cpsw.c 98.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
20
#include <linux/net_tstamp.h>
21
#include <linux/phy.h>
22
#include <linux/phy/phy.h>
23 24
#include <linux/workqueue.h>
#include <linux/delay.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/gpio/consumer.h>
27
#include <linux/of.h>
28
#include <linux/of_mdio.h>
29 30
#include <linux/of_net.h>
#include <linux/of_device.h>
31
#include <linux/if_vlan.h>
32
#include <linux/kmemleak.h>
33
#include <linux/sys_soc.h>
34

35
#include <linux/pinctrl/consumer.h>
36
#include <net/pkt_cls.h>
37

38
#include "cpsw.h"
39
#include "cpsw_ale.h"
40
#include "cpts.h"
41 42
#include "davinci_cpdma.h"

43 44
#include <net/pkt_sched.h>

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

78 79
#define ALE_ALL_PORTS		0x7

80 81 82 83
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

84 85
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
86
#define CPSW_VERSION_3		0x19010f
87
#define CPSW_VERSION_4		0x190112
88 89

#define HOST_PORT_NUM		0
90
#define CPSW_ALE_PORTS_NUM	3
91 92 93 94 95 96 97
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
122
#define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
123
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
124 125 126
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
				 ETH_FCS_LEN +\
				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
127 128 129

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
130
#define CPDMA_TX_PRIORITY_MAP	0x76543210
131

132
#define CPSW_VLAN_AWARE		BIT(1)
133
#define CPSW_RX_VLAN_ENCAP	BIT(2)
134 135
#define CPSW_ALE_VLAN_AWARE	1

136 137 138
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
139

140 141 142 143 144 145 146
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

147 148 149
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
150
#define IRQ_NUM			2
151
#define CPSW_MAX_QUEUES		8
152
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
153 154 155
#define CPSW_FIFO_QUEUE_TYPE_SHIFT	16
#define CPSW_FIFO_SHAPE_EN_SHIFT	16
#define CPSW_FIFO_RATE_EN_SHIFT		20
156 157
#define CPSW_TC_NUM			4
#define CPSW_FIFO_SHAPERS_NUM		(CPSW_TC_NUM - 1)
158
#define CPSW_PCT_MASK			0x7f
159

160 161 162 163 164 165 166 167 168 169 170 171
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
#define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
enum {
	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
};

172 173 174 175 176 177 178 179 180 181 182 183
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

184 185 186 187
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

188
struct cpsw_wr_regs {
189 190 191 192 193 194 195 196
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
197 198 199 200 201 202 203 204 205
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

206 207
};

208
struct cpsw_ss_regs {
209 210 211 212 213
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
214 215 216 217 218 219 220 221
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
222 223
};

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
259 260 261 262
#define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
263
#define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
264 265 266 267 268 269 270 271 272 273 274 275 276
#define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
#define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
#define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
#define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
#define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
277

278 279
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
280
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN | VLAN_LTYPE1_EN)
281

282 283 284 285 286 287
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
288
	(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
289
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
290
	 TS_LTYPE1_EN | VLAN_LTYPE1_EN)
291 292 293 294

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
295 296 297 298 299 300 301 302 303

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
304

305 306 307 308 309 310 311 312
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

313 314 315 316
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

317 318 319
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
320
	u32	tx_in_ctl;
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

378 379 380 381 382 383
struct cpsw_slave_data {
	struct device_node *phy_node;
	char		phy_id[MII_BUS_ID_SIZE];
	int		phy_if;
	u8		mac_addr[ETH_ALEN];
	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
384
	struct phy	*ifphy;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
};

struct cpsw_platform_data {
	struct cpsw_slave_data	*slave_data;
	u32	ss_reg_ofs;	/* Subsystem control register offset */
	u32	channels;	/* number of cpdma channels (symmetric) */
	u32	slaves;		/* number of slave cpgmac ports */
	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
	u32	ale_entries;	/* ale table size */
	u32	bd_ram_size;  /*buffer descriptor ram size */
	u32	mac_control;	/* Mac control register */
	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
	bool	dual_emac;	/* Enable Dual EMAC mode */
};

400
struct cpsw_slave {
401
	void __iomem			*regs;
402 403 404 405 406
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
407 408
	struct net_device		*ndev;
	u32				port_vlan;
409 410
};

411 412
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
413
	return readl_relaxed(slave->regs + offset);
414 415 416 417
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
418
	writel_relaxed(val, slave->regs + offset);
419 420
}

421 422 423 424 425
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

426
struct cpsw_common {
427
	struct device			*dev;
428
	struct cpsw_platform_data	data;
429 430
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
431 432 433 434
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
435 436 437 438
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
439
	struct cpsw_slave		*slaves;
440
	struct cpdma_ctlr		*dma;
441 442
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
443
	struct cpsw_ale			*ale;
444 445 446 447
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
448
	struct cpts			*cpts;
449
	int				rx_ch_num, tx_ch_num;
450
	int				speed;
451
	int				usage_count;
452 453 454
};

struct cpsw_priv {
455 456 457 458
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
459 460
	bool				rx_pause;
	bool				tx_pause;
461
	bool				mqprio_hw;
462 463
	int				fifo_bw[CPSW_TC_NUM];
	int				shp_cfg_speed;
464 465
	int				tx_ts_enabled;
	int				rx_ts_enabled;
466
	u32 emac_port;
467
	struct cpsw_common *cpsw;
468 469
};

470 471 472 473 474 475 476 477 478 479 480 481 482 483
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
484
				FIELD_SIZEOF(struct cpsw_hw_stats, m), \
485 486
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
487
				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
488 489
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
490
				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
548

549
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
550
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
551 552
#define for_each_slave(priv, func, arg...)				\
	do {								\
553
		struct cpsw_slave *slave;				\
554
		struct cpsw_common *cpsw = (priv)->cpsw;		\
555
		int n;							\
556 557
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
558
		else							\
559 560
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
561 562
					n; n--)				\
				(func)(slave++, ##arg);			\
563 564
	} while (0)

565 566 567
static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
				    __be16 proto, u16 vid);

568
static inline int cpsw_get_slave_port(u32 slave_num)
569
{
570
	return slave_num + 1;
571
}
572

573 574
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
575 576
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
577 578
	int i;

579
	if (cpsw->data.dual_emac) {
580 581 582 583 584 585
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
586 587
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

609
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
610
			for (i = 0; i <= cpsw->data.slaves; i++) {
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
627
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
628
			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
629 630 631 632 633

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
634
			/* Don't Flood All Unicast Packets to Host port */
635 636
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

637
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
638
			for (i = 0; i <= cpsw->data.slaves; i++) {
639 640 641 642 643 644 645 646 647 648
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
struct addr_sync_ctx {
	struct net_device *ndev;
	const u8 *addr;		/* address to be synched */
	int consumed;		/* number of address instances */
	int flush;		/* flush flag */
};

/**
 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
 * if it's not deleted
 * @ndev: device to sync
 * @addr: address to be added or deleted
 * @vid: vlan id, if vid < 0 set/unset address for real device
 * @add: add address if the flag is set or remove otherwise
 */
static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
		       int vid, int add)
666 667
{
	struct cpsw_priv *priv = netdev_priv(ndev);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	struct cpsw_common *cpsw = priv->cpsw;
	int mask, flags, ret;

	if (vid < 0) {
		if (cpsw->data.dual_emac)
			vid = cpsw->slaves[priv->emac_port].port_vlan;
		else
			vid = 0;
	}

