cpsw.c 88.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38
#include <linux/kmemleak.h>
39
#include <linux/sys_soc.h>
40

41
#include <linux/pinctrl/consumer.h>
42

43
#include "cpsw.h"
44
#include "cpsw_ale.h"
45
#include "cpts.h"
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

81 82
#define ALE_ALL_PORTS		0x7

83 84 85 86
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

87 88
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
89
#define CPSW_VERSION_3		0x19010f
90
#define CPSW_VERSION_4		0x190112
91 92

#define HOST_PORT_NUM		0
93
#define CPSW_ALE_PORTS_NUM	3
94 95 96 97 98 99 100
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
101
#define CPSW1_HW_STATS		0x400
102 103 104 105 106 107 108 109
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
110
#define CPSW2_HW_STATS		0x900
111 112 113 114 115 116
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

117 118 119 120 121 122 123 124
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
125
#define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
126
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
127 128 129
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
				 ETH_FCS_LEN +\
				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
130 131 132

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
133
#define CPDMA_TX_PRIORITY_MAP	0x76543210
134

135
#define CPSW_VLAN_AWARE		BIT(1)
136
#define CPSW_RX_VLAN_ENCAP	BIT(2)
137 138
#define CPSW_ALE_VLAN_AWARE	1

139 140 141
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
142

143 144 145 146 147 148 149
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

150 151 152
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
153
#define IRQ_NUM			2
154
#define CPSW_MAX_QUEUES		8
155
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
156

157 158 159 160 161 162 163 164 165 166 167 168
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
#define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
enum {
	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
};

169 170 171 172 173 174 175 176 177 178 179 180
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

181 182 183 184
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

185
struct cpsw_wr_regs {
186 187 188 189 190 191 192 193
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
194 195 196 197 198 199 200 201 202
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

203 204
};

205
struct cpsw_ss_regs {
206 207 208 209 210
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
211 212 213 214 215 216 217 218
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
219 220
};

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
266 267
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
268 269 270 271 272 273
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

274 275 276
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
277

278 279 280 281 282 283 284 285 286 287 288 289 290
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
291 292 293 294 295 296 297 298 299

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
300

301 302 303 304 305 306 307 308
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

309 310 311 312
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

313 314 315
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
316
	u32	tx_in_ctl;
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
struct cpsw_slave_data {
	struct device_node *phy_node;
	char		phy_id[MII_BUS_ID_SIZE];
	int		phy_if;
	u8		mac_addr[ETH_ALEN];
	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
};

struct cpsw_platform_data {
	struct cpsw_slave_data	*slave_data;
	u32	ss_reg_ofs;	/* Subsystem control register offset */
	u32	channels;	/* number of cpdma channels (symmetric) */
	u32	slaves;		/* number of slave cpgmac ports */
	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
	u32	ale_entries;	/* ale table size */
	u32	bd_ram_size;  /*buffer descriptor ram size */
	u32	mac_control;	/* Mac control register */
	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
	bool	dual_emac;	/* Enable Dual EMAC mode */
};

395
struct cpsw_slave {
396
	void __iomem			*regs;
397 398 399 400 401
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
402 403
	struct net_device		*ndev;
	u32				port_vlan;
404 405
};

406 407
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
408
	return readl_relaxed(slave->regs + offset);
409 410 411 412
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
413
	writel_relaxed(val, slave->regs + offset);
414 415
}

416 417 418 419 420
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

421
struct cpsw_common {
422
	struct device			*dev;
423
	struct cpsw_platform_data	data;
424 425
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
426 427 428 429
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
430 431 432 433
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
434
	struct cpsw_slave		*slaves;
435
	struct cpdma_ctlr		*dma;
436 437
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
438
	struct cpsw_ale			*ale;
439 440 441 442
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
443
	struct cpts			*cpts;
444
	int				rx_ch_num, tx_ch_num;
445
	int				speed;
446
	int				usage_count;
447 448 449
};

struct cpsw_priv {
450 451 452 453
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
454 455
	bool				rx_pause;
	bool				tx_pause;
456
	u32 emac_port;
457
	struct cpsw_common *cpsw;
458 459
};

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
538

539
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
540
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
541 542
#define for_each_slave(priv, func, arg...)				\
	do {								\
543
		struct cpsw_slave *slave;				\
544
		struct cpsw_common *cpsw = (priv)->cpsw;		\
545
		int n;							\
546 547
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
548
		else							\
549 550
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
551 552
					n; n--)				\
				(func)(slave++, ##arg);			\
553 554
	} while (0)

555
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
556
	do {								\
557
		if (!cpsw->data.dual_emac)				\
558 559
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
560
			ndev = cpsw->slaves[0].ndev;			\
561 562
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
563
			ndev = cpsw->slaves[1].ndev;			\
564 565
			skb->dev = ndev;				\
		}							\
566
	} while (0)
567
#define cpsw_add_mcast(cpsw, priv, addr)				\
568
	do {								\
569 570
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
571
						priv->emac_port;	\
572
			int slave_port = cpsw_get_slave_port(		\
573
						slave->slave_num);	\
574
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
575
				1 << slave_port | ALE_PORT_HOST,	\
576 577
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
578
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
579
				ALE_ALL_PORTS,				\
580 581 582 583
				0, 0, 0);				\
		}							\
	} while (0)

584
static inline int cpsw_get_slave_port(u32 slave_num)
585
{
586
	return slave_num + 1;
587
}
588

589 590
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
591 592
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
593 594
	int i;

595
	if (cpsw->data.dual_emac) {
596 597 598 599 600 601
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
602 603
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

