cpsw.c 65.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
20
#include <linux/net_tstamp.h>
21
#include <linux/phy.h>
22
#include <linux/phy/phy.h>
23 24
#include <linux/workqueue.h>
#include <linux/delay.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/gpio/consumer.h>
27
#include <linux/of.h>
28
#include <linux/of_mdio.h>
29 30
#include <linux/of_net.h>
#include <linux/of_device.h>
31
#include <linux/if_vlan.h>
32
#include <linux/kmemleak.h>
33
#include <linux/sys_soc.h>
34

35
#include <linux/pinctrl/consumer.h>
36
#include <net/pkt_cls.h>
37

38
#include "cpsw.h"
39
#include "cpsw_ale.h"
40
#include "cpsw_priv.h"
41
#include "cpsw_sl.h"
42
#include "cpts.h"
43 44
#include "davinci_cpdma.h"

45 46
#include <net/pkt_sched.h>

47 48 49 50 51 52 53 54 55 56 57 58
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

59 60 61 62
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

63 64
#define for_each_slave(priv, func, arg...)				\
	do {								\
65
		struct cpsw_slave *slave;				\
66
		struct cpsw_common *cpsw = (priv)->cpsw;		\
67
		int n;							\
68 69
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
70
		else							\
71 72
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
73 74
					n; n--)				\
				(func)(slave++, ##arg);			\
75 76
	} while (0)

77 78 79
static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
				    __be16 proto, u16 vid);

80 81
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
82 83
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
84 85
	int i;

86
	if (cpsw->data.dual_emac) {
87 88 89 90 91 92
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
93 94
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

116
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
117
			for (i = 0; i <= cpsw->data.slaves; i++) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
134
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
135
			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
136 137 138 139 140

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
141
			/* Don't Flood All Unicast Packets to Host port */
142 143
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

144
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
145
			for (i = 0; i <= cpsw->data.slaves; i++) {
146 147 148 149 150 151 152 153 154 155
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

156 157 158 159 160 161 162 163 164 165
/**
 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
 * if it's not deleted
 * @ndev: device to sync
 * @addr: address to be added or deleted
 * @vid: vlan id, if vid < 0 set/unset address for real device
 * @add: add address if the flag is set or remove otherwise
 */
static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
		       int vid, int add)
166 167
{
	struct cpsw_priv *priv = netdev_priv(ndev);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	struct cpsw_common *cpsw = priv->cpsw;
	int mask, flags, ret;

	if (vid < 0) {
		if (cpsw->data.dual_emac)
			vid = cpsw->slaves[priv->emac_port].port_vlan;
		else
			vid = 0;
	}

	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
	flags = vid ? ALE_VLAN : 0;

	if (add)
		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
	else
		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);

	return ret;
}

static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0, ret = 0;

	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
	}

	if (found)
		sync_ctx->consumed++;

	if (sync_ctx->flush) {
		if (!found)
			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
		return 0;
	}

	if (found)
		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);

	return ret;
}

static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;
	int ret;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 0;

	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num && !ret)
		ret = cpsw_set_mc(ndev, addr, -1, 1);

	return ret;
}

static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 1;

	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed == num)
		cpsw_set_mc(ndev, addr, -1, 0);
250 251 252 253

	return 0;
}

254
static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
255
{
256 257 258
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0;
259

260 261 262 263 264 265 266 267 268
	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
269 270
	}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	if (!found)
		return 0;

	sync_ctx->consumed++;
	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
	return 0;
}

static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.consumed = 0;

	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num)
		cpsw_set_mc(ndev, addr, -1, 0);

291 292 293 294 295
	return 0;
}

static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
296 297 298 299 300 301
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_port = -1;

	if (cpsw->data.dual_emac)
		slave_port = priv->emac_port + 1;
302 303 304

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
305
		cpsw_set_promiscious(ndev, true);
306
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
307
		return;
308 309 310
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
311 312
	}

313
	/* Restore allmulti on vlans if necessary */
314 315
	cpsw_ale_set_allmulti(cpsw->ale,
			      ndev->flags & IFF_ALLMULTI, slave_port);
316

317 318 319
	/* add/remove mcast address either for real netdev or for vlan */
	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
			       cpsw_del_mc_addr);
320 321
}

322
void cpsw_intr_enable(struct cpsw_common *cpsw)
323
{
324 325
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
326

327
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
328 329 330
	return;
}

331
void cpsw_intr_disable(struct cpsw_common *cpsw)
332
{
333 334
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
335

336
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
337 338 339
	return;
}

340
void cpsw_tx_handler(void *token, int len, int status)
341
{
342
	struct netdev_queue	*txq;
343 344
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
345
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
346

347 348 349
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
350 351 352 353
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

354
	cpts_tx_timestamp(cpsw->cpts, skb);
355 356
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
357 358 359
	dev_kfree_skb_any(skb);
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	struct cpsw_common *cpsw = priv->cpsw;
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;
	/* Ignore default vlans in dual mac mode */
	if (cpsw->data.dual_emac &&
	    vid == cpsw->slaves[priv->emac_port].port_vlan)
		return;

	prio = (rx_vlan_encap_hdr >>
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

403
static void cpsw_rx_handler(void *token, int len, int status)
404
{
405
	struct cpdma_chan	*ch;
406
	struct sk_buff		*skb = token;
407
	struct sk_buff		*new_skb;
408
	struct net_device	*ndev = skb->dev;
409
	int			ret = 0, port;
410
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
411
	struct cpsw_priv	*priv;
412

413 414 415 416 417 418 419
	if (cpsw->data.dual_emac) {
		port = CPDMA_RX_SOURCE_PORT(status);
		if (port) {
			ndev = cpsw->slaves[--port].ndev;
			skb->dev = ndev;
		}
	}
420

421
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
422
		/* In dual emac mode check for all interfaces */
423
		if (cpsw->data.dual_emac && cpsw->usage_count &&
424
		    (status >= 0)) {
425 426
			/* The packet received is for the interface which
			 * is already down and the other interface is up
427
			 * and running, instead of freeing which results
428 429 430 431 432 433 434
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