	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
	flags = vid ? ALE_VLAN : 0;

	if (add)
		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
	else
		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);

	return ret;
}

static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0, ret = 0;

	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
	}

	if (found)
		sync_ctx->consumed++;

	if (sync_ctx->flush) {
		if (!found)
			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
		return 0;
	}

	if (found)
		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);

	return ret;
}

static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;
	int ret;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 0;

	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num && !ret)
		ret = cpsw_set_mc(ndev, addr, -1, 1);

	return ret;
}

static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 1;

	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed == num)
		cpsw_set_mc(ndev, addr, -1, 0);
750 751 752 753

	return 0;
}

754
static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
755
{
756 757 758
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0;
759

760 761 762 763 764 765 766 767 768
	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
769 770
	}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	if (!found)
		return 0;

	sync_ctx->consumed++;
	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
	return 0;
}

static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.consumed = 0;

	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num)
		cpsw_set_mc(ndev, addr, -1, 0);

791 792 793 794 795
	return 0;
}

static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
796 797 798 799 800 801
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_port = -1;

	if (cpsw->data.dual_emac)
		slave_port = priv->emac_port + 1;
802 803 804

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
805
		cpsw_set_promiscious(ndev, true);
806
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
807
		return;
808 809 810
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
811 812
	}

813
	/* Restore allmulti on vlans if necessary */
814 815
	cpsw_ale_set_allmulti(cpsw->ale,
			      ndev->flags & IFF_ALLMULTI, slave_port);
816

817 818 819
	/* add/remove mcast address either for real netdev or for vlan */
	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
			       cpsw_del_mc_addr);
820 821
}

822
static void cpsw_intr_enable(struct cpsw_common *cpsw)
823
{
824 825
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
826

827
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
828 829 830
	return;
}

831
static void cpsw_intr_disable(struct cpsw_common *cpsw)
832
{
833 834
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
835

836
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
837 838 839
	return;
}

840
static void cpsw_tx_handler(void *token, int len, int status)
841
{
842
	struct netdev_queue	*txq;
843 844
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
845
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
846

847 848 849
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
850 851 852 853
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

854
	cpts_tx_timestamp(cpsw->cpts, skb);
855 856
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
857 858 859
	dev_kfree_skb_any(skb);
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	struct cpsw_common *cpsw = priv->cpsw;
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;
	/* Ignore default vlans in dual mac mode */
	if (cpsw->data.dual_emac &&
	    vid == cpsw->slaves[priv->emac_port].port_vlan)
		return;

	prio = (rx_vlan_encap_hdr >>
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

903
static void cpsw_rx_handler(void *token, int len, int status)
904
{
905
	struct cpdma_chan	*ch;
906
	struct sk_buff		*skb = token;
907
	struct sk_buff		*new_skb;
908
	struct net_device	*ndev = skb->dev;
909
	int			ret = 0, port;
910
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
911
	struct cpsw_priv	*priv;
912

913 914 915 916 917 918 919
	if (cpsw->data.dual_emac) {
		port = CPDMA_RX_SOURCE_PORT(status);
		if (port) {
			ndev = cpsw->slaves[--port].ndev;
			skb->dev = ndev;
		}
	}
920

921
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
922
		/* In dual emac mode check for all interfaces */
923
		if (cpsw->data.dual_emac && cpsw->usage_count &&
924
		    (status >= 0)) {
925 926
			/* The packet received is for the interface which
			 * is already down and the other interface is up
927
			 * and running, instead of freeing which results
928 929 930 931 932 933 934
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

935
		/* the interface is going down, skbs are purged */
936 937 938
		dev_kfree_skb_any(skb);
		return;
	}
939

940
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
941
	if (new_skb) {
942
		skb_copy_queue_mapping(new_skb, skb);
943
		skb_put(skb, len);
944 945
		if (status & CPDMA_RX_VLAN_ENCAP)
			cpsw_rx_vlan_encap(skb);
946 947 948
		priv = netdev_priv(ndev);
		if (priv->rx_ts_enabled)
			cpts_rx_timestamp(cpsw->cpts, skb);
949 950
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
951 952
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
953
		kmemleak_not_leak(new_skb);
954
	} else {
955
		ndev->stats.rx_dropped++;
956
		new_skb = skb;
957 958
	}

959
requeue:
960 961 962 963 964
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

965
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
966
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
967
				skb_tailroom(new_skb), 0);
968 969
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
970 971
}

972
static void cpsw_split_res(struct cpsw_common *cpsw)
973
{
974
	u32 consumed_rate = 0, bigest_rate = 0;
975
	struct cpsw_vector *txv = cpsw->txv;
976
	int i, ch_weight, rlim_ch_num = 0;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
992 993 994 995
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
996
	} else {
997 998 999 1000 1001 1002 1003 1004 1005 1006
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
1007

1008 1009 1010 1011 1012 1013 1014
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

1015
	/* split tx weight/budget */
1016 1017 1018 1019 1020 1021
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
1022
				txv[i].budget++;
1023 1024 1025 1026
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
1027 1028 1029 1030 1031

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
1032 1033 1034 1035
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
1036
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

1057
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
1058
{
1059
	struct cpsw_common *cpsw = dev_id;
1060

1061
	writel(0, &cpsw->wr_regs->tx_en);
1062
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
1063

1064 1065 1066
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
1067 1068
	}

1069
	napi_schedule(&cpsw->napi_tx);
1070 1071 1072 1073 1074
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
1075
	struct cpsw_common *cpsw = dev_id;
1076

1077
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
1078
	writel(0, &cpsw->wr_regs->rx_en);
1079

1080 1081 1082
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
1083 1084
	}

1085
	napi_schedule(&cpsw->napi_rx);
1086
	return IRQ_HANDLED;
1087 1088
}

1089
static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
1090
{
1091
	u32			ch_map;
1092
	int			num_tx, cur_budget, ch;
1093
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
1094
	struct cpsw_vector	*txv;
1095

1096 1097
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
1098 1099
	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
		if (!(ch_map & 0x80))
1100 1101
			continue;

1102 1103 1104 1105 1106 1107 1108
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
1109 1110
		if (num_tx >= budget)
			break;
1111 1112
	}

1113 1114
	if (num_tx < budget) {
		napi_complete(napi_tx);
1115
		writel(0xff, &cpsw->wr_regs->tx_en);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	}

	return num_tx;
}

static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
1131 1132
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1133
		}
1134 1135 1136 1137 1138
	}

	return num_tx;
}

1139
static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1140
{
1141
	u32			ch_map;
1142
	int			num_rx, cur_budget, ch;
1143
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1144
	struct cpsw_vector	*rxv;
1145

1146 1147
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1148
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1149 1150 1151
		if (!(ch_map & 0x01))
			continue;

1152 1153 1154 1155 1156 1157 1158
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1159 1160
		if (num_rx >= budget)
			break;
1161 1162
	}

1163
	if (num_rx < budget) {
1164
		napi_complete_done(napi_rx, num_rx);
1165
		writel(0xff, &cpsw->wr_regs->rx_en);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	}

	return num_rx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
1181 1182
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1183
		}
1184 1185 1186 1187 1188 1189 1190 1191 1192
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

1193
	writel_relaxed(1, reg);
1194 1195
	do {
		cpu_relax();
1196
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1197

1198
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1199 1200 1201 1202 1203
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
1204 1205
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1206 1207
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
static bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = 7 << shift;
	val = val & mask;

	return !val;
}

static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = (1 << --fifo) << shift;
	val = on ? val | mask : val & ~mask;

	writel_relaxed(val, &cpsw->regs->ptype);
}

1240 1241 1242 1243 1244 1245
static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
1246
	struct cpsw_common *cpsw = priv->cpsw;
1247 1248 1249 1250

	if (!phy)
		return;

