cpsw.c 78.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90 91 92 93 94 95 96 97

#define HOST_PORT_NUM		0
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121 122 123 124 125 126
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
#define CPSW_MIN_PACKET_SIZE	60
#define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
127
#define CPDMA_TX_PRIORITY_MAP	0x01234567
128

129 130 131
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

132 133 134
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135

136 137 138 139 140 141 142
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

143 144 145
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
146
#define IRQ_NUM			2
147
#define CPSW_MAX_QUEUES		8
148

149 150 151 152 153 154 155 156 157 158 159 160
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

161
struct cpsw_wr_regs {
162 163 164 165 166 167 168 169
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
170 171 172 173 174 175 176 177 178
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

179 180
};

181
struct cpsw_ss_regs {
182 183 184 185 186
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
187 188 189 190 191 192 193 194
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
242 243
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
244 245 246 247 248 249
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

250 251 252
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
267 268 269 270 271 272 273 274 275

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
276

277 278 279 280 281 282 283 284
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

285 286 287
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
288
	u32	tx_in_ctl;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

346
struct cpsw_slave {
347
	void __iomem			*regs;
348 349 350 351 352
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
353 354 355
	struct net_device		*ndev;
	u32				port_vlan;
	u32				open_stat;
356 357
};

358 359 360 361 362 363 364 365 366 367
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
	return __raw_readl(slave->regs + offset);
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
	__raw_writel(val, slave->regs + offset);
}

368
struct cpsw_common {
369
	struct device			*dev;
370
	struct cpsw_platform_data	data;
371 372
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
373 374 375 376
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
377 378 379 380
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
381
	struct cpsw_slave		*slaves;
382
	struct cpdma_ctlr		*dma;
383 384
	struct cpdma_chan		*txch[CPSW_MAX_QUEUES];
	struct cpdma_chan		*rxch[CPSW_MAX_QUEUES];
385
	struct cpsw_ale			*ale;
386 387 388 389
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
390
	struct cpts			*cpts;
391
	int				rx_ch_num, tx_ch_num;
392 393 394
};

struct cpsw_priv {
395 396 397 398
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
399 400
	bool				rx_pause;
	bool				tx_pause;
401
	u32 emac_port;
402
	struct cpsw_common *cpsw;
403 404
};

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
483

484
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
485
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
486 487
#define for_each_slave(priv, func, arg...)				\
	do {								\
488
		struct cpsw_slave *slave;				\
489
		struct cpsw_common *cpsw = (priv)->cpsw;		\
490
		int n;							\
491 492
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
493
		else							\
494 495
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
496 497
					n; n--)				\
				(func)(slave++, ##arg);			\
498 499
	} while (0)

500
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
501
	do {								\
502
		if (!cpsw->data.dual_emac)				\
503 504
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
505
			ndev = cpsw->slaves[0].ndev;			\
506 507
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
508
			ndev = cpsw->slaves[1].ndev;			\
509 510
			skb->dev = ndev;				\
		}							\
511
	} while (0)
512
#define cpsw_add_mcast(cpsw, priv, addr)				\
513
	do {								\
514 515
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
516
						priv->emac_port;	\
517
			int slave_port = cpsw_get_slave_port(		\
518
						slave->slave_num);	\
519
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
520
				1 << slave_port | ALE_PORT_HOST,	\
521 522
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
523
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
524
				ALE_ALL_PORTS,				\
525 526 527 528
				0, 0, 0);				\
		}							\
	} while (0)

529
static inline int cpsw_get_slave_port(u32 slave_num)
530
{
531
	return slave_num + 1;
532
}
533

534 535
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
536 537
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
538 539
	int i;

540
	if (cpsw->data.dual_emac) {
541 542 543 544 545 546
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
547 548
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

570
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
571
			for (i = 0; i <= cpsw->data.slaves; i++) {
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
588
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
589 590 591 592 593

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
594
			/* Don't Flood All Unicast Packets to Host port */
595 596
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

597
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
598
			for (i = 0; i <= cpsw->data.slaves; i++) {
599 600 601 602 603 604 605 606 607 608
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

609 610 611
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
612
	struct cpsw_common *cpsw = priv->cpsw;
613 614
	int vid;

615 616
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
617
	else
618
		vid = cpsw->data.default_vlan;
619 620 621

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
622
		cpsw_set_promiscious(ndev, true);
623
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
624
		return;
625 626 627
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
628 629
	}

630
	/* Restore allmulti on vlans if necessary */
631
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
632

633
	/* Clear all mcast from ALE */
634
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
635 636 637 638 639 640

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
641
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
642 643 644 645
		}
	}
}

646
static void cpsw_intr_enable(struct cpsw_common *cpsw)
647
{
648 649
	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
650

651
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
652 653 654
	return;
}

655
static void cpsw_intr_disable(struct cpsw_common *cpsw)
656
{
657 658
	__raw_writel(0, &cpsw->wr_regs->tx_en);
	__raw_writel(0, &cpsw->wr_regs->rx_en);
659

660
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
661 662 663
	return;
}

664
static void cpsw_tx_handler(void *token, int len, int status)
665
{
666
	struct netdev_queue	*txq;
667 668
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
669
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
670

671 672 673
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
674 675 676 677
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

678
	cpts_tx_timestamp(cpsw->cpts, skb);
679 680
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
681 682 683
	dev_kfree_skb_any(skb);
}