625
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
626
			for (i = 0; i <= cpsw->data.slaves; i++) {
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
643
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
644 645 646 647 648

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
649
			/* Don't Flood All Unicast Packets to Host port */
650 651
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

652
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
653
			for (i = 0; i <= cpsw->data.slaves; i++) {
654 655 656 657 658 659 660 661 662 663
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

664 665 666
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
667
	struct cpsw_common *cpsw = priv->cpsw;
668 669
	int vid;

670 671
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
672
	else
673
		vid = cpsw->data.default_vlan;
674 675 676

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
677
		cpsw_set_promiscious(ndev, true);
678
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
679
		return;
680 681 682
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
683 684
	}

685
	/* Restore allmulti on vlans if necessary */
686
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
687

688
	/* Clear all mcast from ALE */
689
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
690 691 692 693 694 695

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
696
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
697 698 699 700
		}
	}
}

701
static void cpsw_intr_enable(struct cpsw_common *cpsw)
702
{
703 704
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
705

706
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
707 708 709
	return;
}

710
static void cpsw_intr_disable(struct cpsw_common *cpsw)
711
{
712 713
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
714

715
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
716 717 718
	return;
}

719
static void cpsw_tx_handler(void *token, int len, int status)
720
{
721
	struct netdev_queue	*txq;
722 723
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
724
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
725

726 727 728
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
729 730 731 732
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

733
	cpts_tx_timestamp(cpsw->cpts, skb);
734 735
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
736 737 738
	dev_kfree_skb_any(skb);
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	struct cpsw_common *cpsw = priv->cpsw;
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;
	/* Ignore default vlans in dual mac mode */
	if (cpsw->data.dual_emac &&
	    vid == cpsw->slaves[priv->emac_port].port_vlan)
		return;

	prio = (rx_vlan_encap_hdr >>
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

782
static void cpsw_rx_handler(void *token, int len, int status)
783
{
784
	struct cpdma_chan	*ch;
785
	struct sk_buff		*skb = token;
786
	struct sk_buff		*new_skb;
787 788
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
789
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
790

791
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
792

793
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
794
		/* In dual emac mode check for all interfaces */
795
		if (cpsw->data.dual_emac && cpsw->usage_count &&
796
		    (status >= 0)) {
797 798
			/* The packet received is for the interface which
			 * is already down and the other interface is up
799
			 * and running, instead of freeing which results
800 801 802 803 804 805 806
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

807
		/* the interface is going down, skbs are purged */
808 809 810
		dev_kfree_skb_any(skb);
		return;
	}
811

812
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
813
	if (new_skb) {
814
		skb_copy_queue_mapping(new_skb, skb);
815
		skb_put(skb, len);
816 817
		if (status & CPDMA_RX_VLAN_ENCAP)
			cpsw_rx_vlan_encap(skb);
818
		cpts_rx_timestamp(cpsw->cpts, skb);
819 820
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
821 822
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
823
		kmemleak_not_leak(new_skb);
824
	} else {
825
		ndev->stats.rx_dropped++;
826
		new_skb = skb;
827 828
	}

829
requeue:
830 831 832 833 834
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

835
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
836
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
837
				skb_tailroom(new_skb), 0);
838 839
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
840 841
}

842
static void cpsw_split_res(struct net_device *ndev)
843 844
{
	struct cpsw_priv *priv = netdev_priv(ndev);
845
	u32 consumed_rate = 0, bigest_rate = 0;
846 847
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
848
	int i, ch_weight, rlim_ch_num = 0;
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
864 865 866 867
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
868
	} else {
869 870 871 872 873 874 875 876 877 878
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
879

880 881 882 883 884 885 886
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

887
	/* split tx weight/budget */
888 889 890 891 892 893
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
894
				txv[i].budget++;
895 896 897 898
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
899 900 901 902 903

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
904 905 906 907
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
908
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

929
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
930
{
931
	struct cpsw_common *cpsw = dev_id;
932

933
	writel(0, &cpsw->wr_regs->tx_en);
934
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
935

936 937 938
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
939 940
	}

941
	napi_schedule(&cpsw->napi_tx);
942 943 944 945 946
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
947
	struct cpsw_common *cpsw = dev_id;
948

949
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
950
	writel(0, &cpsw->wr_regs->rx_en);
951

952 953 954
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
955 956
	}

957
	napi_schedule(&cpsw->napi_rx);
958
	return IRQ_HANDLED;
959 960
}

961
static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
962
{
963
	u32			ch_map;
964
	int			num_tx, cur_budget, ch;
965
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
966
	struct cpsw_vector	*txv;
967

968 969
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
970
	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
971 972 973
		if (!(ch_map & 0x01))
			continue;

974 975 976 977 978 979 980
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
981 982
		if (num_tx >= budget)
			break;
983 984
	}

985 986
	if (num_tx < budget) {
		napi_complete(napi_tx);
987
		writel(0xff, &cpsw->wr_regs->tx_en);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	}

	return num_tx;
}

static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
1003 1004
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1005
		}
1006 1007 1008 1009 1010
	}

	return num_tx;
}

1011
static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1012
{
1013
	u32			ch_map;
1014
	int			num_rx, cur_budget, ch;
1015
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1016
	struct cpsw_vector	*rxv;
1017

1018 1019
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1020
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1021 1022 1023
		if (!(ch_map & 0x01))
			continue;

1024 1025 1026 1027 1028 1029 1030
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1031 1032
		if (num_rx >= budget)
			break;
1033 1034
	}