1251
	slave_port = cpsw_get_slave_port(slave->slave_num);
1252 1253

	if (phy->link) {
1254
		mac_control = cpsw->data.mac_control;
1255 1256

		/* enable forwarding */
1257
		cpsw_ale_control_set(cpsw->ale, slave_port,
1258 1259 1260 1261 1262 1263
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1264 1265 1266 1267

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1268 1269
		/* in band mode only works in 10Mbps RGMII mode */
		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1270
			mac_control |= BIT(18); /* In Band mode */
1271

1272 1273 1274 1275 1276 1277
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1278
		*link = true;
1279 1280 1281 1282 1283 1284

		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed &&
		    !cpsw_shp_is_off(priv))
			dev_warn(priv->dev,
				 "Speed was changed, CBS shaper speeds are changed!");
1285 1286 1287
	} else {
		mac_control = 0;
		/* disable forwarding */
1288
		cpsw_ale_control_set(cpsw->ale, slave_port,
1289 1290 1291 1292 1293
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1294
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1295 1296 1297 1298 1299
	}

	slave->mac_control = mac_control;
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1338 1339 1340
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1341
	struct cpsw_common	*cpsw = priv->cpsw;
1342 1343 1344 1345 1346
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1347
		if (cpsw_need_resplit(cpsw))
1348
			cpsw_split_res(cpsw);
1349

1350 1351
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1352
			netif_tx_wake_all_queues(ndev);
1353 1354
	} else {
		netif_carrier_off(ndev);
1355
		netif_tx_stop_all_queues(ndev);
1356 1357 1358
	}
}

1359 1360 1361
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1362
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1363

1364
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1377
	struct cpsw_common *cpsw = priv->cpsw;
1378 1379 1380

	coal_intvl = coal->rx_coalesce_usecs;

1381
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1382
	prescale = cpsw->bus_freq_mhz * 4;
1383

1384 1385 1386 1387 1388
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1410 1411
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1412 1413 1414 1415

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1416 1417

update_return:
1418
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1419 1420

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1421
	cpsw->coal_intvl = coal_intvl;
1422 1423 1424 1425

	return 0;
}

1426 1427
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1428 1429
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1430 1431
	switch (sset) {
	case ETH_SS_STATS:
1432 1433 1434
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1435 1436 1437 1438 1439
	default:
		return -EOPNOTSUPP;
	}
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
1450 1451
			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
			 (long)(i / CPSW_STATS_CH_LEN),
1452 1453 1454 1455 1456
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1457 1458
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1459
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1460 1461 1462 1463 1464
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1465
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1466 1467 1468 1469
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1470 1471 1472

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1473 1474 1475 1476 1477 1478 1479 1480
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1481
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1482 1483
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1484 1485

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1486 1487 1488 1489 1490
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1491
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1492 1493 1494 1495 1496 1497
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1498

1499
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1500
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1501 1502 1503 1504
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1505 1506 1507 1508
		}
	}
}

1509 1510 1511 1512
static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1513
	struct cpsw_common *cpsw = priv->cpsw;
1514
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1515

1516
	if (cpsw->version == CPSW_VERSION_1)
1517 1518 1519
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1520
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1521
			  port_mask, port_mask, 0);
1522
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1523
			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
1524 1525 1526
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1527 1528
	cpsw_ale_control_set(cpsw->ale, slave_port,
			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1529 1530
}

1531
static void soft_reset_slave(struct cpsw_slave *slave)
1532 1533 1534
{
	char name[32];

1535
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1536
	soft_reset(name, &slave->sliver->soft_reset);
1537 1538 1539 1540 1541
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1542
	struct phy_device *phy;
1543
	struct cpsw_common *cpsw = priv->cpsw;
1544 1545

	soft_reset_slave(slave);
1546 1547

	/* setup priority mapping */
1548
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1549

1550
	switch (cpsw->version) {
1551 1552
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1553 1554 1555 1556 1557 1558
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1559 1560
		break;
	case CPSW_VERSION_2:
1561
	case CPSW_VERSION_3:
1562
	case CPSW_VERSION_4:
1563
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1564 1565 1566 1567 1568 1569
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1570 1571
		break;
	}
1572 1573

	/* setup max packet size, and mac address */
1574
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1575 1576 1577 1578
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1579
	slave_port = cpsw_get_slave_port(slave->slave_num);
1580

1581
	if (cpsw->data.dual_emac)
1582 1583
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1584
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1585
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1586

1587
	if (slave->data->phy_node) {
1588
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1589
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1590
		if (!phy) {
1591 1592
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1593 1594 1595 1596
				slave->slave_num);
			return;
		}
	} else {
1597
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1598
				 &cpsw_adjust_link, slave->data->phy_if);
1599
		if (IS_ERR(phy)) {
1600 1601 1602
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1603
				PTR_ERR(phy));
1604 1605 1606
			return;
		}
	}
1607

1608 1609
	slave->phy = phy;

1610
	phy_attached_info(slave->phy);
1611

1612 1613 1614
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1615 1616 1617 1618 1619 1620
	if (!IS_ERR(slave->data->ifphy))
		phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
				 slave->data->phy_if);
	else
		cpsw_phy_sel(cpsw->dev, slave->phy->interface,
			     slave->slave_num);
1621 1622
}

1623 1624
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1625 1626
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1627 1628
	u32 reg;
	int i;
1629
	int unreg_mcast_mask;
1630

1631
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1632 1633
	       CPSW2_PORT_VLAN;

1634
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1635

1636 1637
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1638

1639 1640 1641 1642 1643
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1644
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1645 1646
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1647 1648
}

1649 1650
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1651
	u32 fifo_mode;
1652 1653
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1654

1655
	/* soft reset the controller and initialize ale */
1656
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1657
	cpsw_ale_start(cpsw->ale);
1658 1659

	/* switch to vlan unaware mode */
1660
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1661
			     CPSW_ALE_VLAN_AWARE);
1662
	control_reg = readl(&cpsw->regs->control);
1663
	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1664
	writel(control_reg, &cpsw->regs->control);
1665
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1666
		     CPSW_FIFO_NORMAL_MODE;
1667
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1668 1669

	/* setup host port priority mapping */
1670 1671 1672
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1673

1674
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1675 1676
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1677
	if (!cpsw->data.dual_emac) {
1678
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1679
				   0, 0);
1680
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1681
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1682
	}
1683 1684
}

1685 1686 1687 1688 1689
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1690 1691 1692
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1693
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1694 1695 1696 1697 1698 1699 1700 1701
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1702

1703
			skb_set_queue_mapping(skb, ch);
1704 1705 1706
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1707 1708 1709 1710 1711 1712 1713 1714
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1715 1716
		}

1717 1718 1719
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1720

1721
	return 0;
1722 1723
}

1724
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1725
{
1726 1727
	u32 slave_port;

1728
	slave_port = cpsw_get_slave_port(slave->slave_num);
1729

1730 1731 1732 1733 1734
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1735
	cpsw_ale_control_set(cpsw->ale, slave_port,
1736
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1737
	soft_reset_slave(slave);
1738 1739
}