435
		/* the interface is going down, skbs are purged */
436 437 438
		dev_kfree_skb_any(skb);
		return;
	}
439

440
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
441
	if (new_skb) {
442
		skb_copy_queue_mapping(new_skb, skb);
443
		skb_put(skb, len);
444 445
		if (status & CPDMA_RX_VLAN_ENCAP)
			cpsw_rx_vlan_encap(skb);
446 447 448
		priv = netdev_priv(ndev);
		if (priv->rx_ts_enabled)
			cpts_rx_timestamp(cpsw->cpts, skb);
449 450
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
451 452
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
453
		kmemleak_not_leak(new_skb);
454
	} else {
455
		ndev->stats.rx_dropped++;
456
		new_skb = skb;
457 458
	}

459
requeue:
460 461 462 463 464
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

465
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
466
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
467
				skb_tailroom(new_skb), 0);
468 469
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
470 471
}

472
void cpsw_split_res(struct cpsw_common *cpsw)
473
{
474
	u32 consumed_rate = 0, bigest_rate = 0;
475
	struct cpsw_vector *txv = cpsw->txv;
476
	int i, ch_weight, rlim_ch_num = 0;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
492 493 494 495
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
496
	} else {
497 498 499 500 501 502 503 504 505 506
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
507

508 509 510 511 512 513 514
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

515
	/* split tx weight/budget */
516 517 518 519 520 521
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
522
				txv[i].budget++;
523 524 525 526
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
527 528 529 530 531

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
532 533 534 535
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
536
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

557
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
558
{
559
	struct cpsw_common *cpsw = dev_id;
560

561
	writel(0, &cpsw->wr_regs->tx_en);
562
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
563

564 565 566
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
567 568
	}

569
	napi_schedule(&cpsw->napi_tx);
570 571 572 573 574
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
575
	struct cpsw_common *cpsw = dev_id;
576

577
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
578
	writel(0, &cpsw->wr_regs->rx_en);
579

580 581 582
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
583 584
	}

585
	napi_schedule(&cpsw->napi_rx);
586
	return IRQ_HANDLED;
587 588
}

589
static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
590
{
591
	u32			ch_map;
592
	int			num_tx, cur_budget, ch;
593
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
594
	struct cpsw_vector	*txv;
595

596 597
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
598 599
	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
		if (!(ch_map & 0x80))
600 601
			continue;

602 603 604 605 606 607 608
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
609 610
		if (num_tx >= budget)
			break;
611 612
	}

613 614
	if (num_tx < budget) {
		napi_complete(napi_tx);
615
		writel(0xff, &cpsw->wr_regs->tx_en);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	}

	return num_tx;
}

static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
631 632
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
633
		}
634 635 636 637 638
	}

	return num_tx;
}

639
static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
640
{
641
	u32			ch_map;
642
	int			num_rx, cur_budget, ch;
643
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
644
	struct cpsw_vector	*rxv;
645

646 647
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
648
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
649 650 651
		if (!(ch_map & 0x01))
			continue;

652 653 654 655 656 657 658
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
659 660
		if (num_rx >= budget)
			break;
661 662
	}

663
	if (num_rx < budget) {
664
		napi_complete_done(napi_rx, num_rx);
665
		writel(0xff, &cpsw->wr_regs->rx_en);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	}

	return num_rx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
681 682
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
683
		}
684 685 686 687 688 689 690 691 692
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

693
	writel_relaxed(1, reg);
694 695
	do {
		cpu_relax();
696
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
697

698
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
699 700 701 702 703
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
704 705
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
706 707
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = 7 << shift;
	val = val & mask;

	return !val;
}

static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = (1 << --fifo) << shift;
	val = on ? val | mask : val & ~mask;

	writel_relaxed(val, &cpsw->regs->ptype);
}

740 741 742 743 744 745
static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
746
	struct cpsw_common *cpsw = priv->cpsw;
747 748 749 750

	if (!phy)
		return;

751
	slave_port = cpsw_get_slave_port(slave->slave_num);
752 753

	if (phy->link) {
754
		mac_control = CPSW_SL_CTL_GMII_EN;
755 756

		if (phy->speed == 1000)
757
			mac_control |= CPSW_SL_CTL_GIG;
758
		if (phy->duplex)
759
			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
760 761 762

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
763
			mac_control |= CPSW_SL_CTL_IFCTL_A;
764 765
		/* in band mode only works in 10Mbps RGMII mode */
		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
766
			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
767

768
		if (priv->rx_pause)
769
			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
770 771

		if (priv->tx_pause)
772 773 774 775 776 777 778 779
			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;

		if (mac_control != slave->mac_control)
			cpsw_sl_ctl_set(slave->mac_sl, mac_control);

		/* enable forwarding */
		cpsw_ale_control_set(cpsw->ale, slave_port,
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
780

781
		*link = true;
782 783 784 785 786 787

		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed &&
		    !cpsw_shp_is_off(priv))
			dev_warn(priv->dev,
				 "Speed was changed, CBS shaper speeds are changed!");
788 789 790
	} else {
		mac_control = 0;
		/* disable forwarding */
791
		cpsw_ale_control_set(cpsw->ale, slave_port,
792
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
793 794 795 796

		cpsw_sl_wait_for_idle(slave->mac_sl, 100);

		cpsw_sl_ctl_reset(slave->mac_sl);
797 798
	}

799
	if (mac_control != slave->mac_control)
800 801 802 803 804
		phy_print_status(phy);

	slave->mac_control = mac_control;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

843 844 845
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
846
	struct cpsw_common	*cpsw = priv->cpsw;
847 848 849 850 851
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
852
		if (cpsw_need_resplit(cpsw))
853
			cpsw_split_res(cpsw);
854

855 856
		netif_carrier_on(ndev);
		if (netif_running(ndev))
857
			netif_tx_wake_all_queues(ndev);
858 859
	} else {
		netif_carrier_off(ndev);
860
		netif_tx_stop_all_queues(ndev);
861 862 863
	}
}