1035
	if (num_rx < budget) {
1036
		napi_complete_done(napi_rx, num_rx);
1037
		writel(0xff, &cpsw->wr_regs->rx_en);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	}

	return num_rx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
1053 1054
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1055
		}
1056 1057 1058 1059 1060 1061 1062 1063 1064
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

1065
	writel_relaxed(1, reg);
1066 1067
	do {
		cpu_relax();
1068
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1069

1070
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1071 1072 1073 1074 1075
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
1076 1077
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1078 1079 1080 1081 1082 1083 1084 1085
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
1086
	struct cpsw_common *cpsw = priv->cpsw;
1087 1088 1089 1090

	if (!phy)
		return;

1091
	slave_port = cpsw_get_slave_port(slave->slave_num);
1092 1093

	if (phy->link) {
1094
		mac_control = cpsw->data.mac_control;
1095 1096

		/* enable forwarding */
1097
		cpsw_ale_control_set(cpsw->ale, slave_port,
1098 1099 1100 1101 1102 1103
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1104 1105 1106 1107

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1108 1109
		/* in band mode only works in 10Mbps RGMII mode */
		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1110
			mac_control |= BIT(18); /* In Band mode */
1111

1112 1113 1114 1115 1116 1117
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1118 1119 1120 1121
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
1122
		cpsw_ale_control_set(cpsw->ale, slave_port,
1123 1124 1125 1126 1127
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1128
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1129 1130 1131 1132 1133
	}

	slave->mac_control = mac_control;
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1172 1173 1174
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1175
	struct cpsw_common	*cpsw = priv->cpsw;
1176 1177 1178 1179 1180
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1181 1182 1183
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1184 1185
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1186
			netif_tx_wake_all_queues(ndev);
1187 1188
	} else {
		netif_carrier_off(ndev);
1189
		netif_tx_stop_all_queues(ndev);
1190 1191 1192
	}
}

1193 1194 1195
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1196
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1197

1198
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1211
	struct cpsw_common *cpsw = priv->cpsw;
1212 1213 1214

	coal_intvl = coal->rx_coalesce_usecs;

1215
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1216
	prescale = cpsw->bus_freq_mhz * 4;
1217

1218 1219 1220 1221 1222
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1244 1245
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1246 1247 1248 1249

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1250 1251

update_return:
1252
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1253 1254

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1255
	cpsw->coal_intvl = coal_intvl;
1256 1257 1258 1259

	return 0;
}

1260 1261
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1262 1263
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1264 1265
	switch (sset) {
	case ETH_SS_STATS:
1266 1267 1268
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1269 1270 1271 1272 1273
	default:
		return -EOPNOTSUPP;
	}
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
1284 1285
			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
			 (long)(i / CPSW_STATS_CH_LEN),
1286 1287 1288 1289 1290
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1291 1292
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1293
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1294 1295 1296 1297 1298
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1299
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1300 1301 1302 1303
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1304 1305 1306

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1307 1308 1309 1310 1311 1312 1313 1314
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1315
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1316 1317
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1318 1319

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1320 1321 1322 1323 1324
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1325
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1326 1327 1328 1329 1330 1331
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1332

1333
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1334
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1335 1336 1337 1338
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1339 1340 1341 1342
		}
	}
}

1343
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1344 1345
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1346
{
1347 1348
	struct cpsw_common *cpsw = priv->cpsw;

1349
	skb_tx_timestamp(skb);
1350
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1351
				 priv->emac_port + cpsw->data.dual_emac);
1352 1353 1354 1355 1356 1357
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1358
	struct cpsw_common *cpsw = priv->cpsw;
1359
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1360

1361
	if (cpsw->version == CPSW_VERSION_1)
1362 1363 1364
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1365
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1366
			  port_mask, port_mask, 0);
1367
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1368
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1369 1370 1371
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1372 1373
	cpsw_ale_control_set(cpsw->ale, slave_port,
			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1374 1375
}

1376
static void soft_reset_slave(struct cpsw_slave *slave)
1377 1378 1379
{
	char name[32];

1380
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1381
	soft_reset(name, &slave->sliver->soft_reset);
1382 1383 1384 1385 1386
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1387
	struct phy_device *phy;
1388
	struct cpsw_common *cpsw = priv->cpsw;
1389 1390

	soft_reset_slave(slave);
1391 1392

	/* setup priority mapping */
1393
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1394

1395
	switch (cpsw->version) {
1396 1397
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1398 1399 1400 1401 1402 1403
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1404 1405
		break;
	case CPSW_VERSION_2:
1406
	case CPSW_VERSION_3:
1407
	case CPSW_VERSION_4:
1408
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1409 1410 1411 1412 1413 1414
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1415 1416
		break;
	}
1417 1418

	/* setup max packet size, and mac address */
1419
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1420 1421 1422 1423
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1424
	slave_port = cpsw_get_slave_port(slave->slave_num);
1425

1426
	if (cpsw->data.dual_emac)
1427 1428
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1429
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1430
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1431

1432
	if (slave->data->phy_node) {
1433
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1434
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1435
		if (!phy) {
1436 1437
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1438 1439 1440 1441
				slave->slave_num);
			return;
		}
	} else {
1442
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1443
				 &cpsw_adjust_link, slave->data->phy_if);
1444
		if (IS_ERR(phy)) {
1445 1446 1447
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1448
				PTR_ERR(phy));
1449 1450 1451
			return;
		}
	}
1452

1453 1454
	slave->phy = phy;

1455
	phy_attached_info(slave->phy);
1456

1457 1458 1459
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1460
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1461 1462
}