1740 1741 1742 1743 1744 1745 1746 1747
static int cpsw_tc_to_fifo(int tc, int num_tc)
{
	if (tc == num_tc - 1)
		return 0;

	return CPSW_FIFO_SHAPERS_NUM - tc;
}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 val = 0, send_pct, shift;
	struct cpsw_slave *slave;
	int pct = 0, i;

	if (bw > priv->shp_cfg_speed * 1000)
		goto err;

	/* shaping has to stay enabled for highest fifos linearly
	 * and fifo bw no more then interface can allow
	 */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	send_pct = slave_read(slave, SEND_PERCENT);
	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
		if (!bw) {
			if (i >= fifo || !priv->fifo_bw[i])
				continue;

			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
			continue;
		}

		if (!priv->fifo_bw[i] && i > fifo) {
			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
			return -EINVAL;
		}

		shift = (i - 1) * 8;
		if (i == fifo) {
			send_pct &= ~(CPSW_PCT_MASK << shift);
			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
			if (!val)
				val = 1;

			send_pct |= val << shift;
			pct += val;
			continue;
		}

		if (priv->fifo_bw[i])
			pct += (send_pct >> shift) & CPSW_PCT_MASK;
	}

	if (pct >= 100)
		goto err;

	slave_write(slave, send_pct, SEND_PERCENT);
	priv->fifo_bw[fifo] = bw;

	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));

	return 0;
err:
	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
	return -EINVAL;
}

static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 tx_in_ctl_rg, val;
	int ret;

	ret = cpsw_set_fifo_bw(priv, fifo, bw);
	if (ret)
		return ret;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;

	if (!bw)
		cpsw_fifo_shp_on(priv, fifo, bw);

	val = slave_read(slave, tx_in_ctl_rg);
	if (cpsw_shp_is_off(priv)) {
		/* disable FIFOs rate limited queues */
		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);

		/* set type of FIFO queues to normal priority mode */
		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);

		/* set type of FIFO queues to be rate limited */
		if (bw)
			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
		else
			priv->shp_cfg_speed = 0;
	}

	/* toggle a FIFO rate limited queue */
	if (bw)
		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	else
		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	slave_write(slave, val, tx_in_ctl_rg);

	/* FIFO transmit shape enable */
	cpsw_fifo_shp_on(priv, fifo, bw);
	return 0;
}

/* Defaults:
 * class A - prio 3
 * class B - prio 2
 * shaping for class A should be set first
 */
static int cpsw_set_cbs(struct net_device *ndev,
			struct tc_cbs_qopt_offload *qopt)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int prev_speed = 0;
	int tc, ret, fifo;
	u32 bw = 0;

	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);

	/* enable channels in backward order, as highest FIFOs must be rate
	 * limited first and for compliance with CPDMA rate limited channels
	 * that also used in bacward order. FIFO0 cannot be rate limited.
	 */
	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
	if (!fifo) {
		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
		return -EINVAL;
	}

	/* do nothing, it's disabled anyway */
	if (!qopt->enable && !priv->fifo_bw[fifo])
		return 0;

	/* shapers can be set if link speed is known */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	if (slave->phy && slave->phy->link) {
		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed)
			prev_speed = priv->shp_cfg_speed;

		priv->shp_cfg_speed = slave->phy->speed;
	}

	if (!priv->shp_cfg_speed) {
		dev_err(priv->dev, "Link speed is not known");
		return -1;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	bw = qopt->enable ? qopt->idleslope : 0;
	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
	if (ret) {
		priv->shp_cfg_speed = prev_speed;
		prev_speed = 0;
	}

	if (bw && prev_speed)
		dev_warn(priv->dev,
			 "Speed was changed, CBS shaper speeds are changed!");

	pm_runtime_put_sync(cpsw->dev);
	return ret;
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	int fifo, bw;

	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
		bw = priv->fifo_bw[fifo];
		if (!bw)
			continue;

		cpsw_set_fifo_rlimit(priv, fifo, bw);
	}
}

static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 tx_prio_map = 0;
	int i, tc, fifo;
	u32 tx_prio_rg;

	if (!priv->mqprio_hw)
		return;

	for (i = 0; i < 8; i++) {
		tc = netdev_get_prio_tc_map(priv->ndev, i);
		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
		tx_prio_map |= fifo << (4 * i);
	}

	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave_write(slave, tx_prio_map, tx_prio_rg);
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
{
	struct cpsw_priv *priv = arg;

	if (!vdev)
		return 0;

	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
	return 0;
}

1966 1967 1968
/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
1969 1970 1971
	/* restore vlan configurations */
	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);

1972 1973 1974 1975 1976 1977 1978
	/* restore MQPRIO offload */
	for_each_slave(priv, cpsw_mqprio_resume, priv);

	/* restore CBS offload */
	for_each_slave(priv, cpsw_cbs_resume, priv);
}

1979 1980 1981
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1982
	struct cpsw_common *cpsw = priv->cpsw;
1983
	int ret;
1984 1985
	u32 reg;

1986
	ret = pm_runtime_get_sync(cpsw->dev);
1987
	if (ret < 0) {
1988
		pm_runtime_put_noidle(cpsw->dev);
1989 1990
		return ret;
	}
1991

1992 1993
	netif_carrier_off(ndev);

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

2007
	reg = cpsw->version;
2008 2009 2010 2011 2012

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

2013 2014
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
2015
		cpsw_init_host_port(priv);
2016 2017
	for_each_slave(priv, cpsw_slave_open, priv);

2018
	/* Add default VLAN */
2019
	if (!cpsw->data.dual_emac)
2020 2021
		cpsw_add_default_vlan(priv);
	else
2022
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
2023
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
2024

2025 2026
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
2027
		/* disable priority elevation */
2028
		writel_relaxed(0, &cpsw->regs->ptype);
2029

2030
		/* enable statistics collection only on all ports */
2031
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
2032

2033
		/* Enable internal fifo flow control */
2034
		writel(0x7, &cpsw->regs->flow_control);
2035

2036 2037
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
2038

2039 2040 2041
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
2042 2043
		}

2044 2045 2046
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
2047 2048
		}

2049 2050 2051
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
2052

2053
		if (cpts_register(cpsw->cpts))
2054 2055
			dev_err(priv->dev, "error registering cpts device\n");

2056 2057
	}

2058 2059
	cpsw_restore(priv);

2060
	/* Enable Interrupt pacing if configured */
2061
	if (cpsw->coal_intvl != 0) {
2062 2063
		struct ethtool_coalesce coal;

2064
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
2065 2066 2067
		cpsw_set_coalesce(ndev, &coal);
	}

2068 2069
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
2070
	cpsw->usage_count++;
2071

2072 2073
	return 0;

2074
err_cleanup:
2075
	cpdma_ctlr_stop(cpsw->dma);
2076
	for_each_slave(priv, cpsw_slave_stop, cpsw);
2077
	pm_runtime_put_sync(cpsw->dev);
2078 2079
	netif_carrier_off(priv->ndev);
	return ret;
2080 2081 2082 2083 2084
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2085
	struct cpsw_common *cpsw = priv->cpsw;
2086 2087

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
2088
	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
2089
	netif_tx_stop_all_queues(priv->ndev);
2090
	netif_carrier_off(priv->ndev);
2091

2092
	if (cpsw->usage_count <= 1) {
2093 2094
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
2095
		cpts_unregister(cpsw->cpts);
2096 2097
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
2098
		cpsw_ale_stop(cpsw->ale);
2099
	}
2100
	for_each_slave(priv, cpsw_slave_stop, cpsw);
2101 2102

	if (cpsw_need_resplit(cpsw))
2103
		cpsw_split_res(cpsw);
2104

2105
	cpsw->usage_count--;
2106
	pm_runtime_put_sync(cpsw->dev);
2107 2108 2109 2110 2111 2112 2113
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2114
	struct cpsw_common *cpsw = priv->cpsw;
2115
	struct cpts *cpts = cpsw->cpts;
2116 2117 2118
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
2119 2120 2121