864 865 866 867
static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
868
	struct cpsw_common *cpsw = priv->cpsw;
869
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
870

871
	if (cpsw->version == CPSW_VERSION_1)
872 873 874
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
875
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
876
			  port_mask, port_mask, 0);
877
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
878
			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
879 880 881
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
882 883
	cpsw_ale_control_set(cpsw->ale, slave_port,
			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
884 885
}

886 887 888
static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
889
	struct phy_device *phy;
890
	struct cpsw_common *cpsw = priv->cpsw;
891

892 893
	cpsw_sl_reset(slave->mac_sl, 100);
	cpsw_sl_ctl_reset(slave->mac_sl);
894 895

	/* setup priority mapping */
896 897
	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
			  RX_PRIORITY_MAPPING);
898

899
	switch (cpsw->version) {
900 901
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
902 903 904 905 906 907
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
908 909
		break;
	case CPSW_VERSION_2:
910
	case CPSW_VERSION_3:
911
	case CPSW_VERSION_4:
912
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
913 914 915 916 917 918
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
919 920
		break;
	}
921 922

	/* setup max packet size, and mac address */
923 924
	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
			  cpsw->rx_packet_max);
925 926 927 928
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

929
	slave_port = cpsw_get_slave_port(slave->slave_num);
930

931
	if (cpsw->data.dual_emac)
932 933
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
934
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
935
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
936

937
	if (slave->data->phy_node) {
938
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
939
				 &cpsw_adjust_link, 0, slave->data->phy_if);
940
		if (!phy) {
941 942
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
943 944 945 946
				slave->slave_num);
			return;
		}
	} else {
947
		phy = phy_connect(priv->ndev, slave->data->phy_id,
948
				 &cpsw_adjust_link, slave->data->phy_if);
949
		if (IS_ERR(phy)) {
950 951 952
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
953
				PTR_ERR(phy));
954 955 956
			return;
		}
	}
957

958 959
	slave->phy = phy;

960
	phy_attached_info(slave->phy);
961

962 963 964
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
965 966 967 968 969 970
	if (!IS_ERR(slave->data->ifphy))
		phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
				 slave->data->phy_if);
	else
		cpsw_phy_sel(cpsw->dev, slave->phy->interface,
			     slave->slave_num);
971 972
}

973 974
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
975 976
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
977 978
	u32 reg;
	int i;
979
	int unreg_mcast_mask;
980

981
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
982 983
	       CPSW2_PORT_VLAN;

984
	writel(vlan, &cpsw->host_port_regs->port_vlan);
985

986 987
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
988

989 990 991 992 993
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

994
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
995 996
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
997 998
}

999 1000
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1001
	u32 fifo_mode;
1002 1003
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1004

1005
	/* soft reset the controller and initialize ale */
1006
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1007
	cpsw_ale_start(cpsw->ale);
1008 1009

	/* switch to vlan unaware mode */
1010
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1011
			     CPSW_ALE_VLAN_AWARE);
1012
	control_reg = readl(&cpsw->regs->control);
1013
	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1014
	writel(control_reg, &cpsw->regs->control);
1015
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1016
		     CPSW_FIFO_NORMAL_MODE;
1017
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1018 1019

	/* setup host port priority mapping */
1020 1021 1022
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1023

1024
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1025 1026
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1027
	if (!cpsw->data.dual_emac) {
1028
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1029
				   0, 0);
1030
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1031
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1032
	}
1033 1034
}

1035
int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1036 1037 1038 1039
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1040 1041 1042
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1043
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1044 1045 1046 1047 1048 1049 1050 1051
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1052

1053
			skb_set_queue_mapping(skb, ch);
1054 1055 1056
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1057 1058 1059 1060 1061 1062 1063 1064
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1065 1066
		}

1067 1068 1069
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1070

1071
	return 0;
1072 1073
}

1074
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1075
{
1076 1077
	u32 slave_port;

1078
	slave_port = cpsw_get_slave_port(slave->slave_num);
1079

1080 1081 1082 1083 1084
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1085
	cpsw_ale_control_set(cpsw->ale, slave_port,
1086
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1087 1088
	cpsw_sl_reset(slave->mac_sl, 100);
	cpsw_sl_ctl_reset(slave->mac_sl);
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098
static int cpsw_tc_to_fifo(int tc, int num_tc)
{
	if (tc == num_tc - 1)
		return 0;

	return CPSW_FIFO_SHAPERS_NUM - tc;
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 val = 0, send_pct, shift;
	struct cpsw_slave *slave;
	int pct = 0, i;

	if (bw > priv->shp_cfg_speed * 1000)
		goto err;

	/* shaping has to stay enabled for highest fifos linearly
	 * and fifo bw no more then interface can allow
	 */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	send_pct = slave_read(slave, SEND_PERCENT);
	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
		if (!bw) {
			if (i >= fifo || !priv->fifo_bw[i])
				continue;

			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
			continue;
		}

		if (!priv->fifo_bw[i] && i > fifo) {
			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
			return -EINVAL;
		}

		shift = (i - 1) * 8;
		if (i == fifo) {
			send_pct &= ~(CPSW_PCT_MASK << shift);
			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
			if (!val)
				val = 1;

			send_pct |= val << shift;
			pct += val;
			continue;
		}

		if (priv->fifo_bw[i])
			pct += (send_pct >> shift) & CPSW_PCT_MASK;
	}

	if (pct >= 100)
		goto err;

	slave_write(slave, send_pct, SEND_PERCENT);
	priv->fifo_bw[fifo] = bw;

	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));

	return 0;
err:
	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
	return -EINVAL;
}

static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 tx_in_ctl_rg, val;
	int ret;

	ret = cpsw_set_fifo_bw(priv, fifo, bw);
	if (ret)
		return ret;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;

	if (!bw)
		cpsw_fifo_shp_on(priv, fifo, bw);

	val = slave_read(slave, tx_in_ctl_rg);
	if (cpsw_shp_is_off(priv)) {
		/* disable FIFOs rate limited queues */
		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);