684
static void cpsw_rx_handler(void *token, int len, int status)
685
{
686
	struct cpdma_chan	*ch;
687
	struct sk_buff		*skb = token;
688
	struct sk_buff		*new_skb;
689 690
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
691
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
692

693
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
694

695
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
696
		bool ndev_status = false;
697
		struct cpsw_slave *slave = cpsw->slaves;
698 699
		int n;

700
		if (cpsw->data.dual_emac) {
701
			/* In dual emac mode check for all interfaces */
702
			for (n = cpsw->data.slaves; n; n--, slave++)
703 704 705 706 707 708 709
				if (netif_running(slave->ndev))
					ndev_status = true;
		}

		if (ndev_status && (status >= 0)) {
			/* The packet received is for the interface which
			 * is already down and the other interface is up
710
			 * and running, instead of freeing which results
711 712 713 714 715 716 717
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

718
		/* the interface is going down, skbs are purged */
719 720 721
		dev_kfree_skb_any(skb);
		return;
	}
722

723
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
724
	if (new_skb) {
725
		skb_copy_queue_mapping(new_skb, skb);
726
		skb_put(skb, len);
727
		cpts_rx_timestamp(cpsw->cpts, skb);
728 729
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
730 731
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
732
		kmemleak_not_leak(new_skb);
733
	} else {
734
		ndev->stats.rx_dropped++;
735
		new_skb = skb;
736 737
	}

738
requeue:
739 740 741 742 743
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

744 745
	ch = cpsw->rxch[skb_get_queue_mapping(new_skb)];
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
746
				skb_tailroom(new_skb), 0);
747 748
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
749 750
}

751
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
752
{
753
	struct cpsw_common *cpsw = dev_id;
754

755
	writel(0, &cpsw->wr_regs->tx_en);
756
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
757

758 759 760
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
761 762
	}

763
	napi_schedule(&cpsw->napi_tx);
764 765 766 767 768
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
769
	struct cpsw_common *cpsw = dev_id;
770

771
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
772
	writel(0, &cpsw->wr_regs->rx_en);
773

774 775 776
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
777 778
	}

779
	napi_schedule(&cpsw->napi_rx);
780
	return IRQ_HANDLED;
781 782
}

783 784
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
785 786
	u32			ch_map;
	int			num_tx, ch;
787
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
	for (ch = 0, num_tx = 0; num_tx < budget; ch_map >>= 1, ch++) {
		if (!ch_map) {
			ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
			if (!ch_map)
				break;

			ch = 0;
		}

		if (!(ch_map & 0x01))
			continue;

		num_tx += cpdma_chan_process(cpsw->txch[ch], budget - num_tx);
	}

806 807
	if (num_tx < budget) {
		napi_complete(napi_tx);
808
		writel(0xff, &cpsw->wr_regs->tx_en);
809 810 811
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
812
		}
813 814 815 816 817 818
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
819
{
820 821
	u32			ch_map;
	int			num_rx, ch;
822
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
	for (ch = 0, num_rx = 0; num_rx < budget; ch_map >>= 1, ch++) {
		if (!ch_map) {
			ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
			if (!ch_map)
				break;

			ch = 0;
		}

		if (!(ch_map & 0x01))
			continue;

		num_rx += cpdma_chan_process(cpsw->rxch[ch], budget - num_rx);
	}

841
	if (num_rx < budget) {
842
		napi_complete(napi_rx);
843
		writel(0xff, &cpsw->wr_regs->rx_en);
844 845 846
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
847
		}
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

	__raw_writel(1, reg);
	do {
		cpu_relax();
	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));

	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
}

#define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
			 ((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
872 873
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
874 875 876 877 878 879 880 881
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
882
	struct cpsw_common *cpsw = priv->cpsw;
883 884 885 886

	if (!phy)
		return;

887
	slave_port = cpsw_get_slave_port(slave->slave_num);
888 889

	if (phy->link) {
890
		mac_control = cpsw->data.mac_control;
891 892

		/* enable forwarding */
893
		cpsw_ale_control_set(cpsw->ale, slave_port,
894 895 896 897 898 899
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
900 901 902 903

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
904 905
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
906

907 908 909 910 911 912
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

913 914 915 916
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
917
		cpsw_ale_control_set(cpsw->ale, slave_port,
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
		__raw_writel(mac_control, &slave->sliver->mac_control);
	}

	slave->mac_control = mac_control;
}

static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
		netif_carrier_on(ndev);
		if (netif_running(ndev))
939
			netif_tx_wake_all_queues(ndev);
940 941
	} else {
		netif_carrier_off(ndev);
942
		netif_tx_stop_all_queues(ndev);
943 944 945
	}
}

946 947 948
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
949
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
950

951
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
952 953 954 955 956 957 958 959 960 961 962 963
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
964
	struct cpsw_common *cpsw = priv->cpsw;
965 966 967

	coal_intvl = coal->rx_coalesce_usecs;

968
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
969
	prescale = cpsw->bus_freq_mhz * 4;
970

971 972 973 974 975
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
997 998
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
999 1000 1001 1002

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1003 1004

update_return:
1005
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1006 1007

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1008
	cpsw->coal_intvl = coal_intvl;
1009 1010 1011 1012

	return 0;
}

1013 1014
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1015 1016
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1017 1018
	switch (sset) {
	case ETH_SS_STATS:
1019 1020 1021
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1022 1023 1024 1025 1026
	default:
		return -EOPNOTSUPP;
	}
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1044 1045
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1046
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1047 1048 1049 1050 1051
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1052
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1053 1054 1055 1056
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1057 1058 1059