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
2122
		ndev->stats.tx_dropped++;
2123
		return NET_XMIT_DROP;
2124 2125
	}

2126
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2127
	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
2128 2129
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

2130 2131 2132 2133
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

2134
	txch = cpsw->txv[q_idx].ch;
2135
	txq = netdev_get_tx_queue(ndev, q_idx);
2136 2137 2138
	skb_tx_timestamp(skb);
	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
				priv->emac_port + cpsw->data.dual_emac);
2139 2140 2141 2142 2143
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

2144 2145 2146
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
2147 2148
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
2149 2150 2151 2152 2153 2154

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
2155
	}
2156

2157 2158
	return NETDEV_TX_OK;
fail:
2159
	ndev->stats.tx_dropped++;
2160
	netif_tx_stop_queue(txq);
2161 2162 2163 2164 2165 2166 2167

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

2168 2169 2170
	return NETDEV_TX_BUSY;
}

2171
#if IS_ENABLED(CONFIG_TI_CPTS)
2172

2173
static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
2174
{
2175
	struct cpsw_common *cpsw = priv->cpsw;
2176
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2177 2178
	u32 ts_en, seq_id;

2179
	if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
2180 2181 2182 2183 2184 2185 2186
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

2187
	if (priv->tx_ts_enabled)
2188 2189
		ts_en |= CPSW_V1_TS_TX_EN;

2190
	if (priv->rx_ts_enabled)
2191 2192 2193 2194 2195 2196 2197 2198
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
2199
	struct cpsw_slave *slave;
2200
	struct cpsw_common *cpsw = priv->cpsw;
2201 2202
	u32 ctrl, mtype;

2203
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2204

2205
	ctrl = slave_read(slave, CPSW2_CONTROL);
2206
	switch (cpsw->version) {
2207 2208
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
2209

2210
		if (priv->tx_ts_enabled)
2211
			ctrl |= CTRL_V2_TX_TS_BITS;
2212

2213
		if (priv->rx_ts_enabled)
2214
			ctrl |= CTRL_V2_RX_TS_BITS;
2215
		break;
2216 2217 2218 2219
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

2220
		if (priv->tx_ts_enabled)
2221 2222
			ctrl |= CTRL_V3_TX_TS_BITS;

2223
		if (priv->rx_ts_enabled)
2224
			ctrl |= CTRL_V3_RX_TS_BITS;
2225
		break;
2226
	}
2227 2228 2229 2230 2231

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
2232
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2233
	writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
2234 2235
}

2236
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2237
{
2238
	struct cpsw_priv *priv = netdev_priv(dev);
2239
	struct hwtstamp_config cfg;
2240
	struct cpsw_common *cpsw = priv->cpsw;
2241

2242 2243 2244
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
2245 2246
		return -EOPNOTSUPP;

2247 2248 2249 2250 2251 2252 2253
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

2254
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2255 2256 2257 2258
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
2259
		priv->rx_ts_enabled = 0;
2260 2261
		break;
	case HWTSTAMP_FILTER_ALL:
2262 2263
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
2264 2265 2266
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2267
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2268 2269
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
2270 2271 2272 2273 2274 2275 2276 2277 2278
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2279
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
2280 2281 2282 2283 2284 2285
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

2286
	priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
2287

2288
	switch (cpsw->version) {
2289
	case CPSW_VERSION_1:
2290
		cpsw_hwtstamp_v1(priv);
2291 2292
		break;
	case CPSW_VERSION_2:
2293
	case CPSW_VERSION_3:
2294 2295 2296
		cpsw_hwtstamp_v2(priv);
		break;
	default:
2297
		WARN_ON(1);
2298 2299 2300 2301 2302
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

2303 2304
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
2305
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
2306
	struct cpsw_priv *priv = netdev_priv(dev);
2307 2308
	struct hwtstamp_config cfg;

2309 2310 2311
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
2312 2313 2314
		return -EOPNOTSUPP;

	cfg.flags = 0;
2315 2316
	cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = priv->rx_ts_enabled;
2317 2318 2319

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
2320 2321 2322 2323 2324
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
2325

2326 2327 2328 2329
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
2330 2331 2332 2333
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2334
	struct cpsw_priv *priv = netdev_priv(dev);
2335 2336
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2337

2338 2339 2340
	if (!netif_running(dev))
		return -EINVAL;

2341 2342
	switch (cmd) {
	case SIOCSHWTSTAMP:
2343 2344 2345
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
2346 2347
	}

2348
	if (!cpsw->slaves[slave_no].phy)
2349
		return -EOPNOTSUPP;
2350
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2351 2352
}

2353 2354 2355
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2356
	struct cpsw_common *cpsw = priv->cpsw;
2357
	int ch;
2358 2359

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2360
	ndev->stats.tx_errors++;
2361
	cpsw_intr_disable(cpsw);
2362
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2363 2364
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
2365 2366
	}

2367
	cpsw_intr_enable(cpsw);
2368 2369
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
2370 2371
}

2372 2373 2374 2375
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
2376
	struct cpsw_common *cpsw = priv->cpsw;
2377 2378
	int flags = 0;
	u16 vid = 0;
2379
	int ret;
2380 2381 2382 2383

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

2384
	ret = pm_runtime_get_sync(cpsw->dev);
2385
	if (ret < 0) {
2386
		pm_runtime_put_noidle(cpsw->dev);
2387 2388 2389
		return ret;
	}

2390 2391
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
2392 2393 2394
		flags = ALE_VLAN;
	}

2395
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2396
			   flags, vid);
2397
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2398 2399 2400 2401 2402 2403
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

2404
	pm_runtime_put(cpsw->dev);
2405

2406 2407 2408
	return 0;
}

2409 2410 2411
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
2412
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2413

2414 2415 2416 2417
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
2418 2419 2420
}
#endif

2421 2422 2423 2424
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
2425
	int unreg_mcast_mask = 0;
2426
	int mcast_mask;
2427
	u32 port_mask;
2428
	struct cpsw_common *cpsw = priv->cpsw;
2429

2430
	if (cpsw->data.dual_emac) {
2431
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2432

2433
		mcast_mask = ALE_PORT_HOST;
2434
		if (priv->ndev->flags & IFF_ALLMULTI)
2435
			unreg_mcast_mask = mcast_mask;
2436 2437
	} else {
		port_mask = ALE_ALL_PORTS;
2438
		mcast_mask = port_mask;
2439 2440 2441 2442 2443 2444

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
2445

2446
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2447
				unreg_mcast_mask);
2448 2449 2450
	if (ret != 0)
		return ret;

2451
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2452
				 HOST_PORT_NUM, ALE_VLAN, vid);
2453 2454 2455
	if (ret != 0)
		goto clean_vid;

2456
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2457
				 mcast_mask, ALE_VLAN, vid, 0);
2458 2459 2460 2461 2462
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
2463
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2464
			   HOST_PORT_NUM, ALE_VLAN, vid);
2465
clean_vid:
2466
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2467 2468 2469 2470
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2471
				    __be16 proto, u16 vid)
2472 2473
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2474
	struct cpsw_common *cpsw = priv->cpsw;
2475
	int ret;
2476

2477
	if (vid == cpsw->data.default_vlan)
2478 2479
		return 0;