		/* set type of FIFO queues to normal priority mode */
		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);

		/* set type of FIFO queues to be rate limited */
		if (bw)
			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
		else
			priv->shp_cfg_speed = 0;
	}

	/* toggle a FIFO rate limited queue */
	if (bw)
		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	else
		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	slave_write(slave, val, tx_in_ctl_rg);

	/* FIFO transmit shape enable */
	cpsw_fifo_shp_on(priv, fifo, bw);
	return 0;
}

/* Defaults:
 * class A - prio 3
 * class B - prio 2
 * shaping for class A should be set first
 */
static int cpsw_set_cbs(struct net_device *ndev,
			struct tc_cbs_qopt_offload *qopt)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int prev_speed = 0;
	int tc, ret, fifo;
	u32 bw = 0;

	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);

	/* enable channels in backward order, as highest FIFOs must be rate
	 * limited first and for compliance with CPDMA rate limited channels
	 * that also used in bacward order. FIFO0 cannot be rate limited.
	 */
	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
	if (!fifo) {
		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
		return -EINVAL;
	}

	/* do nothing, it's disabled anyway */
	if (!qopt->enable && !priv->fifo_bw[fifo])
		return 0;

	/* shapers can be set if link speed is known */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	if (slave->phy && slave->phy->link) {
		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed)
			prev_speed = priv->shp_cfg_speed;

		priv->shp_cfg_speed = slave->phy->speed;
	}

	if (!priv->shp_cfg_speed) {
		dev_err(priv->dev, "Link speed is not known");
		return -1;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	bw = qopt->enable ? qopt->idleslope : 0;
	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
	if (ret) {
		priv->shp_cfg_speed = prev_speed;
		prev_speed = 0;
	}

	if (bw && prev_speed)
		dev_warn(priv->dev,
			 "Speed was changed, CBS shaper speeds are changed!");

	pm_runtime_put_sync(cpsw->dev);
	return ret;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	int fifo, bw;

	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
		bw = priv->fifo_bw[fifo];
		if (!bw)
			continue;

		cpsw_set_fifo_rlimit(priv, fifo, bw);
	}
}

static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 tx_prio_map = 0;
	int i, tc, fifo;
	u32 tx_prio_rg;

	if (!priv->mqprio_hw)
		return;

	for (i = 0; i < 8; i++) {
		tc = netdev_get_prio_tc_map(priv->ndev, i);
		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
		tx_prio_map |= fifo << (4 * i);
	}

	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave_write(slave, tx_prio_map, tx_prio_rg);
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
{
	struct cpsw_priv *priv = arg;

	if (!vdev)
		return 0;

	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
	return 0;
}

1317 1318 1319
/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
1320 1321 1322
	/* restore vlan configurations */
	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);

1323 1324 1325 1326 1327 1328 1329
	/* restore MQPRIO offload */
	for_each_slave(priv, cpsw_mqprio_resume, priv);

	/* restore CBS offload */
	for_each_slave(priv, cpsw_cbs_resume, priv);
}

1330 1331 1332
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1333
	struct cpsw_common *cpsw = priv->cpsw;
1334
	int ret;
1335 1336
	u32 reg;

1337
	ret = pm_runtime_get_sync(cpsw->dev);
1338
	if (ret < 0) {
1339
		pm_runtime_put_noidle(cpsw->dev);
1340 1341
		return ret;
	}
1342

1343 1344
	netif_carrier_off(ndev);

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1358
	reg = cpsw->version;
1359 1360 1361 1362 1363

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1364 1365
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1366
		cpsw_init_host_port(priv);
1367 1368
	for_each_slave(priv, cpsw_slave_open, priv);

1369
	/* Add default VLAN */
1370
	if (!cpsw->data.dual_emac)
1371 1372
		cpsw_add_default_vlan(priv);
	else
1373
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1374
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1375

1376 1377
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1378
		/* disable priority elevation */
1379
		writel_relaxed(0, &cpsw->regs->ptype);
1380

1381
		/* enable statistics collection only on all ports */
1382
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1383

1384
		/* Enable internal fifo flow control */
1385
		writel(0x7, &cpsw->regs->flow_control);
1386

1387 1388
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1389

1390 1391 1392
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1393 1394
		}

1395 1396 1397
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1398 1399
		}

1400 1401 1402
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1403

1404
		if (cpts_register(cpsw->cpts))
1405 1406
			dev_err(priv->dev, "error registering cpts device\n");

1407 1408
	}

1409 1410
	cpsw_restore(priv);

1411
	/* Enable Interrupt pacing if configured */
1412
	if (cpsw->coal_intvl != 0) {
1413 1414
		struct ethtool_coalesce coal;

1415
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1416 1417 1418
		cpsw_set_coalesce(ndev, &coal);
	}

1419 1420
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1421
	cpsw->usage_count++;
1422

1423 1424
	return 0;

1425
err_cleanup:
1426
	cpdma_ctlr_stop(cpsw->dma);
1427
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1428
	pm_runtime_put_sync(cpsw->dev);
1429 1430
	netif_carrier_off(priv->ndev);
	return ret;
1431 1432 1433 1434 1435
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1436
	struct cpsw_common *cpsw = priv->cpsw;
1437 1438

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1439
	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
1440
	netif_tx_stop_all_queues(priv->ndev);
1441
	netif_carrier_off(priv->ndev);
1442

1443
	if (cpsw->usage_count <= 1) {
1444 1445
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1446
		cpts_unregister(cpsw->cpts);
1447 1448
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1449
		cpsw_ale_stop(cpsw->ale);
1450
	}
1451
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1452 1453

	if (cpsw_need_resplit(cpsw))
1454
		cpsw_split_res(cpsw);
1455

1456
	cpsw->usage_count--;
1457
	pm_runtime_put_sync(cpsw->dev);
1458 1459 1460 1461 1462 1463 1464
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1465
	struct cpsw_common *cpsw = priv->cpsw;
1466
	struct cpts *cpts = cpsw->cpts;
1467 1468 1469
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1470 1471 1472