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1060 1061 1062 1063 1064 1065 1066 1067
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1068
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1069 1070
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1071 1072

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		cpdma_chan_get_stats(cpsw->rxch[ch], &ch_stats);
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1085

1086 1087 1088 1089 1090 1091
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
		cpdma_chan_get_stats(cpsw->txch[ch], &ch_stats);
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1092 1093 1094 1095
		}
	}
}

1096
static int cpsw_common_res_usage_state(struct cpsw_common *cpsw)
1097 1098 1099 1100
{
	u32 i;
	u32 usage_count = 0;

1101
	if (!cpsw->data.dual_emac)
1102 1103
		return 0;

1104 1105
	for (i = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].open_stat)
1106 1107 1108 1109 1110
			usage_count++;

	return usage_count;
}

1111
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1112 1113
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1114
{
1115 1116
	struct cpsw_common *cpsw = priv->cpsw;

1117
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1118
				 priv->emac_port + cpsw->data.dual_emac);
1119 1120 1121 1122 1123 1124
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1125
	struct cpsw_common *cpsw = priv->cpsw;
1126
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1127

1128
	if (cpsw->version == CPSW_VERSION_1)
1129 1130 1131
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1132
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1133
			  port_mask, port_mask, 0);
1134
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1135
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1136 1137 1138
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1139 1140
}

1141
static void soft_reset_slave(struct cpsw_slave *slave)
1142 1143 1144
{
	char name[32];

1145
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1146
	soft_reset(name, &slave->sliver->soft_reset);
1147 1148 1149 1150 1151
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1152
	struct cpsw_common *cpsw = priv->cpsw;
1153 1154

	soft_reset_slave(slave);
1155 1156 1157

	/* setup priority mapping */
	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1158

1159
	switch (cpsw->version) {
1160 1161 1162 1163
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
		break;
	case CPSW_VERSION_2:
1164
	case CPSW_VERSION_3:
1165
	case CPSW_VERSION_4:
1166 1167 1168
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
		break;
	}
1169 1170

	/* setup max packet size, and mac address */
1171
	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1172 1173 1174 1175
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1176
	slave_port = cpsw_get_slave_port(slave->slave_num);
1177

1178
	if (cpsw->data.dual_emac)
1179 1180
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1181
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1182
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1183

1184
	if (slave->data->phy_node) {
1185
		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1186
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1187 1188 1189 1190 1191 1192 1193
		if (!slave->phy) {
			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
				slave->data->phy_node->full_name,
				slave->slave_num);
			return;
		}
	} else {
1194
		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1195
				 &cpsw_adjust_link, slave->data->phy_if);
1196 1197 1198 1199 1200 1201 1202 1203 1204
		if (IS_ERR(slave->phy)) {
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
				PTR_ERR(slave->phy));
			slave->phy = NULL;
			return;
		}
	}
1205

1206
	phy_attached_info(slave->phy);
1207

1208 1209 1210
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1211
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1212 1213
}

1214 1215
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1216 1217
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1218 1219
	u32 reg;
	int i;
1220
	int unreg_mcast_mask;
1221

1222
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1223 1224
	       CPSW2_PORT_VLAN;

1225
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1226

1227 1228
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1229

1230 1231 1232 1233 1234
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1235
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1236 1237
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1238 1239
}

1240 1241
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1242
	u32 fifo_mode;
1243 1244
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1245

1246
	/* soft reset the controller and initialize ale */
1247
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1248
	cpsw_ale_start(cpsw->ale);
1249 1250

	/* switch to vlan unaware mode */
1251
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1252
			     CPSW_ALE_VLAN_AWARE);
1253
	control_reg = readl(&cpsw->regs->control);
1254
	control_reg |= CPSW_VLAN_AWARE;
1255
	writel(control_reg, &cpsw->regs->control);
1256
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1257
		     CPSW_FIFO_NORMAL_MODE;
1258
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1259 1260 1261

	/* setup host port priority mapping */
	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1262 1263
		     &cpsw->host_port_regs->cpdma_tx_pri_map);
	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1264

1265
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1266 1267
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1268
	if (!cpsw->data.dual_emac) {
1269
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1270
				   0, 0);
1271
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1272
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1273
	}
1274 1275
}

1276 1277 1278 1279 1280
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxch[ch]);
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
			skb_set_queue_mapping(skb, ch);
			ret = cpdma_chan_submit(cpsw->rxch[ch], skb, skb->data,
						skb_tailroom(skb), 0);
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1305 1306
		}

1307 1308 1309
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1310

1311
	return 0;
1312 1313
}

1314
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1315
{
1316 1317
	u32 slave_port;

1318
	slave_port = cpsw_get_slave_port(slave->slave_num);
1319

1320 1321 1322 1323 1324
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1325
	cpsw_ale_control_set(cpsw->ale, slave_port,
1326
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1327
	soft_reset_slave(slave);
1328 1329
}

1330 1331 1332
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1333
	struct cpsw_common *cpsw = priv->cpsw;
1334
	int ret;
1335 1336
	u32 reg;

1337
	ret = pm_runtime_get_sync(cpsw->dev);
1338
	if (ret < 0) {
1339
		pm_runtime_put_noidle(cpsw->dev);
1340 1341
		return ret;
	}
1342