2480
	ret = pm_runtime_get_sync(cpsw->dev);
2481
	if (ret < 0) {
2482
		pm_runtime_put_noidle(cpsw->dev);
2483 2484 2485
		return ret;
	}

2486
	if (cpsw->data.dual_emac) {
2487 2488 2489 2490 2491 2492
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

2493
		for (i = 0; i < cpsw->data.slaves; i++) {
2494 2495 2496 2497
			if (vid == cpsw->slaves[i].port_vlan) {
				ret = -EINVAL;
				goto err;
			}
2498 2499 2500
		}
	}

2501
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2502
	ret = cpsw_add_vlan_ale_entry(priv, vid);
2503
err:
2504
	pm_runtime_put(cpsw->dev);
2505
	return ret;
2506 2507 2508
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2509
				     __be16 proto, u16 vid)
2510 2511
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2512
	struct cpsw_common *cpsw = priv->cpsw;
2513 2514
	int ret;

2515
	if (vid == cpsw->data.default_vlan)
2516 2517
		return 0;

2518
	ret = pm_runtime_get_sync(cpsw->dev);
2519
	if (ret < 0) {
2520
		pm_runtime_put_noidle(cpsw->dev);
2521 2522 2523
		return ret;
	}

2524
	if (cpsw->data.dual_emac) {
2525 2526
		int i;

2527 2528
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2529
				goto err;
2530 2531 2532
		}
	}

2533
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2534
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2535 2536 2537 2538
	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
				  HOST_PORT_NUM, ALE_VLAN, vid);
	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
				  0, ALE_VLAN, vid);
2539
	ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
2540
err:
2541
	pm_runtime_put(cpsw->dev);
2542
	return ret;
2543 2544
}

2545 2546 2547 2548
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2549
	struct cpsw_slave *slave;
2550
	u32 min_rate;
2551
	u32 ch_rate;
2552
	int i, ret;
2553 2554 2555 2556 2557

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2558 2559 2560 2561 2562
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2563 2564 2565
		return -EINVAL;
	}

2566
	if (rate > cpsw->speed) {
2567
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2568 2569 2570 2571 2572 2573 2574 2575 2576
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2577 2578
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2579

2580 2581
	if (ret)
		return ret;
2582

2583 2584 2585 2586 2587 2588 2589 2590 2591
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2592
	cpsw_split_res(cpsw);
2593 2594 2595
	return ret;
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
	struct tc_mqprio_qopt_offload *mqprio = type_data;
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int fifo, num_tc, count, offset;
	struct cpsw_slave *slave;
	u32 tx_prio_map = 0;
	int i, tc, ret;

	num_tc = mqprio->qopt.num_tc;
	if (num_tc > CPSW_TC_NUM)
		return -EINVAL;

	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
		return -EINVAL;

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	if (num_tc) {
		for (i = 0; i < 8; i++) {
			tc = mqprio->qopt.prio_tc_map[i];
			fifo = cpsw_tc_to_fifo(tc, num_tc);
			tx_prio_map |= fifo << (4 * i);
		}

		netdev_set_num_tc(ndev, num_tc);
		for (i = 0; i < num_tc; i++) {
			count = mqprio->qopt.count[i];
			offset = mqprio->qopt.offset[i];
			netdev_set_tc_queue(ndev, i, count, offset);
		}
	}

	if (!mqprio->qopt.hw) {
		/* restore default configuration */
		netdev_reset_tc(ndev);
		tx_prio_map = TX_PRIORITY_MAPPING;
	}

	priv->mqprio_hw = mqprio->qopt.hw;

	offset = cpsw->version == CPSW_VERSION_1 ?
		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	slave_write(slave, tx_prio_map, offset);

	pm_runtime_put_sync(cpsw->dev);

	return 0;
}

static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			     void *type_data)
{
	switch (type) {
2657 2658 2659
	case TC_SETUP_QDISC_CBS:
		return cpsw_set_cbs(ndev, type_data);

2660 2661 2662 2663 2664 2665 2666 2667
	case TC_SETUP_QDISC_MQPRIO:
		return cpsw_set_mqprio(ndev, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

2668 2669 2670 2671
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2672
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2673
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2674 2675
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2676
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2677
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2678 2679 2680
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2681 2682
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2683
	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2684 2685
};

2686 2687
static int cpsw_get_regs_len(struct net_device *ndev)
{
2688
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2689

2690
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2691 2692 2693 2694 2695 2696
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2697
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2698 2699

	/* update CPSW IP version */
2700
	regs->version = cpsw->version;
2701

2702
	cpsw_ale_dump(cpsw->ale, reg);
2703 2704
}

2705 2706 2707
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2708
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2709
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2710

2711
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2712
	strlcpy(info->version, "1.0", sizeof(info->version));
2713
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2728
#if IS_ENABLED(CONFIG_TI_CPTS)
2729 2730 2731
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2732
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2733 2734 2735 2736 2737 2738 2739 2740

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2741
	info->phc_index = cpsw->cpts->phc_index;
2742 2743 2744 2745 2746
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2747
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2748
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2749 2750
	return 0;
}
2751
#else
2752 2753 2754
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2755 2756 2757 2758 2759 2760 2761 2762 2763
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2764
#endif
2765

2766 2767
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2768 2769
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2770 2771
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2772

2773
	if (!cpsw->slaves[slave_no].phy)
2774
		return -EOPNOTSUPP;
2775 2776 2777

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2778 2779
}

2780 2781
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2782 2783
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2784 2785
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2786

2787
	if (cpsw->slaves[slave_no].phy)
2788 2789
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2790 2791 2792 2793
	else
		return -EOPNOTSUPP;
}

2794 2795 2796
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2797 2798
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2799 2800 2801 2802

	wol->supported = 0;
	wol->wolopts = 0;

2803 2804
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2805 2806 2807 2808 2809
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2810 2811
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2812

2813 2814
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2815 2816 2817 2818
	else
		return -EOPNOTSUPP;
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2842 2843 2844
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2845
	struct cpsw_common *cpsw = priv->cpsw;
2846 2847
	int ret;

2848
	ret = pm_runtime_get_sync(cpsw->dev);
2849 2850
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2851
		pm_runtime_put_noidle(cpsw->dev);
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2862
	ret = pm_runtime_put(priv->cpsw->dev);
2863 2864 2865 2866
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2867 2868 2869 2870 2871
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

2872 2873
	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	ch->max_combined = 0;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
2885 2886 2887 2888 2889
	if (cpsw->quirk_irq) {
		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
		return -EOPNOTSUPP;
	}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2908
	struct netdev_queue *queue;
2909
	struct cpsw_vector *vec;
2910
	int ret, *ch, vch;
2911 2912 2913

	if (rx) {
		ch = &cpsw->rx_ch_num;
2914
		vec = cpsw->rxv;
2915 2916 2917
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2918
		vec = cpsw->txv;
2919 2920 2921 2922
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2923 2924
		vch = rx ? *ch : 7 - *ch;
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2925 2926
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2927

2928 2929
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2930

2931
		if (!vec[*ch].ch)
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2942
		ret = cpdma_chan_destroy(vec[*ch].ch);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2969
static void cpsw_suspend_data_pass(struct net_device *ndev)
2970
{
2971
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2972
	struct cpsw_slave *slave;
2973
	int i;
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
3006
	if (cpsw->usage_count) {
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

3060
	if (cpsw->usage_count)
3061
		cpsw_split_res(cpsw);
3062

3063 3064 3065
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
3066 3067 3068 3069 3070 3071
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

