_of_node(node, slave_node) {
2686 2687
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2688 2689 2690
		int lenp;
		const __be32 *parp;

2691 2692 2693 2694
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2695 2696
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2697
		parp = of_get_property(slave_node, "phy_id", &lenp);
2698 2699
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
2700 2701
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
2702
		} else if (of_phy_is_fixed_link(slave_node)) {
2703 2704 2705
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2706
			ret = of_phy_register_fixed_link(slave_node);
2707 2708 2709
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2710
				return ret;
2711
			}
2712
			slave_data->phy_node = of_node_get(slave_node);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2732
			put_device(&mdio->dev);
2733
		} else {
2734 2735 2736
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2737
			goto no_phy_slave;
2738
		}
2739 2740 2741 2742 2743 2744 2745 2746
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2747
		mac_addr = of_get_mac_address(slave_node);
2748
		if (mac_addr) {
2749
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2750
		} else {
2751 2752 2753 2754
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2755
		}
2756
		if (data->dual_emac) {
2757
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2758
						 &prop)) {
2759
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2760
				slave_data->dual_emac_res_vlan = i+1;
2761 2762
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2763 2764 2765 2766 2767
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2768
		i++;
2769 2770
		if (i == data->slaves)
			break;
2771 2772 2773 2774 2775
	}

	return 0;
}

2776 2777
static void cpsw_remove_dt(struct platform_device *pdev)
{
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

2791 2792
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2793 2794 2795 2796 2797 2798 2799 2800

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2801 2802 2803
	of_platform_depopulate(&pdev->dev);
}

2804
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2805
{
2806 2807
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2808 2809
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2810
	int ret = 0;
2811

2812
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2813
	if (!ndev) {
2814
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2815 2816 2817 2818
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2819
	priv_sl2->cpsw = cpsw;
2820 2821 2822 2823 2824 2825 2826
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2827 2828
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2829 2830
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2831 2832
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2833 2834 2835 2836
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2837
	cpsw->slaves[1].ndev = ndev;
2838
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2839 2840

	ndev->netdev_ops = &cpsw_netdev_ops;
2841
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2842 2843

	/* register the network device */
2844
	SET_NETDEV_DEV(ndev, cpsw->dev);
2845 2846
	ret = register_netdev(ndev);
	if (ret) {
2847
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2848 2849 2850 2851 2852 2853 2854
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2855 2856
#define CPSW_QUIRK_IRQ		BIT(0)

2857
static const struct platform_device_id cpsw_devtype[] = {
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2893
static int cpsw_probe(struct platform_device *pdev)
2894
{
2895
	struct clk			*clk;
2896
	struct cpsw_platform_data	*data;
2897 2898 2899 2900
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2901
	void __iomem			*ss_regs;
2902
	void __iomem			*cpts_regs;
2903
	struct resource			*res, *ss_res;
2904
	const struct of_device_id	*of_id;
2905
	struct gpio_descs		*mode;
2906
	u32 slave_offset, sliver_offset, slave_size;
2907
	struct cpsw_common		*cpsw;
2908 2909
	int ret = 0, i;
	int irq;
2910

2911
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2912 2913 2914
	if (!cpsw)
		return -ENOMEM;

2915
	cpsw->dev = &pdev->dev;
2916

2917
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2918
	if (!ndev) {
2919
		dev_err(&pdev->dev, "error allocating net_device\n");
2920 2921 2922 2923 2924
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2925
	priv->cpsw = cpsw;
2926 2927 2928
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2929
	cpsw->rx_packet_max = max(rx_packet_max, 128);
2930

2931 2932 2933 2934 2935 2936 2937
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2938 2939 2940 2941 2942
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2943 2944 2945
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2946 2947 2948 2949 2950 2951
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
2952
		goto clean_runtime_disable_ret;
2953
	}
2954

2955 2956
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2957
		goto clean_dt_ret;
2958

2959
	data = &cpsw->data;
2960 2961
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2962

2963 2964
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2965
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2966
	} else {
J
Joe Perches 已提交
2967
		eth_random_addr(priv->mac_addr);
2968
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2969 2970 2971 2972
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2973
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2974 2975
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2976
	if (!cpsw->slaves) {
2977
		ret = -ENOMEM;
2978
		goto clean_dt_ret;
2979 2980
	}
	for (i = 0; i < data->slaves; i++)
2981
		cpsw->slaves[i].slave_num = i;
2982

2983
	cpsw->slaves[0].ndev = ndev;
2984 2985
	priv->emac_port = 0;

2986 2987
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2988
		dev_err(priv->dev, "fck is not found\n");
2989
		ret = -ENODEV;
2990
		goto clean_dt_ret;
2991
	}
2992
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2993

2994 2995 2996 2997
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
2998
		goto clean_dt_ret;
2999
	}
3000
	cpsw->regs = ss_regs;
3001

3002
	cpsw->version = readl(&cpsw->regs->id_ver);
3003

3004
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3005 3006 3007
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
3008
		goto clean_dt_ret;
3009 3010 3011
	}

	memset(&dma_params, 0, sizeof(dma_params));
3012 3013
	memset(&ale_params, 0, sizeof(ale_params));