1343
	if (!cpsw_common_res_usage_state(cpsw))
1344
		cpsw_intr_disable(cpsw);
1345 1346
	netif_carrier_off(ndev);

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1360
	reg = cpsw->version;
1361 1362 1363 1364 1365 1366

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

	/* initialize host and slave ports */
1367
	if (!cpsw_common_res_usage_state(cpsw))
1368
		cpsw_init_host_port(priv);
1369 1370
	for_each_slave(priv, cpsw_slave_open, priv);

1371
	/* Add default VLAN */
1372
	if (!cpsw->data.dual_emac)
1373 1374
		cpsw_add_default_vlan(priv);
	else
1375
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1376
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1377

1378
	if (!cpsw_common_res_usage_state(cpsw)) {
1379
		/* disable priority elevation */
1380
		__raw_writel(0, &cpsw->regs->ptype);
1381

1382
		/* enable statistics collection only on all ports */
1383
		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1384

1385
		/* Enable internal fifo flow control */
1386
		writel(0x7, &cpsw->regs->flow_control);
1387

1388 1389
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1390

1391 1392 1393
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1394 1395
		}

1396 1397 1398
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1399 1400
		}

1401 1402 1403
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1404

1405
		if (cpts_register(cpsw->dev, cpsw->cpts,
1406 1407
				  cpsw->data.cpts_clock_mult,
				  cpsw->data.cpts_clock_shift))
1408 1409
			dev_err(priv->dev, "error registering cpts device\n");

1410 1411
	}

1412
	/* Enable Interrupt pacing if configured */
1413
	if (cpsw->coal_intvl != 0) {
1414 1415
		struct ethtool_coalesce coal;

1416
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1417 1418 1419
		cpsw_set_coalesce(ndev, &coal);
	}

1420 1421
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1422

1423 1424
	if (cpsw->data.dual_emac)
		cpsw->slaves[priv->emac_port].open_stat = true;
1425 1426 1427

	netif_tx_start_all_queues(ndev);

1428 1429
	return 0;

1430
err_cleanup:
1431
	cpdma_ctlr_stop(cpsw->dma);
1432
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1433
	pm_runtime_put_sync(cpsw->dev);
1434 1435
	netif_carrier_off(priv->ndev);
	return ret;
1436 1437 1438 1439 1440
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1441
	struct cpsw_common *cpsw = priv->cpsw;
1442 1443

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1444
	netif_tx_stop_all_queues(priv->ndev);
1445
	netif_carrier_off(priv->ndev);
1446

1447
	if (cpsw_common_res_usage_state(cpsw) <= 1) {
1448 1449
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1450
		cpts_unregister(cpsw->cpts);
1451 1452
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1453
		cpsw_ale_stop(cpsw->ale);
1454
	}
1455
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1456
	pm_runtime_put_sync(cpsw->dev);
1457 1458
	if (cpsw->data.dual_emac)
		cpsw->slaves[priv->emac_port].open_stat = false;
1459 1460 1461 1462 1463 1464 1465
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1466
	struct cpsw_common *cpsw = priv->cpsw;
1467 1468 1469
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1470

1471
	netif_trans_update(ndev);
1472 1473 1474

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1475
		ndev->stats.tx_dropped++;
1476 1477 1478
		return NETDEV_TX_OK;
	}

1479
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1480
				cpsw->cpts->tx_enable)
1481 1482 1483 1484
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

	skb_tx_timestamp(skb);

1485 1486 1487 1488 1489 1490
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

	txch = cpsw->txch[q_idx];
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1491 1492 1493 1494 1495
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1496 1497 1498
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1499 1500 1501 1502
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1503

1504 1505
	return NETDEV_TX_OK;
fail:
1506
	ndev->stats.tx_dropped++;
1507 1508
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1509 1510 1511
	return NETDEV_TX_BUSY;
}

1512 1513
#ifdef CONFIG_TI_CPTS

1514
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1515
{
1516
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1517 1518
	u32 ts_en, seq_id;

1519
	if (!cpsw->cpts->tx_enable && !cpsw->cpts->rx_enable) {
1520 1521 1522 1523 1524 1525 1526
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1527
	if (cpsw->cpts->tx_enable)
1528 1529
		ts_en |= CPSW_V1_TS_TX_EN;

1530
	if (cpsw->cpts->rx_enable)
1531 1532 1533 1534 1535 1536 1537 1538
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1539
	struct cpsw_slave *slave;
1540
	struct cpsw_common *cpsw = priv->cpsw;
1541 1542
	u32 ctrl, mtype;

1543 1544
	if (cpsw->data.dual_emac)
		slave = &cpsw->slaves[priv->emac_port];
1545
	else
1546
		slave = &cpsw->slaves[cpsw->data.active_slave];
1547

1548
	ctrl = slave_read(slave, CPSW2_CONTROL);
1549
	switch (cpsw->version) {
1550 1551
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1552

1553
		if (cpsw->cpts->tx_enable)
1554
			ctrl |= CTRL_V2_TX_TS_BITS;
1555

1556
		if (cpsw->cpts->rx_enable)
1557
			ctrl |= CTRL_V2_RX_TS_BITS;
1558
		break;
1559 1560 1561 1562
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1563
		if (cpsw->cpts->tx_enable)
1564 1565
			ctrl |= CTRL_V3_TX_TS_BITS;