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1473
		ndev->stats.tx_dropped++;
1474
		return NET_XMIT_DROP;
1475 1476
	}

1477
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1478
	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
1479 1480
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

1481 1482 1483 1484
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1485
	txch = cpsw->txv[q_idx].ch;
1486
	txq = netdev_get_tx_queue(ndev, q_idx);
1487 1488 1489
	skb_tx_timestamp(skb);
	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
				priv->emac_port + cpsw->data.dual_emac);
1490 1491 1492 1493 1494
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1495 1496 1497
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1498 1499
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
1500 1501 1502 1503 1504 1505

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
1506
	}
1507

1508 1509
	return NETDEV_TX_OK;
fail:
1510
	ndev->stats.tx_dropped++;
1511
	netif_tx_stop_queue(txq);
1512 1513 1514 1515 1516 1517 1518

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

1519 1520 1521
	return NETDEV_TX_BUSY;
}

1522
#if IS_ENABLED(CONFIG_TI_CPTS)
1523

1524
static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1525
{
1526
	struct cpsw_common *cpsw = priv->cpsw;
1527
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1528 1529
	u32 ts_en, seq_id;

1530
	if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
1531 1532 1533 1534 1535 1536 1537
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1538
	if (priv->tx_ts_enabled)
1539 1540
		ts_en |= CPSW_V1_TS_TX_EN;

1541
	if (priv->rx_ts_enabled)
1542 1543 1544 1545 1546 1547 1548 1549
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1550
	struct cpsw_slave *slave;
1551
	struct cpsw_common *cpsw = priv->cpsw;
1552 1553
	u32 ctrl, mtype;

1554
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1555

1556
	ctrl = slave_read(slave, CPSW2_CONTROL);
1557
	switch (cpsw->version) {
1558 1559
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1560

1561
		if (priv->tx_ts_enabled)
1562
			ctrl |= CTRL_V2_TX_TS_BITS;
1563

1564
		if (priv->rx_ts_enabled)
1565
			ctrl |= CTRL_V2_RX_TS_BITS;
1566
		break;
1567 1568 1569 1570
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1571
		if (priv->tx_ts_enabled)
1572 1573
			ctrl |= CTRL_V3_TX_TS_BITS;

1574
		if (priv->rx_ts_enabled)
1575
			ctrl |= CTRL_V3_RX_TS_BITS;
1576
		break;
1577
	}
1578 1579 1580 1581 1582

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1583
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1584
	writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
1585 1586
}

1587
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1588
{
1589
	struct cpsw_priv *priv = netdev_priv(dev);
1590
	struct hwtstamp_config cfg;
1591
	struct cpsw_common *cpsw = priv->cpsw;
1592

1593 1594 1595
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1596 1597
		return -EOPNOTSUPP;

1598 1599 1600 1601 1602 1603 1604
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1605
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1606 1607 1608 1609
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1610
		priv->rx_ts_enabled = 0;
1611 1612
		break;
	case HWTSTAMP_FILTER_ALL:
1613 1614
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
1615 1616 1617
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1618
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1619 1620
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
1621 1622 1623 1624 1625 1626 1627 1628 1629
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1630
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
1631 1632 1633 1634 1635 1636
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1637
	priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
1638

1639
	switch (cpsw->version) {
1640
	case CPSW_VERSION_1:
1641
		cpsw_hwtstamp_v1(priv);
1642 1643
		break;
	case CPSW_VERSION_2:
1644
	case CPSW_VERSION_3:
1645 1646 1647
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1648
		WARN_ON(1);
1649 1650 1651 1652 1653
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1654 1655
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1656
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1657
	struct cpsw_priv *priv = netdev_priv(dev);
1658 1659
	struct hwtstamp_config cfg;

1660 1661 1662
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1663 1664 1665
		return -EOPNOTSUPP;

	cfg.flags = 0;
1666 1667
	cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = priv->rx_ts_enabled;
1668 1669 1670

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1671 1672 1673 1674 1675
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1676

1677 1678 1679 1680
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1681 1682 1683 1684
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1685
	struct cpsw_priv *priv = netdev_priv(dev);
1686 1687
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1688

1689 1690 1691
	if (!netif_running(dev))
		return -EINVAL;

1692 1693
	switch (cmd) {
	case SIOCSHWTSTAMP:
1694 1695 1696
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1697 1698
	}

1699
	if (!cpsw->slaves[slave_no].phy)
1700
		return -EOPNOTSUPP;
1701
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1702 1703
}

1704 1705 1706
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1707
	struct cpsw_common *cpsw = priv->cpsw;
1708
	int ch;
1709 1710

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1711
	ndev->stats.tx_errors++;
1712
	cpsw_intr_disable(cpsw);
1713
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1714 1715
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1716 1717
	}

1718
	cpsw_intr_enable(cpsw);
1719 1720
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
1721 1722
}

1723 1724 1725 1726
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1727
	struct cpsw_common *cpsw = priv->cpsw;
1728 1729
	int flags = 0;
	u16 vid = 0;
1730
	int ret;
1731 1732 1733 1734

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1735
	ret = pm_runtime_get_sync(cpsw->dev);
1736
	if (ret < 0) {
1737
		pm_runtime_put_noidle(cpsw->dev);
1738 1739 1740
		return ret;
	}

1741 1742
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1743 1744 1745
		flags = ALE_VLAN;
	}

1746
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1747
			   flags, vid);
1748
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1749 1750 1751 1752 1753 1754
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1755
	pm_runtime_put(cpsw->dev);
1756

1757 1758 1759
	return 0;
}

1760 1761 1762 1763
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1764
	int unreg_mcast_mask = 0;
1765
	int mcast_mask;
1766
	u32 port_mask;
1767
	struct cpsw_common *cpsw = priv->cpsw;
1768

1769
	if (cpsw->data.dual_emac) {
1770
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1771