3108 3109 3110 3111 3112 3113 3114 3115 3116
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
3117
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
3118 3119 3120 3121 3122 3123 3124 3125
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
3126
	int ret;
3127 3128 3129 3130

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
3131 3132
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
3133 3134 3135 3136 3137
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

3138
	cpsw_suspend_data_pass(ndev);
3139 3140 3141

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

3142
	if (cpsw->usage_count)
3143 3144
		cpdma_chan_split_pool(cpsw->dma);

3145 3146 3147
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
3148

3149
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3150 3151 3152 3153
	dev_close(ndev);
	return ret;
}

3154 3155 3156 3157 3158
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
3159
	.get_ts_info	= cpsw_get_ts_info,
3160 3161
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
3162 3163 3164
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
3165 3166
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
3167 3168
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
3169 3170
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
3171 3172
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
3173 3174
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
3175 3176
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
3177 3178
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
3179
	.nway_reset	= cpsw_nway_reset,
3180 3181
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
3182 3183
};

3184
static int cpsw_probe_dt(struct cpsw_platform_data *data,
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
3196
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3197 3198 3199 3200
		return -EINVAL;
	}
	data->slaves = prop;

3201
	if (of_property_read_u32(node, "active_slave", &prop)) {
3202
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3203
		return -EINVAL;
3204
	}
3205
	data->active_slave = prop;
3206

3207 3208 3209
	data->slave_data = devm_kcalloc(&pdev->dev,
					data->slaves,
					sizeof(struct cpsw_slave_data),
3210
					GFP_KERNEL);
3211
	if (!data->slave_data)
3212
		return -ENOMEM;
3213 3214

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3215
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3216
		return -EINVAL;
3217 3218 3219 3220
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
3221
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3222
		return -EINVAL;
3223 3224 3225 3226
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3227
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3228
		return -EINVAL;
3229 3230 3231 3232
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
3233
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3234
		return -EINVAL;
3235 3236 3237
	}
	data->mac_control = prop;

3238 3239
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
3240

3241 3242 3243 3244 3245 3246
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
3247
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
3248

3249
	for_each_available_child_of_node(node, slave_node) {
3250 3251
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
3252 3253 3254
		int lenp;
		const __be32 *parp;

3255
		/* This is no slave child node, continue */
3256
		if (!of_node_name_eq(slave_node, "slave"))
3257 3258
			continue;

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
						    NULL);
		if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
		    IS_ERR(slave_data->ifphy)) {
			ret = PTR_ERR(slave_data->ifphy);
			dev_err(&pdev->dev,
				"%d: Error retrieving port phy: %d\n", i, ret);
			return ret;
		}

3269 3270
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
3271
		parp = of_get_property(slave_node, "phy_id", &lenp);
3272 3273
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
3274 3275
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
3276
		} else if (of_phy_is_fixed_link(slave_node)) {
3277 3278 3279
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
3280
			ret = of_phy_register_fixed_link(slave_node);
3281 3282 3283
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3284
				return ret;
3285
			}
3286
			slave_data->phy_node = of_node_get(slave_node);
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
3306
			put_device(&mdio->dev);
3307
		} else {
3308 3309 3310
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
3311
			goto no_phy_slave;
3312
		}
3313 3314 3315 3316 3317 3318 3319 3320
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
3321
		mac_addr = of_get_mac_address(slave_node);
3322
		if (mac_addr) {
3323
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3324
		} else {
3325 3326 3327 3328
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
3329
		}
3330
		if (data->dual_emac) {
3331
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3332
						 &prop)) {
3333
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3334
				slave_data->dual_emac_res_vlan = i+1;
3335 3336
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
3337 3338 3339 3340 3341
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

3342
		i++;
3343 3344
		if (i == data->slaves)
			break;
3345 3346 3347 3348 3349
	}

	return 0;
}

3350 3351
static void cpsw_remove_dt(struct platform_device *pdev)
{
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

3362
		if (!of_node_name_eq(slave_node, "slave"))
3363 3364
			continue;

3365 3366
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
3367 3368 3369 3370 3371 3372 3373 3374

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

3375 3376 3377
	of_platform_depopulate(&pdev->dev);
}

3378
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3379
{
3380 3381
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
3382 3383
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
3384
	int ret = 0;
3385

3386 3387
	ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
3388
	if (!ndev) {
3389
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3390 3391 3392 3393
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
3394
	priv_sl2->cpsw = cpsw;
3395 3396 3397 3398 3399 3400 3401
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
3402 3403
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
3404
	} else {
3405
		eth_random_addr(priv_sl2->mac_addr);
3406 3407
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
3408 3409 3410 3411
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
3412
	cpsw->slaves[1].ndev = ndev;
3413
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3414 3415

	ndev->netdev_ops = &cpsw_netdev_ops;
3416
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3417 3418

	/* register the network device */
3419
	SET_NETDEV_DEV(ndev, cpsw->dev);
3420
	ret = register_netdev(ndev);
3421
	if (ret)
3422
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
3423 3424 3425 3426

	return ret;
}

3427
static const struct of_device_id cpsw_of_mtable[] = {
3428 3429 3430 3431
	{ .compatible = "ti,cpsw"},
	{ .compatible = "ti,am335x-cpsw"},
	{ .compatible = "ti,am4372-cpsw"},
	{ .compatible = "ti,dra7-cpsw"},
3432 3433 3434 3435
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

3436 3437 3438 3439 3440
static const struct soc_device_attribute cpsw_soc_devices[] = {
	{ .family = "AM33xx", .revision = "ES1.0"},
	{ /* sentinel */ }
};

B
Bill Pemberton 已提交
3441
static int cpsw_probe(struct platform_device *pdev)
3442
{
3443
	struct device			*dev = &pdev->dev;
3444
	struct clk			*clk;
3445
	struct cpsw_platform_data	*data;
3446 3447 3448 3449
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
3450
	void __iomem			*ss_regs;
3451
	void __iomem			*cpts_regs;
3452
	struct resource			*res, *ss_res;
3453
	struct gpio_descs		*mode;
3454
	u32 slave_offset, sliver_offset, slave_size;
3455
	const struct soc_device_attribute *soc;
3456
	struct cpsw_common		*cpsw;
3457
	int ret = 0, i, ch;
3458
	int irq;
3459

3460
	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
3461 3462 3463
	if (!cpsw)
		return -ENOMEM;

3464
	cpsw->dev = dev;
3465

3466
	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
3467 3468
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
3469
		dev_err(dev, "gpio request failed, ret %d\n", ret);
3470
		return ret;
3471 3472
	}

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	clk = devm_clk_get(dev, "fck");
	if (IS_ERR(clk)) {
		ret = PTR_ERR(mode);
		dev_err(dev, "fck is not found %d\n", ret);
		return ret;
	}
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;

	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(dev, ss_res);
	if (IS_ERR(ss_regs))
		return PTR_ERR(ss_regs);
	cpsw->regs = ss_regs;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	cpsw->wr_regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(cpsw->wr_regs))
		return PTR_ERR(cpsw->wr_regs);

	/* RX IRQ */
	irq = platform_get_irq(pdev, 1);
	if (irq < 0)
		return irq;
	cpsw->irqs_table[0] = irq;

	/* TX IRQ */
	irq = platform_get_irq(pdev, 2);
	if (irq < 0)
		return irq;
	cpsw->irqs_table[1] = irq;

3504 3505 3506
	/*
	 * This may be required here for child devices.
	 */
3507
	pm_runtime_enable(dev);
3508