1566
		if (cpsw->cpts->rx_enable)
1567
			ctrl |= CTRL_V3_RX_TS_BITS;
1568
		break;
1569
	}
1570 1571 1572 1573 1574

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1575
	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1576 1577
}

1578
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1579
{
1580
	struct cpsw_priv *priv = netdev_priv(dev);
1581
	struct hwtstamp_config cfg;
1582 1583
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1584

1585 1586 1587
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1588 1589
		return -EOPNOTSUPP;

1590 1591 1592 1593 1594 1595 1596
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1597
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		cpts->rx_enable = 0;
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		return -ERANGE;
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		cpts->rx_enable = 1;
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1625 1626
	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;

1627
	switch (cpsw->version) {
1628
	case CPSW_VERSION_1:
1629
		cpsw_hwtstamp_v1(cpsw);
1630 1631
		break;
	case CPSW_VERSION_2:
1632
	case CPSW_VERSION_3:
1633 1634 1635
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1636
		WARN_ON(1);
1637 1638 1639 1640 1641
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1642 1643
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1644 1645
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1646 1647
	struct hwtstamp_config cfg;

1648 1649 1650
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		return -EOPNOTSUPP;

	cfg.flags = 0;
	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts->rx_enable ?
			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1661 1662 1663 1664
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1665
	struct cpsw_priv *priv = netdev_priv(dev);
1666 1667
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1668

1669 1670 1671
	if (!netif_running(dev))
		return -EINVAL;

1672
	switch (cmd) {
1673
#ifdef CONFIG_TI_CPTS
1674
	case SIOCSHWTSTAMP:
1675 1676 1677
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1678
#endif
1679 1680
	}

1681
	if (!cpsw->slaves[slave_no].phy)
1682
		return -EOPNOTSUPP;
1683
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1684 1685
}

1686 1687 1688
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1689
	struct cpsw_common *cpsw = priv->cpsw;
1690
	int ch;
1691 1692

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1693
	ndev->stats.tx_errors++;
1694
	cpsw_intr_disable(cpsw);
1695 1696 1697 1698 1699
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
		cpdma_chan_stop(cpsw->txch[ch]);
		cpdma_chan_start(cpsw->txch[ch]);
	}

1700
	cpsw_intr_enable(cpsw);
1701 1702
}

1703 1704 1705 1706
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1707
	struct cpsw_common *cpsw = priv->cpsw;
1708 1709
	int flags = 0;
	u16 vid = 0;
1710
	int ret;
1711 1712 1713 1714

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1715
	ret = pm_runtime_get_sync(cpsw->dev);
1716
	if (ret < 0) {
1717
		pm_runtime_put_noidle(cpsw->dev);
1718 1719 1720
		return ret;
	}

1721 1722
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1723 1724 1725
		flags = ALE_VLAN;
	}

1726
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1727
			   flags, vid);
1728
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1729 1730 1731 1732 1733 1734
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1735
	pm_runtime_put(cpsw->dev);
1736

1737 1738 1739
	return 0;
}

1740 1741 1742
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1743
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1744

1745 1746 1747 1748
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1749 1750 1751
}
#endif

1752 1753 1754 1755
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1756 1757
	int unreg_mcast_mask = 0;
	u32 port_mask;
1758
	struct cpsw_common *cpsw = priv->cpsw;
1759

1760
	if (cpsw->data.dual_emac) {
1761
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1762

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1773

1774
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1775
				unreg_mcast_mask);
1776 1777 1778
	if (ret != 0)
		return ret;

1779
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1780
				 HOST_PORT_NUM, ALE_VLAN, vid);
1781 1782 1783
	if (ret != 0)
		goto clean_vid;

1784
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1785
				 port_mask, ALE_VLAN, vid, 0);
1786 1787 1788 1789 1790
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1791
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1792
			   HOST_PORT_NUM, ALE_VLAN, vid);
1793
clean_vid:
1794
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1795 1796 1797 1798
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1799
				    __be16 proto, u16 vid)
1800 1801
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1802
	struct cpsw_common *cpsw = priv->cpsw;
1803
	int ret;
1804

1805
	if (vid == cpsw->data.default_vlan)
1806 1807
		return 0;

1808
	ret = pm_runtime_get_sync(cpsw->dev);
1809
	if (ret < 0) {
1810
		pm_runtime_put_noidle(cpsw->dev);
1811 1812 1813
		return ret;
	}

1814
	if (cpsw->data.dual_emac) {
1815 1816 1817 1818 1819 1820
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1821 1822
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1823 1824 1825 1826
				return -EINVAL;
		}
	}

1827
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1828 1829
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1830
	pm_runtime_put(cpsw->dev);
1831
	return ret;
1832 1833 1834
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1835
				     __be16 proto, u16 vid)
1836 1837
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1838
	struct cpsw_common *cpsw = priv->cpsw;
1839 1840
	int ret;

1841
	if (vid == cpsw->data.default_vlan)
1842 1843
		return 0;

1844
	ret = pm_runtime_get_sync(cpsw->dev);
1845
	if (ret < 0) {
1846
		pm_runtime_put_noidle(cpsw->dev);
1847 1848 1849
		return ret;
	}

1850
	if (cpsw->data.dual_emac) {
1851 1852
		int i;

1853 1854
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1855 1856 1857 1858
				return -EINVAL;
		}
	}

1859
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1860
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1861 1862 1863
	if (ret != 0)
		return ret;