1463 1464
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1465 1466
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1467 1468
	u32 reg;
	int i;
1469
	int unreg_mcast_mask;
1470

1471
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1472 1473
	       CPSW2_PORT_VLAN;

1474
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1475

1476 1477
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1478

1479 1480 1481 1482 1483
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1484
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1485 1486
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1487 1488
}

1489 1490
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1491
	u32 fifo_mode;
1492 1493
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1494

1495
	/* soft reset the controller and initialize ale */
1496
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1497
	cpsw_ale_start(cpsw->ale);
1498 1499

	/* switch to vlan unaware mode */
1500
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1501
			     CPSW_ALE_VLAN_AWARE);
1502
	control_reg = readl(&cpsw->regs->control);
1503
	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1504
	writel(control_reg, &cpsw->regs->control);
1505
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1506
		     CPSW_FIFO_NORMAL_MODE;
1507
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1508 1509

	/* setup host port priority mapping */
1510 1511 1512
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1513

1514
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1515 1516
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1517
	if (!cpsw->data.dual_emac) {
1518
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1519
				   0, 0);
1520
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1521
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1522
	}
1523 1524
}

1525 1526 1527 1528 1529
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1530 1531 1532
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1533
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1534 1535 1536 1537 1538 1539 1540 1541
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1542

1543
			skb_set_queue_mapping(skb, ch);
1544 1545 1546
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1547 1548 1549 1550 1551 1552 1553 1554
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1555 1556
		}

1557 1558 1559
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1560

1561
	return 0;
1562 1563
}

1564
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1565
{
1566 1567
	u32 slave_port;

1568
	slave_port = cpsw_get_slave_port(slave->slave_num);
1569

1570 1571 1572 1573 1574
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1575
	cpsw_ale_control_set(cpsw->ale, slave_port,
1576
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1577
	soft_reset_slave(slave);
1578 1579
}

1580 1581 1582
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1583
	struct cpsw_common *cpsw = priv->cpsw;
1584
	int ret;
1585 1586
	u32 reg;

1587
	ret = pm_runtime_get_sync(cpsw->dev);
1588
	if (ret < 0) {
1589
		pm_runtime_put_noidle(cpsw->dev);
1590 1591
		return ret;
	}
1592

1593 1594
	netif_carrier_off(ndev);

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1608
	reg = cpsw->version;
1609 1610 1611 1612 1613

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1614 1615
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1616
		cpsw_init_host_port(priv);
1617 1618
	for_each_slave(priv, cpsw_slave_open, priv);

1619
	/* Add default VLAN */
1620
	if (!cpsw->data.dual_emac)
1621 1622
		cpsw_add_default_vlan(priv);
	else
1623
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1624
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1625

1626 1627
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1628
		/* disable priority elevation */
1629
		writel_relaxed(0, &cpsw->regs->ptype);
1630

1631
		/* enable statistics collection only on all ports */
1632
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1633

1634
		/* Enable internal fifo flow control */
1635
		writel(0x7, &cpsw->regs->flow_control);
1636

1637 1638
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1639

1640 1641 1642
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1643 1644
		}

1645 1646 1647
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1648 1649
		}

1650 1651 1652
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1653

1654
		if (cpts_register(cpsw->cpts))
1655 1656
			dev_err(priv->dev, "error registering cpts device\n");

1657 1658
	}

1659
	/* Enable Interrupt pacing if configured */
1660
	if (cpsw->coal_intvl != 0) {
1661 1662
		struct ethtool_coalesce coal;

1663
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1664 1665 1666
		cpsw_set_coalesce(ndev, &coal);
	}

1667 1668
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1669
	cpsw->usage_count++;
1670

1671 1672
	return 0;

1673
err_cleanup:
1674
	cpdma_ctlr_stop(cpsw->dma);
1675
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1676
	pm_runtime_put_sync(cpsw->dev);
1677 1678
	netif_carrier_off(priv->ndev);
	return ret;
1679 1680 1681 1682 1683
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1684
	struct cpsw_common *cpsw = priv->cpsw;
1685 1686

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1687
	netif_tx_stop_all_queues(priv->ndev);
1688
	netif_carrier_off(priv->ndev);
1689

1690
	if (cpsw->usage_count <= 1) {
1691 1692
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1693
		cpts_unregister(cpsw->cpts);
1694 1695
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1696
		cpsw_ale_stop(cpsw->ale);
1697
	}
1698
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1699 1700 1701 1702

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1703
	cpsw->usage_count--;
1704
	pm_runtime_put_sync(cpsw->dev);
1705 1706 1707 1708 1709 1710 1711
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1712
	struct cpsw_common *cpsw = priv->cpsw;
1713
	struct cpts *cpts = cpsw->cpts;
1714 1715 1716
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1717 1718 1719

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1720
		ndev->stats.tx_dropped++;
1721
		return NET_XMIT_DROP;
1722 1723
	}

1724
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1725
	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1726 1727
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

1728 1729 1730 1731
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1732
	txch = cpsw->txv[q_idx].ch;
1733
	txq = netdev_get_tx_queue(ndev, q_idx);
1734
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1735 1736 1737 1738 1739
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1740 1741 1742
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1743 1744
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
1745 1746 1747 1748 1749 1750

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
1751
	}
1752

1753 1754
	return NETDEV_TX_OK;
fail:
1755
	ndev->stats.tx_dropped++;
1756
	netif_tx_stop_queue(txq);
1757 1758 1759 1760 1761 1762 1763