1772
		mcast_mask = ALE_PORT_HOST;
1773
		if (priv->ndev->flags & IFF_ALLMULTI)
1774
			unreg_mcast_mask = mcast_mask;
1775 1776
	} else {
		port_mask = ALE_ALL_PORTS;
1777
		mcast_mask = port_mask;
1778 1779 1780 1781 1782 1783

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1784

1785
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1786
				unreg_mcast_mask);
1787 1788 1789
	if (ret != 0)
		return ret;

1790
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1791
				 HOST_PORT_NUM, ALE_VLAN, vid);
1792 1793 1794
	if (ret != 0)
		goto clean_vid;

1795
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1796
				 mcast_mask, ALE_VLAN, vid, 0);
1797 1798 1799 1800 1801
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1802
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1803
			   HOST_PORT_NUM, ALE_VLAN, vid);
1804
clean_vid:
1805
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1806 1807 1808 1809
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1810
				    __be16 proto, u16 vid)
1811 1812
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1813
	struct cpsw_common *cpsw = priv->cpsw;
1814
	int ret;
1815

1816
	if (vid == cpsw->data.default_vlan)
1817 1818
		return 0;

1819
	ret = pm_runtime_get_sync(cpsw->dev);
1820
	if (ret < 0) {
1821
		pm_runtime_put_noidle(cpsw->dev);
1822 1823 1824
		return ret;
	}

1825
	if (cpsw->data.dual_emac) {
1826 1827 1828 1829 1830 1831
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1832
		for (i = 0; i < cpsw->data.slaves; i++) {
1833 1834 1835 1836
			if (vid == cpsw->slaves[i].port_vlan) {
				ret = -EINVAL;
				goto err;
			}
1837 1838 1839
		}
	}

1840
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1841
	ret = cpsw_add_vlan_ale_entry(priv, vid);
1842
err:
1843
	pm_runtime_put(cpsw->dev);
1844
	return ret;
1845 1846 1847
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1848
				     __be16 proto, u16 vid)
1849 1850
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1851
	struct cpsw_common *cpsw = priv->cpsw;
1852 1853
	int ret;

1854
	if (vid == cpsw->data.default_vlan)
1855 1856
		return 0;

1857
	ret = pm_runtime_get_sync(cpsw->dev);
1858
	if (ret < 0) {
1859
		pm_runtime_put_noidle(cpsw->dev);
1860 1861 1862
		return ret;
	}

1863
	if (cpsw->data.dual_emac) {
1864 1865
		int i;

1866 1867
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1868
				goto err;
1869 1870 1871
		}
	}

1872
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1873
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1874 1875 1876 1877
	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
				  HOST_PORT_NUM, ALE_VLAN, vid);
	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
				  0, ALE_VLAN, vid);
1878
	ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
1879
err:
1880
	pm_runtime_put(cpsw->dev);
1881
	return ret;
1882 1883
}

1884 1885 1886 1887
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
1888
	struct cpsw_slave *slave;
1889
	u32 min_rate;
1890
	u32 ch_rate;
1891
	int i, ret;
1892 1893 1894 1895 1896

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

1897 1898 1899 1900 1901
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
1902 1903 1904
		return -EINVAL;
	}

1905
	if (rate > cpsw->speed) {
1906
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
1907 1908 1909 1910 1911 1912 1913 1914 1915
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

1916 1917
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
1918

1919 1920
	if (ret)
		return ret;
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

1931
	cpsw_split_res(cpsw);
1932 1933 1934
	return ret;
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
	struct tc_mqprio_qopt_offload *mqprio = type_data;
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int fifo, num_tc, count, offset;
	struct cpsw_slave *slave;
	u32 tx_prio_map = 0;
	int i, tc, ret;

	num_tc = mqprio->qopt.num_tc;
	if (num_tc > CPSW_TC_NUM)
		return -EINVAL;

	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
		return -EINVAL;

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	if (num_tc) {
		for (i = 0; i < 8; i++) {
			tc = mqprio->qopt.prio_tc_map[i];
			fifo = cpsw_tc_to_fifo(tc, num_tc);
			tx_prio_map |= fifo << (4 * i);
		}

		netdev_set_num_tc(ndev, num_tc);
		for (i = 0; i < num_tc; i++) {
			count = mqprio->qopt.count[i];
			offset = mqprio->qopt.offset[i];
			netdev_set_tc_queue(ndev, i, count, offset);
		}
	}

	if (!mqprio->qopt.hw) {
		/* restore default configuration */
		netdev_reset_tc(ndev);
		tx_prio_map = TX_PRIORITY_MAPPING;
	}

	priv->mqprio_hw = mqprio->qopt.hw;

	offset = cpsw->version == CPSW_VERSION_1 ?
		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	slave_write(slave, tx_prio_map, offset);

	pm_runtime_put_sync(cpsw->dev);

	return 0;
}

static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			     void *type_data)
{
	switch (type) {
1996 1997 1998
	case TC_SETUP_QDISC_CBS:
		return cpsw_set_cbs(ndev, type_data);

1999 2000 2001 2002 2003 2004 2005 2006
	case TC_SETUP_QDISC_MQPRIO:
		return cpsw_set_mqprio(ndev, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

2007 2008 2009 2010
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2011
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2012
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2013 2014
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2015
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2016
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2017 2018 2019
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2020 2021
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2022
	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2023 2024 2025 2026 2027
};

static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2028
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2029
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2030

2031
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2032
	strlcpy(info->version, "1.0", sizeof(info->version));
2033
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2034 2035
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2049 2050 2051
static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
2052
	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
2053 2054
}

2055 2056 2057 2058 2059
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2060
	.get_ts_info	= cpsw_get_ts_info,
2061 2062
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2063 2064 2065
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2066 2067
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2068 2069
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2070 2071
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2072 2073
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2074 2075
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2076 2077
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2078 2079
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2080
	.nway_reset	= cpsw_nway_reset,
2081 2082
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2083 2084
};

2085
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2097
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2098 2099 2100 2101
		return -EINVAL;
	}
	data->slaves = prop;

2102
	if (of_property_read_u32(node, "active_slave", &prop)) {
2103
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2104
		return -EINVAL;
2105
	}
2106
	data->active_slave = prop;
2107