1864
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1865
				 HOST_PORT_NUM, ALE_VLAN, vid);
1866 1867 1868
	if (ret != 0)
		return ret;

1869
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1870
				 0, ALE_VLAN, vid);
1871
	pm_runtime_put(cpsw->dev);
1872
	return ret;
1873 1874
}

1875 1876 1877 1878
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1879
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1880
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1881 1882
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1883
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1884 1885 1886
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
1887 1888
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1889 1890
};

1891 1892
static int cpsw_get_regs_len(struct net_device *ndev)
{
1893
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1894

1895
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1896 1897 1898 1899 1900 1901
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
1902
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1903 1904

	/* update CPSW IP version */
1905
	regs->version = cpsw->version;
1906

1907
	cpsw_ale_dump(cpsw->ale, reg);
1908 1909
}

1910 1911 1912
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
1913
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1914
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
1915

1916
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1917
	strlcpy(info->version, "1.0", sizeof(info->version));
1918
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

1933 1934 1935 1936
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
#ifdef CONFIG_TI_CPTS
1937
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1938 1939 1940 1941 1942 1943 1944 1945

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
1946
	info->phc_index = cpsw->cpts->phc_index;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
#else
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
#endif
	return 0;
}

1965 1966
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
1967 1968
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1969 1970
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1971

1972
	if (cpsw->slaves[slave_no].phy)
1973 1974
		return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
						 ecmd);
1975 1976 1977 1978
	else
		return -EOPNOTSUPP;
}

1979 1980
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
1981 1982
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1983 1984
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1985

1986
	if (cpsw->slaves[slave_no].phy)
1987 1988
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
1989 1990 1991 1992
	else
		return -EOPNOTSUPP;
}

1993 1994 1995
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1996 1997
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1998 1999 2000 2001

	wol->supported = 0;
	wol->wolopts = 0;

2002 2003
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2004 2005 2006 2007 2008
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2009 2010
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2011

2012 2013
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2014 2015 2016 2017
	else
		return -EOPNOTSUPP;
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2041 2042 2043
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2044
	struct cpsw_common *cpsw = priv->cpsw;
2045 2046
	int ret;

2047
	ret = pm_runtime_get_sync(cpsw->dev);
2048 2049
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2050
		pm_runtime_put_noidle(cpsw->dev);
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2061
	ret = pm_runtime_put(priv->cpsw->dev);
2062 2063 2064 2065
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	int (*poll)(struct napi_struct *, int);
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
	struct cpdma_chan **chan;
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
		chan = cpsw->rxch;
		handler = cpsw_rx_handler;
		poll = cpsw_rx_poll;
	} else {
		ch = &cpsw->tx_ch_num;
		chan = cpsw->txch;
		handler = cpsw_tx_handler;
		poll = cpsw_tx_poll;
	}

	while (*ch < ch_num) {
		chan[*ch] = cpdma_chan_create(cpsw->dma, *ch, handler, rx);

		if (IS_ERR(chan[*ch]))
			return PTR_ERR(chan[*ch]);

		if (!chan[*ch])
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

		ret = cpdma_chan_destroy(chan[*ch]);
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}

		/* Enable rx packets handling */
		netif_dormant_off(slave->ndev);
	}

	if (cpsw_common_res_usage_state(cpsw)) {
2218 2219
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
			goto err;

		/* After this receive is started */
		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;
		netif_tx_start_all_queues(slave->ndev);
	}
	return 0;
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2264 2265 2266 2267 2268
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2269
	.get_ts_info	= cpsw_get_ts_info,
2270 2271
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2272 2273 2274
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2275 2276
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2277 2278
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2279 2280
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2281 2282
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2283 2284
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2285 2286
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2287 2288
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2289 2290
};

2291
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2292
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2293
{
2294
	void __iomem		*regs = cpsw->regs;
2295
	int			slave_num = slave->slave_num;
2296
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2297 2298

	slave->data	= data;
2299 2300
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2301
	slave->port_vlan = data->dual_emac_res_vlan;
2302 2303
}

2304
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2316
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2317 2318 2319 2320
		return -EINVAL;
	}
	data->slaves = prop;

2321
	if (of_property_read_u32(node, "active_slave", &prop)) {
2322
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2323
		return -EINVAL;
2324
	}
2325
	data->active_slave = prop;
2326

2327
	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
2328
		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
2329
		return -EINVAL;
2330 2331 2332 2333
	}
	data->cpts_clock_mult = prop;

	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
2334
		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
2335
		return -EINVAL;
2336 2337 2338
	}
	data->cpts_clock_shift = prop;

2339 2340 2341
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2342
	if (!data->slave_data)
2343
		return -ENOMEM;
2344 2345

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2346
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2347
		return -EINVAL;
2348 2349 2350 2351
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2352
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2353
		return -EINVAL;
2354 2355 2356 2357
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2358
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2359
		return -EINVAL;
2360 2361 2362 2363
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2364
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2365
		return -EINVAL;
2366 2367 2368
	}
	data->mac_control = prop;

2369 2370
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2371

2372 2373 2374 2375 2376 2377
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2378
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2379

2380
	for_each_available_child_of_node(node, slave_node) {
2381 2382
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2383 2384 2385
		int lenp;
		const __be32 *parp;