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

1764 1765 1766
	return NETDEV_TX_BUSY;
}

1767
#if IS_ENABLED(CONFIG_TI_CPTS)
1768

1769
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1770
{
1771
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1772 1773
	u32 ts_en, seq_id;

1774 1775
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
1776 1777 1778 1779 1780 1781 1782
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1783
	if (cpts_is_tx_enabled(cpsw->cpts))
1784 1785
		ts_en |= CPSW_V1_TS_TX_EN;

1786
	if (cpts_is_rx_enabled(cpsw->cpts))
1787 1788 1789 1790 1791 1792 1793 1794
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1795
	struct cpsw_slave *slave;
1796
	struct cpsw_common *cpsw = priv->cpsw;
1797 1798
	u32 ctrl, mtype;

1799
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1800

1801
	ctrl = slave_read(slave, CPSW2_CONTROL);
1802
	switch (cpsw->version) {
1803 1804
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1805

1806
		if (cpts_is_tx_enabled(cpsw->cpts))
1807
			ctrl |= CTRL_V2_TX_TS_BITS;
1808

1809
		if (cpts_is_rx_enabled(cpsw->cpts))
1810
			ctrl |= CTRL_V2_RX_TS_BITS;
1811
		break;
1812 1813 1814 1815
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1816
		if (cpts_is_tx_enabled(cpsw->cpts))
1817 1818
			ctrl |= CTRL_V3_TX_TS_BITS;

1819
		if (cpts_is_rx_enabled(cpsw->cpts))
1820
			ctrl |= CTRL_V3_RX_TS_BITS;
1821
		break;
1822
	}
1823 1824 1825 1826 1827

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1828
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1829 1830
}

1831
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1832
{
1833
	struct cpsw_priv *priv = netdev_priv(dev);
1834
	struct hwtstamp_config cfg;
1835 1836
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1837

1838 1839 1840
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1841 1842
		return -EOPNOTSUPP;

1843 1844 1845 1846 1847 1848 1849
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1850
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1851 1852 1853 1854
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1855
		cpts_rx_enable(cpts, 0);
1856 1857
		break;
	case HWTSTAMP_FILTER_ALL:
1858 1859
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
1860 1861 1862
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1863 1864 1865
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
1866 1867 1868 1869 1870 1871 1872 1873 1874
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1875
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1876 1877 1878 1879 1880 1881
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1882
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1883

1884
	switch (cpsw->version) {
1885
	case CPSW_VERSION_1:
1886
		cpsw_hwtstamp_v1(cpsw);
1887 1888
		break;
	case CPSW_VERSION_2:
1889
	case CPSW_VERSION_3:
1890 1891 1892
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1893
		WARN_ON(1);
1894 1895 1896 1897 1898
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1899 1900
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1901 1902
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1903 1904
	struct hwtstamp_config cfg;

1905 1906 1907
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1908 1909 1910
		return -EOPNOTSUPP;

	cfg.flags = 0;
1911 1912 1913
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1914
			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1915 1916 1917

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1918 1919 1920 1921 1922
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1923

1924 1925 1926 1927
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1928 1929 1930 1931
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1932
	struct cpsw_priv *priv = netdev_priv(dev);
1933 1934
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1935

1936 1937 1938
	if (!netif_running(dev))
		return -EINVAL;

1939 1940
	switch (cmd) {
	case SIOCSHWTSTAMP:
1941 1942 1943
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1944 1945
	}

1946
	if (!cpsw->slaves[slave_no].phy)
1947
		return -EOPNOTSUPP;
1948
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1949 1950
}

1951 1952 1953
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1954
	struct cpsw_common *cpsw = priv->cpsw;
1955
	int ch;
1956 1957

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1958
	ndev->stats.tx_errors++;
1959
	cpsw_intr_disable(cpsw);
1960
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1961 1962
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1963 1964
	}

1965
	cpsw_intr_enable(cpsw);
1966 1967
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
1968 1969
}

1970 1971 1972 1973
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1974
	struct cpsw_common *cpsw = priv->cpsw;
1975 1976
	int flags = 0;
	u16 vid = 0;
1977
	int ret;
1978 1979 1980 1981

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1982
	ret = pm_runtime_get_sync(cpsw->dev);
1983
	if (ret < 0) {
1984
		pm_runtime_put_noidle(cpsw->dev);
1985 1986 1987
		return ret;
	}

1988 1989
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1990 1991 1992
		flags = ALE_VLAN;
	}

1993
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1994
			   flags, vid);
1995
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1996 1997 1998 1999 2000 2001
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

2002
	pm_runtime_put(cpsw->dev);
2003

2004 2005 2006
	return 0;
}

2007 2008 2009
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
2010
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2011

2012 2013 2014 2015
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
2016 2017 2018
}
#endif

2019 2020 2021 2022
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
2023 2024
	int unreg_mcast_mask = 0;
	u32 port_mask;
2025
	struct cpsw_common *cpsw = priv->cpsw;
2026

2027
	if (cpsw->data.dual_emac) {
2028
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2029

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
2040

2041
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2042
				unreg_mcast_mask);
2043 2044 2045
	if (ret != 0)
		return ret;

2046
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2047
				 HOST_PORT_NUM, ALE_VLAN, vid);
2048 2049 2050
	if (ret != 0)
		goto clean_vid;

2051
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2052
				 port_mask, ALE_VLAN, vid, 0);
2053 2054 2055 2056 2057
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
2058
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2059
			   HOST_PORT_NUM, ALE_VLAN, vid);
2060
clean_vid:
2061
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2062 2063 2064 2065
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2066
				    __be16 proto, u16 vid)
2067 2068
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2069
	struct cpsw_common *cpsw = priv->cpsw;
2070
	int ret;
2071