2108 2109 2110
	data->slave_data = devm_kcalloc(&pdev->dev,
					data->slaves,
					sizeof(struct cpsw_slave_data),
2111
					GFP_KERNEL);
2112
	if (!data->slave_data)
2113
		return -ENOMEM;
2114 2115

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2116
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2117
		return -EINVAL;
2118 2119 2120 2121
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2122
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2123
		return -EINVAL;
2124 2125 2126 2127
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2128
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2129
		return -EINVAL;
2130 2131 2132 2133
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2134
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2135
		return -EINVAL;
2136 2137 2138
	}
	data->mac_control = prop;

2139 2140
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2141

2142 2143 2144 2145 2146 2147
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2148
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2149

2150
	for_each_available_child_of_node(node, slave_node) {
2151 2152
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2153 2154 2155
		int lenp;
		const __be32 *parp;

2156
		/* This is no slave child node, continue */
2157
		if (!of_node_name_eq(slave_node, "slave"))
2158 2159
			continue;

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
		slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
						    NULL);
		if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
		    IS_ERR(slave_data->ifphy)) {
			ret = PTR_ERR(slave_data->ifphy);
			dev_err(&pdev->dev,
				"%d: Error retrieving port phy: %d\n", i, ret);
			return ret;
		}

2170 2171
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2172
		parp = of_get_property(slave_node, "phy_id", &lenp);
2173 2174
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
2175 2176
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
2177
		} else if (of_phy_is_fixed_link(slave_node)) {
2178 2179 2180
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2181
			ret = of_phy_register_fixed_link(slave_node);
2182 2183 2184
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2185
				return ret;
2186
			}
2187
			slave_data->phy_node = of_node_get(slave_node);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2207
			put_device(&mdio->dev);
2208
		} else {
2209 2210 2211
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2212
			goto no_phy_slave;
2213
		}
2214 2215 2216 2217 2218 2219 2220 2221
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2222
		mac_addr = of_get_mac_address(slave_node);
2223
		if (mac_addr) {
2224
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2225
		} else {
2226 2227 2228 2229
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2230
		}
2231
		if (data->dual_emac) {
2232
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2233
						 &prop)) {
2234
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2235
				slave_data->dual_emac_res_vlan = i+1;
2236 2237
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2238 2239 2240 2241 2242
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2243
		i++;
2244 2245
		if (i == data->slaves)
			break;
2246 2247 2248 2249 2250
	}

	return 0;
}

2251 2252
static void cpsw_remove_dt(struct platform_device *pdev)
{
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

2263
		if (!of_node_name_eq(slave_node, "slave"))
2264 2265
			continue;

2266 2267
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2268 2269 2270 2271 2272 2273 2274 2275

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2276 2277 2278
	of_platform_depopulate(&pdev->dev);
}

2279
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2280
{
2281 2282
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2283 2284
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2285
	int ret = 0;
2286

2287 2288
	ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
2289
	if (!ndev) {
2290
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2291 2292 2293 2294
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2295
	priv_sl2->cpsw = cpsw;
2296 2297 2298 2299 2300 2301 2302
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2303 2304
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2305
	} else {
2306
		eth_random_addr(priv_sl2->mac_addr);
2307 2308
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2309 2310 2311 2312
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2313
	cpsw->slaves[1].ndev = ndev;
2314
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2315 2316

	ndev->netdev_ops = &cpsw_netdev_ops;
2317
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2318 2319

	/* register the network device */
2320
	SET_NETDEV_DEV(ndev, cpsw->dev);
2321
	ret = register_netdev(ndev);
2322
	if (ret)
2323
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2324 2325 2326 2327

	return ret;
}

2328
static const struct of_device_id cpsw_of_mtable[] = {
2329 2330 2331 2332
	{ .compatible = "ti,cpsw"},
	{ .compatible = "ti,am335x-cpsw"},
	{ .compatible = "ti,am4372-cpsw"},
	{ .compatible = "ti,dra7-cpsw"},
2333 2334 2335 2336
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

2337 2338 2339 2340 2341
static const struct soc_device_attribute cpsw_soc_devices[] = {
	{ .family = "AM33xx", .revision = "ES1.0"},
	{ /* sentinel */ }
};

B
Bill Pemberton 已提交
2342
static int cpsw_probe(struct platform_device *pdev)
2343
{
2344
	struct device			*dev = &pdev->dev;
2345
	struct clk			*clk;
2346
	struct cpsw_platform_data	*data;
2347 2348
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
2349 2350
	void __iomem			*ss_regs;
	struct resource			*res, *ss_res;
2351
	struct gpio_descs		*mode;
2352
	const struct soc_device_attribute *soc;
2353
	struct cpsw_common		*cpsw;
2354
	int ret = 0, ch;
2355
	int irq;
2356

2357
	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
2358 2359 2360
	if (!cpsw)
		return -ENOMEM;

2361
	cpsw->dev = dev;
2362

2363
	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
2364 2365
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
2366
		dev_err(dev, "gpio request failed, ret %d\n", ret);
2367
		return ret;
2368 2369
	}

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	clk = devm_clk_get(dev, "fck");
	if (IS_ERR(clk)) {
		ret = PTR_ERR(mode);
		dev_err(dev, "fck is not found %d\n", ret);
		return ret;
	}
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;

	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(dev, ss_res);
	if (IS_ERR(ss_regs))
		return PTR_ERR(ss_regs);
	cpsw->regs = ss_regs;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	cpsw->wr_regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(cpsw->wr_regs))
		return PTR_ERR(cpsw->wr_regs);

	/* RX IRQ */
	irq = platform_get_irq(pdev, 1);
	if (irq < 0)
		return irq;
	cpsw->irqs_table[0] = irq;

	/* TX IRQ */
	irq = platform_get_irq(pdev, 2);
	if (irq < 0)
		return irq;
	cpsw->irqs_table[1] = irq;

2401 2402 2403
	/*
	 * This may be required here for child devices.
	 */
2404
	pm_runtime_enable(dev);
2405