2386 2387 2388 2389
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2390 2391
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2392
		parp = of_get_property(slave_node, "phy_id", &lenp);
2393 2394 2395 2396 2397
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
				"slave[%d] using phy-handle=\"%s\"\n",
				i, slave_data->phy_node->full_name);
		} else if (of_phy_is_fixed_link(slave_node)) {
2398 2399 2400
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2401
			ret = of_phy_register_fixed_link(slave_node);
2402 2403 2404
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2405
				return ret;
2406
			}
2407
			slave_data->phy_node = of_node_get(slave_node);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2427
			put_device(&mdio->dev);
2428
		} else {
2429 2430 2431
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2432
			goto no_phy_slave;
2433
		}
2434 2435 2436 2437 2438 2439 2440 2441
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2442
		mac_addr = of_get_mac_address(slave_node);
2443
		if (mac_addr) {
2444
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2445
		} else {
2446 2447 2448 2449
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2450
		}
2451
		if (data->dual_emac) {
2452
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2453
						 &prop)) {
2454
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2455
				slave_data->dual_emac_res_vlan = i+1;
2456 2457
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2458 2459 2460 2461 2462
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2463
		i++;
2464 2465
		if (i == data->slaves)
			break;
2466 2467 2468 2469 2470
	}

	return 0;
}

2471 2472
static void cpsw_remove_dt(struct platform_device *pdev)
{
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

		if (of_phy_is_fixed_link(slave_node)) {
			struct phy_device *phydev;

			phydev = of_phy_find_device(slave_node);
			if (phydev) {
				fixed_phy_unregister(phydev);
				/* Put references taken by
				 * of_phy_find_device() and
				 * of_phy_register_fixed_link().
				 */
				phy_device_free(phydev);
				phy_device_free(phydev);
			}
		}

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2508 2509 2510
	of_platform_depopulate(&pdev->dev);
}

2511
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2512
{
2513 2514
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2515 2516
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2517
	int ret = 0;
2518

2519
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2520
	if (!ndev) {
2521
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2522 2523 2524 2525
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2526
	priv_sl2->cpsw = cpsw;
2527 2528 2529 2530 2531 2532 2533
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2534 2535
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2536 2537
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2538 2539
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2540 2541 2542 2543
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2544
	cpsw->slaves[1].ndev = ndev;
2545
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2546 2547

	ndev->netdev_ops = &cpsw_netdev_ops;
2548
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2549 2550

	/* register the network device */
2551
	SET_NETDEV_DEV(ndev, cpsw->dev);
2552 2553
	ret = register_netdev(ndev);
	if (ret) {
2554
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2555 2556 2557 2558 2559 2560 2561
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
#define CPSW_QUIRK_IRQ		BIT(0)

static struct platform_device_id cpsw_devtype[] = {
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2600
static int cpsw_probe(struct platform_device *pdev)
2601
{
2602
	struct clk			*clk;
2603
	struct cpsw_platform_data	*data;
2604 2605 2606 2607
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2608 2609
	void __iomem			*ss_regs;
	struct resource			*res, *ss_res;
2610
	const struct of_device_id	*of_id;
2611
	struct gpio_descs		*mode;
2612
	u32 slave_offset, sliver_offset, slave_size;
2613
	struct cpsw_common		*cpsw;
2614 2615
	int ret = 0, i;
	int irq;
2616

2617
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2618 2619 2620
	if (!cpsw)
		return -ENOMEM;

2621
	cpsw->dev = &pdev->dev;
2622

2623
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2624
	if (!ndev) {
2625
		dev_err(&pdev->dev, "error allocating net_device\n");
2626 2627 2628 2629 2630
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2631
	priv->cpsw = cpsw;
2632 2633 2634
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2635 2636 2637
	cpsw->rx_packet_max = max(rx_packet_max, 128);
	cpsw->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
	if (!cpsw->cpts) {
2638
		dev_err(&pdev->dev, "error allocating cpts\n");
2639
		ret = -ENOMEM;
2640 2641
		goto clean_ndev_ret;
	}
2642

2643 2644 2645 2646 2647 2648 2649
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2650 2651 2652 2653 2654
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2655 2656 2657
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2658 2659 2660 2661 2662 2663
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
2664
		goto clean_runtime_disable_ret;
2665
	}
2666

2667 2668
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2669
		goto clean_dt_ret;
2670

2671
	data = &cpsw->data;
2672 2673
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2674

2675 2676
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2677
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2678
	} else {
J
Joe Perches 已提交
2679
		eth_random_addr(priv->mac_addr);
2680
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2681 2682 2683 2684
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2685
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2686 2687
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2688
	if (!cpsw->slaves) {
2689
		ret = -ENOMEM;
2690
		goto clean_dt_ret;
2691 2692
	}
	for (i = 0; i < data->slaves; i++)
2693
		cpsw->slaves[i].slave_num = i;
2694

2695
	cpsw->slaves[0].ndev = ndev;
2696 2697
	priv->emac_port = 0;

2698 2699
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2700
		dev_err(priv->dev, "fck is not found\n");
2701
		ret = -ENODEV;
2702
		goto clean_dt_ret;
2703
	}
2704
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2705

2706 2707 2708 2709
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
2710
		goto clean_dt_ret;
2711
	}
2712
	cpsw->regs = ss_regs;
2713

2714
	cpsw->version = readl(&cpsw->regs->id_ver);
2715

2716
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2717 2718 2719
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
2720
		goto clean_dt_ret;
2721 2722 2723
	}

	memset(&dma_params, 0, sizeof(dma_params));
2724 2725
	memset(&ale_params, 0, sizeof(ale_params));