3014
	switch (cpsw->version) {
3015
	case CPSW_VERSION_1:
3016
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3017
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3018
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3019 3020 3021 3022 3023 3024 3025 3026 3027
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3028
	case CPSW_VERSION_3:
3029
	case CPSW_VERSION_4:
3030
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3031
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3032
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3033 3034 3035 3036 3037 3038 3039
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3040
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3041 3042
		break;
	default:
3043
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3044
		ret = -ENODEV;
3045
		goto clean_dt_ret;
3046
	}
3047 3048 3049 3050
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3051 3052 3053 3054
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3055
	dma_params.dev		= &pdev->dev;
3056 3057 3058 3059 3060
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3061 3062 3063 3064 3065 3066 3067

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3068
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3069
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3070
	dma_params.descs_pool_size	= descs_pool_size;
3071

3072 3073
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3074 3075
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3076
		goto clean_dt_ret;
3077 3078
	}

3079
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3080 3081 3082 3083 3084 3085
	if (IS_ERR(cpsw->txv[0].ch)) {
		dev_err(priv->dev, "error initializing tx dma channel\n");
		ret = PTR_ERR(cpsw->txv[0].ch);
		goto clean_dma_ret;
	}

3086
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3087 3088 3089
	if (IS_ERR(cpsw->rxv[0].ch)) {
		dev_err(priv->dev, "error initializing rx dma channel\n");
		ret = PTR_ERR(cpsw->rxv[0].ch);
3090 3091 3092
		goto clean_dma_ret;
	}

3093
	ale_params.dev			= &pdev->dev;
3094 3095
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
3096
	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3097

3098 3099
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3100 3101 3102 3103 3104
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3105
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3106 3107
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
3108
		goto clean_dma_ret;
3109 3110
	}

3111
	ndev->irq = platform_get_irq(pdev, 1);
3112 3113
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3114
		ret = ndev->irq;
3115
		goto clean_dma_ret;
3116 3117
	}

3118 3119 3120 3121
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
3122
			cpsw->quirk_irq = true;
3123 3124
	}

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
	cpsw_split_res(ndev);

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3139
		goto clean_dma_ret;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3150 3151 3152 3153 3154 3155 3156
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3157

3158
	/* RX IRQ */
3159
	irq = platform_get_irq(pdev, 1);
3160 3161
	if (irq < 0) {
		ret = irq;
3162
		goto clean_dma_ret;
3163
	}
3164

3165
	cpsw->irqs_table[0] = irq;
3166
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3167
			       0, dev_name(&pdev->dev), cpsw);
3168 3169
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3170
		goto clean_dma_ret;
3171 3172
	}

3173
	/* TX IRQ */
3174
	irq = platform_get_irq(pdev, 2);
3175 3176
	if (irq < 0) {
		ret = irq;
3177
		goto clean_dma_ret;
3178
	}
3179

3180
	cpsw->irqs_table[1] = irq;
3181
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3182
			       0, dev_name(&pdev->dev), cpsw);
3183 3184
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3185
		goto clean_dma_ret;
3186
	}
3187

3188 3189 3190
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3191

3192 3193
	pm_runtime_put(&pdev->dev);

3194 3195
	return 0;

3196 3197
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3198
clean_dma_ret:
3199
	cpdma_ctlr_destroy(cpsw->dma);
3200 3201
clean_dt_ret:
	cpsw_remove_dt(pdev);
3202
	pm_runtime_put_sync(&pdev->dev);
3203
clean_runtime_disable_ret:
3204
	pm_runtime_disable(&pdev->dev);
3205
clean_ndev_ret:
3206
	free_netdev(priv->ndev);
3207 3208 3209
	return ret;
}

B
Bill Pemberton 已提交
3210
static int cpsw_remove(struct platform_device *pdev)
3211 3212
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3213
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3214 3215 3216 3217 3218 3219 3220
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3221

3222 3223
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3224
	unregister_netdev(ndev);
3225

3226
	cpts_release(cpsw->cpts);
3227
	cpdma_ctlr_destroy(cpsw->dma);
3228
	cpsw_remove_dt(pdev);
3229 3230
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3231 3232
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3233 3234 3235 3236
	free_netdev(ndev);
	return 0;
}

3237
#ifdef CONFIG_PM_SLEEP
3238 3239 3240 3241
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3242
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3243

3244
	if (cpsw->data.dual_emac) {
3245
		int i;
3246

3247 3248 3249
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3250 3251 3252 3253 3254
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3255

3256
	/* Select sleep pin state */
3257
	pinctrl_pm_select_sleep_state(dev);
3258

3259 3260 3261 3262 3263 3264 3265
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3266
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3267

3268
	/* Select default pin state */
3269
	pinctrl_pm_select_default_state(dev);
3270

3271 3272
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3273
	if (cpsw->data.dual_emac) {
3274 3275
		int i;

3276 3277 3278
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3279 3280 3281 3282 3283
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3284 3285
	rtnl_unlock();

3286 3287
	return 0;
}
3288
#endif
3289

3290
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3291 3292 3293 3294 3295

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3296
		.of_match_table = cpsw_of_mtable,
3297 3298
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3299
	.remove = cpsw_remove,
3300 3301
};

3302
module_platform_driver(cpsw_driver);
3303 3304 3305 3306 3307

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");