2072
	if (vid == cpsw->data.default_vlan)
2073 2074
		return 0;

2075
	ret = pm_runtime_get_sync(cpsw->dev);
2076
	if (ret < 0) {
2077
		pm_runtime_put_noidle(cpsw->dev);
2078 2079 2080
		return ret;
	}

2081
	if (cpsw->data.dual_emac) {
2082 2083 2084 2085 2086 2087
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

2088 2089
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2090 2091 2092 2093
				return -EINVAL;
		}
	}

2094
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2095 2096
	ret = cpsw_add_vlan_ale_entry(priv, vid);

2097
	pm_runtime_put(cpsw->dev);
2098
	return ret;
2099 2100 2101
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2102
				     __be16 proto, u16 vid)
2103 2104
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2105
	struct cpsw_common *cpsw = priv->cpsw;
2106 2107
	int ret;

2108
	if (vid == cpsw->data.default_vlan)
2109 2110
		return 0;

2111
	ret = pm_runtime_get_sync(cpsw->dev);
2112
	if (ret < 0) {
2113
		pm_runtime_put_noidle(cpsw->dev);
2114 2115 2116
		return ret;
	}

2117
	if (cpsw->data.dual_emac) {
2118 2119
		int i;

2120 2121
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2122 2123 2124 2125
				return -EINVAL;
		}
	}

2126
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2127
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2128 2129 2130
	if (ret != 0)
		return ret;

2131
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2132
				 HOST_PORT_NUM, ALE_VLAN, vid);
2133 2134 2135
	if (ret != 0)
		return ret;

2136
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2137
				 0, ALE_VLAN, vid);
2138
	pm_runtime_put(cpsw->dev);
2139
	return ret;
2140 2141
}

2142 2143 2144 2145
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2146
	struct cpsw_slave *slave;
2147
	u32 min_rate;
2148
	u32 ch_rate;
2149
	int i, ret;
2150 2151 2152 2153 2154

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2155 2156 2157 2158 2159
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2160 2161 2162
		return -EINVAL;
	}

2163
	if (rate > cpsw->speed) {
2164
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2165 2166 2167 2168 2169 2170 2171 2172 2173
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2174 2175
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2176

2177 2178
	if (ret)
		return ret;
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2189
	cpsw_split_res(ndev);
2190 2191 2192
	return ret;
}

2193 2194 2195 2196
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2197
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2198
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2199 2200
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2201
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2202
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2203 2204 2205
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2206 2207
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2208 2209
};

2210 2211
static int cpsw_get_regs_len(struct net_device *ndev)
{
2212
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2213

2214
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2215 2216 2217 2218 2219 2220
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2221
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2222 2223

	/* update CPSW IP version */
2224
	regs->version = cpsw->version;
2225

2226
	cpsw_ale_dump(cpsw->ale, reg);
2227 2228
}

2229 2230 2231
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2232
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2233
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2234

2235
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2236
	strlcpy(info->version, "1.0", sizeof(info->version));
2237
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2252
#if IS_ENABLED(CONFIG_TI_CPTS)
2253 2254 2255
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2256
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2257 2258 2259 2260 2261 2262 2263 2264

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2265
	info->phc_index = cpsw->cpts->phc_index;
2266 2267 2268 2269 2270
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2271
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2272
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2273 2274
	return 0;
}
2275
#else
2276 2277 2278
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2279 2280 2281 2282 2283 2284 2285 2286 2287
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2288
#endif
2289

2290 2291
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2292 2293
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2294 2295
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2296

2297
	if (!cpsw->slaves[slave_no].phy)
2298
		return -EOPNOTSUPP;
2299 2300 2301

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2302 2303
}

2304 2305
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2306 2307
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2308 2309
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2310

2311
	if (cpsw->slaves[slave_no].phy)
2312 2313
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2314 2315 2316 2317
	else
		return -EOPNOTSUPP;
}

2318 2319 2320
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2321 2322
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2323 2324 2325 2326

	wol->supported = 0;
	wol->wolopts = 0;

2327 2328
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2329 2330 2331 2332 2333
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2334 2335
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2336

2337 2338
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2339 2340 2341 2342
	else
		return -EOPNOTSUPP;
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2366 2367 2368
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2369
	struct cpsw_common *cpsw = priv->cpsw;
2370 2371
	int ret;

2372
	ret = pm_runtime_get_sync(cpsw->dev);
2373 2374
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2375
		pm_runtime_put_noidle(cpsw->dev);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2386
	ret = pm_runtime_put(priv->cpsw->dev);
2387 2388 2389 2390
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2391 2392 2393 2394 2395
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

2396 2397
	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	ch->max_combined = 0;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
2409 2410 2411 2412 2413
	if (cpsw->quirk_irq) {
		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
		return -EOPNOTSUPP;
	}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2432
	struct netdev_queue *queue;
2433
	struct cpsw_vector *vec;
2434 2435 2436 2437
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
2438
		vec = cpsw->rxv;
2439 2440 2441
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2442
		vec = cpsw->txv;
2443 2444 2445 2446
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2447
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2448 2449
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2450

2451 2452
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2453

2454
		if (!vec[*ch].ch)
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2465
		ret = cpdma_chan_destroy(vec[*ch].ch);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2492
static void cpsw_suspend_data_pass(struct net_device *ndev)
2493
{
2494
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2495
	struct cpsw_slave *slave;
2496
	int i;
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
2529
	if (cpsw->usage_count) {
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2583
	if (cpsw->usage_count)
2584
		cpsw_split_res(ndev);
2585