3509 3510 3511
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
3512
	ret = pm_runtime_get_sync(dev);
3513
	if (ret < 0) {
3514
		pm_runtime_put_noidle(dev);
3515
		goto clean_runtime_disable_ret;
3516
	}
3517

3518 3519
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
3520
		goto clean_dt_ret;
3521

3522 3523 3524
	soc = soc_device_match(cpsw_soc_devices);
	if (soc)
		cpsw->quirk_irq = 1;
3525

3526
	data = &cpsw->data;
3527
	cpsw->slaves = devm_kcalloc(dev,
3528
				    data->slaves, sizeof(struct cpsw_slave),
3529
				    GFP_KERNEL);
3530
	if (!cpsw->slaves) {
3531
		ret = -ENOMEM;
3532
		goto clean_dt_ret;
3533 3534
	}

3535
	cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
3536

3537 3538
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
3539

3540
	cpsw->version = readl(&cpsw->regs->id_ver);
3541

3542
	memset(&dma_params, 0, sizeof(dma_params));
3543 3544
	memset(&ale_params, 0, sizeof(ale_params));

3545
	switch (cpsw->version) {
3546
	case CPSW_VERSION_1:
3547
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3548
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3549
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3550 3551 3552 3553 3554 3555 3556 3557 3558
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3559
	case CPSW_VERSION_3:
3560
	case CPSW_VERSION_4:
3561
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3562
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3563
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3564 3565 3566 3567 3568 3569 3570
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3571
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3572 3573
		break;
	default:
3574
		dev_err(dev, "unknown version 0x%08x\n", cpsw->version);
3575
		ret = -ENODEV;
3576
		goto clean_dt_ret;
3577
	}
3578

3579 3580
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];
3581 3582 3583 3584 3585 3586 3587
		void __iomem		*regs = cpsw->regs;

		slave->slave_num = i;
		slave->data	= &cpsw->data.slave_data[i];
		slave->regs	= regs + slave_offset;
		slave->sliver	= regs + sliver_offset;
		slave->port_vlan = slave->data->dual_emac_res_vlan;
3588

3589 3590 3591 3592
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	ale_params.dev			= dev;
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;

	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
		dev_err(dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dt_ret;
	}

3605
	dma_params.dev		= dev;
3606 3607 3608 3609 3610
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3611 3612 3613 3614 3615 3616 3617

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3618
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3619
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3620
	dma_params.descs_pool_size	= descs_pool_size;
3621

3622 3623
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3624
		dev_err(dev, "error initializing dma\n");
3625
		ret = -ENOMEM;
3626
		goto clean_dt_ret;
3627 3628
	}

3629 3630 3631 3632 3633
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
		goto clean_dma_ret;
	}
3634

3635 3636
	ch = cpsw->quirk_irq ? 0 : 7;
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3637
	if (IS_ERR(cpsw->txv[0].ch)) {
3638
		dev_err(dev, "error initializing tx dma channel\n");
3639
		ret = PTR_ERR(cpsw->txv[0].ch);
3640
		goto clean_cpts;
3641 3642
	}

3643
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3644
	if (IS_ERR(cpsw->rxv[0].ch)) {
3645
		dev_err(dev, "error initializing rx dma channel\n");
3646
		ret = PTR_ERR(cpsw->rxv[0].ch);
3647
		goto clean_cpts;
3648
	}
3649
	cpsw_split_res(cpsw);
3650

3651 3652 3653 3654 3655 3656
	/* setup netdev */
	ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
	if (!ndev) {
		dev_err(dev, "error allocating net_device\n");
		goto clean_cpts;
3657 3658
	}

3659 3660 3661 3662 3663 3664 3665
	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
	priv->cpsw = cpsw;
	priv->ndev = ndev;
	priv->dev  = dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
	priv->emac_port = 0;
3666

3667 3668 3669 3670 3671 3672
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
		dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
	} else {
		eth_random_addr(priv->mac_addr);
		dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
3673 3674
	}

3675 3676 3677 3678
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

	cpsw->slaves[0].ndev = ndev;

3679
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3680 3681 3682

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3683 3684 3685 3686 3687 3688
	netif_napi_add(ndev, &cpsw->napi_rx,
		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
		       CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx,
			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
			  CPSW_POLL_WEIGHT);
3689 3690

	/* register the network device */
3691
	SET_NETDEV_DEV(ndev, dev);
3692 3693
	ret = register_netdev(ndev);
	if (ret) {
3694
		dev_err(dev, "error registering net device\n");
3695
		ret = -ENODEV;
3696
		goto clean_cpts;
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3707 3708 3709 3710 3711 3712 3713
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3714
	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
3715
			       0, dev_name(dev), cpsw);
3716
	if (ret < 0) {
3717
		dev_err(dev, "error attaching irq (%d)\n", ret);
3718
		goto clean_unregister_netdev_ret;
3719 3720 3721
	}


3722
	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
3723
			       0, dev_name(&pdev->dev), cpsw);
3724
	if (ret < 0) {
3725
		dev_err(dev, "error attaching irq (%d)\n", ret);
3726
		goto clean_unregister_netdev_ret;
3727
	}
3728

3729 3730
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3731
		    &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
3732

3733 3734
	pm_runtime_put(&pdev->dev);

3735 3736
	return 0;

3737 3738
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3739 3740
clean_cpts:
	cpts_release(cpsw->cpts);
3741
clean_dma_ret:
3742
	cpdma_ctlr_destroy(cpsw->dma);
3743 3744
clean_dt_ret:
	cpsw_remove_dt(pdev);
3745
	pm_runtime_put_sync(&pdev->dev);
3746
clean_runtime_disable_ret:
3747
	pm_runtime_disable(&pdev->dev);
3748 3749 3750
	return ret;
}

B
Bill Pemberton 已提交
3751
static int cpsw_remove(struct platform_device *pdev)
3752 3753
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3754
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3755 3756 3757 3758 3759 3760 3761
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3762

3763 3764
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3765
	unregister_netdev(ndev);
3766

3767
	cpts_release(cpsw->cpts);
3768
	cpdma_ctlr_destroy(cpsw->dma);
3769
	cpsw_remove_dt(pdev);
3770 3771
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3772 3773 3774
	return 0;
}

3775
#ifdef CONFIG_PM_SLEEP
3776 3777
static int cpsw_suspend(struct device *dev)
{
3778
	struct net_device	*ndev = dev_get_drvdata(dev);
3779
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3780

3781
	if (cpsw->data.dual_emac) {
3782
		int i;
3783

3784 3785 3786
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3787 3788 3789 3790 3791
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3792

3793
	/* Select sleep pin state */
3794
	pinctrl_pm_select_sleep_state(dev);
3795

3796 3797 3798 3799 3800
	return 0;
}

static int cpsw_resume(struct device *dev)
{
3801
	struct net_device	*ndev = dev_get_drvdata(dev);
3802
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3803

3804
	/* Select default pin state */
3805
	pinctrl_pm_select_default_state(dev);
3806

3807 3808
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3809
	if (cpsw->data.dual_emac) {
3810 3811
		int i;

3812 3813 3814
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3815 3816 3817 3818 3819
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3820 3821
	rtnl_unlock();

3822 3823
	return 0;
}
3824
#endif
3825

3826
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3827 3828 3829 3830 3831

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3832
		.of_match_table = cpsw_of_mtable,
3833 3834
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3835
	.remove = cpsw_remove,
3836 3837
};

3838
module_platform_driver(cpsw_driver);
3839 3840 3841 3842 3843

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");