2406 2407 2408
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
2409
	ret = pm_runtime_get_sync(dev);
2410
	if (ret < 0) {
2411
		pm_runtime_put_noidle(dev);
2412
		goto clean_runtime_disable_ret;
2413
	}
2414

2415 2416
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2417
		goto clean_dt_ret;
2418

2419 2420 2421
	soc = soc_device_match(cpsw_soc_devices);
	if (soc)
		cpsw->quirk_irq = 1;
2422

2423
	data = &cpsw->data;
2424
	cpsw->slaves = devm_kcalloc(dev,
2425
				    data->slaves, sizeof(struct cpsw_slave),
2426
				    GFP_KERNEL);
2427
	if (!cpsw->slaves) {
2428
		ret = -ENOMEM;
2429
		goto clean_dt_ret;
2430 2431
	}

2432
	cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
2433
	cpsw->descs_pool_size = descs_pool_size;
2434

2435 2436 2437 2438
	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
			       ss_res->start + CPSW2_BD_OFFSET,
			       descs_pool_size);
	if (ret)
2439
		goto clean_dt_ret;
2440

2441 2442
	ch = cpsw->quirk_irq ? 0 : 7;
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
2443
	if (IS_ERR(cpsw->txv[0].ch)) {
2444
		dev_err(dev, "error initializing tx dma channel\n");
2445
		ret = PTR_ERR(cpsw->txv[0].ch);
2446
		goto clean_cpts;
2447 2448
	}

2449
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2450
	if (IS_ERR(cpsw->rxv[0].ch)) {
2451
		dev_err(dev, "error initializing rx dma channel\n");
2452
		ret = PTR_ERR(cpsw->rxv[0].ch);
2453
		goto clean_cpts;
2454
	}
2455
	cpsw_split_res(cpsw);
2456

2457 2458 2459 2460 2461 2462
	/* setup netdev */
	ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
	if (!ndev) {
		dev_err(dev, "error allocating net_device\n");
		goto clean_cpts;
2463 2464
	}

2465 2466 2467 2468 2469 2470 2471
	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
	priv->cpsw = cpsw;
	priv->ndev = ndev;
	priv->dev  = dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
	priv->emac_port = 0;
2472

2473 2474 2475 2476 2477 2478
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
		dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
	} else {
		eth_random_addr(priv->mac_addr);
		dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
2479 2480
	}

2481 2482 2483 2484
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

	cpsw->slaves[0].ndev = ndev;

2485
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2486 2487 2488

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2489 2490 2491 2492 2493 2494
	netif_napi_add(ndev, &cpsw->napi_rx,
		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
		       CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx,
			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
			  CPSW_POLL_WEIGHT);
2495 2496

	/* register the network device */
2497
	SET_NETDEV_DEV(ndev, dev);
2498 2499
	ret = register_netdev(ndev);
	if (ret) {
2500
		dev_err(dev, "error registering net device\n");
2501
		ret = -ENODEV;
2502
		goto clean_cpts;
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

2513 2514 2515 2516 2517 2518 2519
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
2520
	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
2521
			       0, dev_name(dev), cpsw);
2522
	if (ret < 0) {
2523
		dev_err(dev, "error attaching irq (%d)\n", ret);
2524
		goto clean_unregister_netdev_ret;
2525 2526 2527
	}


2528
	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
2529
			       0, dev_name(&pdev->dev), cpsw);
2530
	if (ret < 0) {
2531
		dev_err(dev, "error attaching irq (%d)\n", ret);
2532
		goto clean_unregister_netdev_ret;
2533
	}
2534

2535 2536
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
2537
		    &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
2538

2539 2540
	pm_runtime_put(&pdev->dev);

2541 2542
	return 0;

2543 2544
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
2545 2546
clean_cpts:
	cpts_release(cpsw->cpts);
2547
	cpdma_ctlr_destroy(cpsw->dma);
2548 2549
clean_dt_ret:
	cpsw_remove_dt(pdev);
2550
	pm_runtime_put_sync(&pdev->dev);
2551
clean_runtime_disable_ret:
2552
	pm_runtime_disable(&pdev->dev);
2553 2554 2555
	return ret;
}

B
Bill Pemberton 已提交
2556
static int cpsw_remove(struct platform_device *pdev)
2557 2558
{
	struct net_device *ndev = platform_get_drvdata(pdev);
2559
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2560 2561 2562 2563 2564 2565 2566
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
2567

2568 2569
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
2570
	unregister_netdev(ndev);
2571

2572
	cpts_release(cpsw->cpts);
2573
	cpdma_ctlr_destroy(cpsw->dma);
2574
	cpsw_remove_dt(pdev);
2575 2576
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
2577 2578 2579
	return 0;
}

2580
#ifdef CONFIG_PM_SLEEP
2581 2582
static int cpsw_suspend(struct device *dev)
{
2583
	struct net_device	*ndev = dev_get_drvdata(dev);
2584
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2585

2586
	if (cpsw->data.dual_emac) {
2587
		int i;
2588

2589 2590 2591
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
2592 2593 2594 2595 2596
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
2597

2598
	/* Select sleep pin state */
2599
	pinctrl_pm_select_sleep_state(dev);
2600

2601 2602 2603 2604 2605
	return 0;
}

static int cpsw_resume(struct device *dev)
{
2606
	struct net_device	*ndev = dev_get_drvdata(dev);
2607
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2608

2609
	/* Select default pin state */
2610
	pinctrl_pm_select_default_state(dev);
2611

2612 2613
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
2614
	if (cpsw->data.dual_emac) {
2615 2616
		int i;

2617 2618 2619
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
2620 2621 2622 2623 2624
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
2625 2626
	rtnl_unlock();

2627 2628
	return 0;
}
2629
#endif
2630

2631
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2632 2633 2634 2635 2636

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
2637
		.of_match_table = cpsw_of_mtable,
2638 2639
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
2640
	.remove = cpsw_remove,
2641 2642
};

2643
module_platform_driver(cpsw_driver);
2644 2645 2646 2647 2648

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");