2586 2587 2588
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2589 2590 2591 2592 2593 2594
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2631 2632 2633 2634 2635 2636 2637 2638 2639
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2640
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2641 2642 2643 2644 2645 2646 2647 2648
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2649
	int ret;
2650 2651 2652 2653

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2654 2655
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2656 2657 2658 2659 2660
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

2661
	cpsw_suspend_data_pass(ndev);
2662 2663 2664

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

2665
	if (cpsw->usage_count)
2666 2667
		cpdma_chan_split_pool(cpsw->dma);

2668 2669 2670
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2671

2672
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2673 2674 2675 2676
	dev_close(ndev);
	return ret;
}

2677 2678 2679 2680 2681
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2682
	.get_ts_info	= cpsw_get_ts_info,
2683 2684
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2685 2686 2687
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2688 2689
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2690 2691
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2692 2693
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2694 2695
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2696 2697
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2698 2699
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2700 2701
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2702
	.nway_reset	= cpsw_nway_reset,
2703 2704
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2705 2706
};

2707
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2708
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2709
{
2710
	void __iomem		*regs = cpsw->regs;
2711
	int			slave_num = slave->slave_num;
2712
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2713 2714

	slave->data	= data;
2715 2716
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2717
	slave->port_vlan = data->dual_emac_res_vlan;
2718 2719
}

2720
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2732
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2733 2734 2735 2736
		return -EINVAL;
	}
	data->slaves = prop;

2737
	if (of_property_read_u32(node, "active_slave", &prop)) {
2738
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2739
		return -EINVAL;
2740
	}
2741
	data->active_slave = prop;
2742

2743 2744 2745
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2746
	if (!data->slave_data)
2747
		return -ENOMEM;
2748 2749

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2750
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2751
		return -EINVAL;
2752 2753 2754 2755
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2756
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2757
		return -EINVAL;
2758 2759 2760 2761
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2762
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2763
		return -EINVAL;
2764 2765 2766 2767
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2768
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2769
		return -EINVAL;
2770 2771 2772
	}
	data->mac_control = prop;

2773 2774
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2775

2776 2777 2778 2779 2780 2781
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2782
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2783

2784
	for_each_available_child_of_node(node, slave_node) {
2785 2786
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2787 2788 2789
		int lenp;
		const __be32 *parp;

2790 2791 2792 2793
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2794 2795
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2796
		parp = of_get_property(slave_node, "phy_id", &lenp);
2797 2798
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
2799 2800
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
2801
		} else if (of_phy_is_fixed_link(slave_node)) {
2802 2803 2804
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2805
			ret = of_phy_register_fixed_link(slave_node);
2806 2807 2808
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2809
				return ret;
2810
			}
2811
			slave_data->phy_node = of_node_get(slave_node);
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2831
			put_device(&mdio->dev);
2832
		} else {
2833 2834 2835
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2836
			goto no_phy_slave;
2837
		}
2838 2839 2840 2841 2842 2843 2844 2845
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2846
		mac_addr = of_get_mac_address(slave_node);
2847
		if (mac_addr) {
2848
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2849
		} else {
2850 2851 2852 2853
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2854
		}
2855
		if (data->dual_emac) {
2856
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2857
						 &prop)) {
2858
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2859
				slave_data->dual_emac_res_vlan = i+1;
2860 2861
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2862 2863 2864 2865 2866
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2867
		i++;
2868 2869
		if (i == data->slaves)
			break;
2870 2871 2872 2873 2874
	}

	return 0;
}

2875 2876
static void cpsw_remove_dt(struct platform_device *pdev)
{
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

2890 2891
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2892 2893 2894 2895 2896 2897 2898 2899

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2900 2901 2902
	of_platform_depopulate(&pdev->dev);
}

2903
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2904
{
2905 2906
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2907 2908
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2909
	int ret = 0;
2910

2911
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2912
	if (!ndev) {
2913
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2914 2915 2916 2917
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2918
	priv_sl2->cpsw = cpsw;
2919 2920 2921 2922 2923 2924 2925
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2926 2927
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2928 2929
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2930 2931
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2932 2933 2934 2935
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2936
	cpsw->slaves[1].ndev = ndev;
2937
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2938 2939

	ndev->netdev_ops = &cpsw_netdev_ops;
2940
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2941 2942

	/* register the network device */
2943
	SET_NETDEV_DEV(ndev, cpsw->dev);
2944 2945
	ret = register_netdev(ndev);
	if (ret) {
2946
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2947 2948 2949 2950 2951 2952 2953
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2954
static const struct of_device_id cpsw_of_mtable[] = {
2955 2956 2957 2958
	{ .compatible = "ti,cpsw"},
	{ .compatible = "ti,am335x-cpsw"},
	{ .compatible = "ti,am4372-cpsw"},
	{ .compatible = "ti,dra7-cpsw"},
2959 2960 2961 2962
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

2963 2964 2965 2966 2967
static const struct soc_device_attribute cpsw_soc_devices[] = {
	{ .family = "AM33xx", .revision = "ES1.0"},
	{ /* sentinel */ }
};