2726
	switch (cpsw->version) {
2727
	case CPSW_VERSION_1:
2728
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2729
		cpsw->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2730
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2731 2732 2733 2734 2735 2736 2737 2738 2739
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
2740
	case CPSW_VERSION_3:
2741
	case CPSW_VERSION_4:
2742
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2743
		cpsw->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2744
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2745 2746 2747 2748 2749 2750 2751
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
2752
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2753 2754
		break;
	default:
2755
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2756
		ret = -ENODEV;
2757
		goto clean_dt_ret;
2758
	}
2759 2760 2761 2762
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
2763 2764 2765 2766
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

2767
	dma_params.dev		= &pdev->dev;
2768 2769 2770 2771 2772
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2773 2774 2775 2776 2777 2778 2779

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
2780
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2781

2782 2783
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
2784 2785
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
2786
		goto clean_dt_ret;
2787 2788
	}

2789 2790
	cpsw->txch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
	cpsw->rxch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2791
	if (WARN_ON(!cpsw->rxch[0] || !cpsw->txch[0])) {
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

	ale_params.dev			= &ndev->dev;
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= data->slaves;

2802 2803
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
2804 2805 2806 2807 2808
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

2809
	ndev->irq = platform_get_irq(pdev, 1);
2810 2811
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
2812
		ret = ndev->irq;
2813 2814 2815
		goto clean_ale_ret;
	}

2816 2817 2818 2819
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
2820
			cpsw->quirk_irq = true;
2821 2822
	}

2823 2824 2825 2826 2827 2828 2829
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
2830

2831
	/* RX IRQ */
2832
	irq = platform_get_irq(pdev, 1);
2833 2834
	if (irq < 0) {
		ret = irq;
2835
		goto clean_ale_ret;
2836
	}
2837

2838
	cpsw->irqs_table[0] = irq;
2839
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2840
			       0, dev_name(&pdev->dev), cpsw);
2841 2842 2843 2844 2845
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
	}

2846
	/* TX IRQ */
2847
	irq = platform_get_irq(pdev, 2);
2848 2849
	if (irq < 0) {
		ret = irq;
2850
		goto clean_ale_ret;
2851
	}
2852

2853
	cpsw->irqs_table[1] = irq;
2854
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2855
			       0, dev_name(&pdev->dev), cpsw);
2856 2857 2858
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
2859
	}
2860

2861
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2862 2863

	ndev->netdev_ops = &cpsw_netdev_ops;
2864
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2865 2866
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2867 2868 2869 2870 2871 2872 2873

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
2874
		goto clean_ale_ret;
2875 2876
	}

2877 2878
	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
		    &ss_res->start, ndev->irq);
2879

2880
	if (cpsw->data.dual_emac) {
2881
		ret = cpsw_probe_dual_emac(priv);
2882 2883
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2884
			goto clean_unregister_netdev_ret;
2885 2886 2887
		}
	}

2888 2889
	pm_runtime_put(&pdev->dev);

2890 2891
	return 0;

2892 2893
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
2894
clean_ale_ret:
2895
	cpsw_ale_destroy(cpsw->ale);
2896
clean_dma_ret:
2897
	cpdma_ctlr_destroy(cpsw->dma);
2898 2899
clean_dt_ret:
	cpsw_remove_dt(pdev);
2900
	pm_runtime_put_sync(&pdev->dev);
2901
clean_runtime_disable_ret:
2902
	pm_runtime_disable(&pdev->dev);
2903
clean_ndev_ret:
2904
	free_netdev(priv->ndev);
2905 2906 2907
	return ret;
}

B
Bill Pemberton 已提交
2908
static int cpsw_remove(struct platform_device *pdev)
2909 2910
{
	struct net_device *ndev = platform_get_drvdata(pdev);
2911
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2912 2913 2914 2915 2916 2917 2918
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
2919

2920 2921
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
2922
	unregister_netdev(ndev);
2923

2924
	cpsw_ale_destroy(cpsw->ale);
2925
	cpdma_ctlr_destroy(cpsw->dma);
2926
	cpsw_remove_dt(pdev);
2927 2928
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
2929 2930
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
2931 2932 2933 2934
	free_netdev(ndev);
	return 0;
}

2935
#ifdef CONFIG_PM_SLEEP
2936 2937 2938 2939
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
2940
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2941

2942
	if (cpsw->data.dual_emac) {
2943
		int i;
2944

2945 2946 2947
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
2948 2949 2950 2951 2952
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
2953

2954
	/* Select sleep pin state */
2955
	pinctrl_pm_select_sleep_state(dev);
2956

2957 2958 2959 2960 2961 2962 2963
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
2964
	struct cpsw_common	*cpsw = netdev_priv(ndev);
2965

2966
	/* Select default pin state */
2967
	pinctrl_pm_select_default_state(dev);
2968

2969
	if (cpsw->data.dual_emac) {
2970 2971
		int i;

2972 2973 2974
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
2975 2976 2977 2978 2979
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
2980 2981
	return 0;
}
2982
#endif
2983

2984
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2985 2986 2987 2988 2989

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
2990
		.of_match_table = cpsw_of_mtable,
2991 2992
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
2993
	.remove = cpsw_remove,
2994 2995
};

2996
module_platform_driver(cpsw_driver);
2997 2998 2999 3000 3001

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");