B
Bill Pemberton 已提交
2968
static int cpsw_probe(struct platform_device *pdev)
2969
{
2970
	struct clk			*clk;
2971
	struct cpsw_platform_data	*data;
2972 2973 2974 2975
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2976
	void __iomem			*ss_regs;
2977
	void __iomem			*cpts_regs;
2978
	struct resource			*res, *ss_res;
2979
	struct gpio_descs		*mode;
2980
	u32 slave_offset, sliver_offset, slave_size;
2981
	const struct soc_device_attribute *soc;
2982
	struct cpsw_common		*cpsw;
2983 2984
	int ret = 0, i;
	int irq;
2985

2986
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2987 2988 2989
	if (!cpsw)
		return -ENOMEM;

2990
	cpsw->dev = &pdev->dev;
2991

2992
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2993
	if (!ndev) {
2994
		dev_err(&pdev->dev, "error allocating net_device\n");
2995 2996 2997 2998 2999
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
3000
	priv->cpsw = cpsw;
3001 3002 3003
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3004
	cpsw->rx_packet_max = max(rx_packet_max, 128);
3005

3006 3007 3008 3009 3010 3011 3012
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

3013 3014 3015 3016 3017
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

3018 3019 3020
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

3021 3022 3023 3024 3025 3026
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
3027
		goto clean_runtime_disable_ret;
3028
	}
3029

3030 3031
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
3032
		goto clean_dt_ret;
3033

3034
	data = &cpsw->data;
3035 3036
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
3037

3038 3039
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3040
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3041
	} else {
J
Joe Perches 已提交
3042
		eth_random_addr(priv->mac_addr);
3043
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3044 3045 3046 3047
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

3048
	cpsw->slaves = devm_kzalloc(&pdev->dev,
3049 3050
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
3051
	if (!cpsw->slaves) {
3052
		ret = -ENOMEM;
3053
		goto clean_dt_ret;
3054 3055
	}
	for (i = 0; i < data->slaves; i++)
3056
		cpsw->slaves[i].slave_num = i;
3057

3058
	cpsw->slaves[0].ndev = ndev;
3059 3060
	priv->emac_port = 0;

3061 3062
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
3063
		dev_err(priv->dev, "fck is not found\n");
3064
		ret = -ENODEV;
3065
		goto clean_dt_ret;
3066
	}
3067
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3068

3069 3070 3071 3072
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
3073
		goto clean_dt_ret;
3074
	}
3075
	cpsw->regs = ss_regs;
3076

3077
	cpsw->version = readl(&cpsw->regs->id_ver);
3078

3079
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3080 3081 3082
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
3083
		goto clean_dt_ret;
3084 3085 3086
	}

	memset(&dma_params, 0, sizeof(dma_params));
3087 3088
	memset(&ale_params, 0, sizeof(ale_params));

3089
	switch (cpsw->version) {
3090
	case CPSW_VERSION_1:
3091
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3092
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3093
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3094 3095 3096 3097 3098 3099 3100 3101 3102
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3103
	case CPSW_VERSION_3:
3104
	case CPSW_VERSION_4:
3105
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3106
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3107
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3108 3109 3110 3111 3112 3113 3114
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3115
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3116 3117
		break;
	default:
3118
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3119
		ret = -ENODEV;
3120
		goto clean_dt_ret;
3121
	}
3122 3123 3124 3125
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3126 3127 3128 3129
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3130
	dma_params.dev		= &pdev->dev;
3131 3132 3133 3134 3135
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3136 3137 3138 3139 3140 3141 3142

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3143
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3144
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3145
	dma_params.descs_pool_size	= descs_pool_size;
3146

3147 3148
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3149 3150
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3151
		goto clean_dt_ret;
3152 3153
	}

3154 3155 3156 3157
	soc = soc_device_match(cpsw_soc_devices);
	if (soc)
		cpsw->quirk_irq = 1;

3158
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3159 3160 3161 3162 3163 3164
	if (IS_ERR(cpsw->txv[0].ch)) {
		dev_err(priv->dev, "error initializing tx dma channel\n");
		ret = PTR_ERR(cpsw->txv[0].ch);
		goto clean_dma_ret;
	}

3165
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3166 3167 3168
	if (IS_ERR(cpsw->rxv[0].ch)) {
		dev_err(priv->dev, "error initializing rx dma channel\n");
		ret = PTR_ERR(cpsw->rxv[0].ch);
3169 3170 3171
		goto clean_dma_ret;
	}

3172
	ale_params.dev			= &pdev->dev;
3173 3174
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
3175
	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3176

3177 3178
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3179 3180 3181 3182 3183
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3184
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3185 3186
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
3187
		goto clean_dma_ret;
3188 3189
	}

3190
	ndev->irq = platform_get_irq(pdev, 1);
3191 3192
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3193
		ret = ndev->irq;
3194
		goto clean_dma_ret;
3195 3196
	}

3197
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3198 3199 3200

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3201 3202 3203 3204 3205 3206
	netif_napi_add(ndev, &cpsw->napi_rx,
		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
		       CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx,
			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
			  CPSW_POLL_WEIGHT);
3207 3208 3209 3210 3211 3212 3213 3214
	cpsw_split_res(ndev);

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3215
		goto clean_dma_ret;
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3226 3227 3228 3229 3230 3231 3232
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3233

3234
	/* RX IRQ */
3235
	irq = platform_get_irq(pdev, 1);
3236 3237
	if (irq < 0) {
		ret = irq;
3238
		goto clean_dma_ret;
3239
	}
3240

3241
	cpsw->irqs_table[0] = irq;
3242
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3243
			       0, dev_name(&pdev->dev), cpsw);
3244 3245
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3246
		goto clean_dma_ret;
3247 3248
	}

3249
	/* TX IRQ */
3250
	irq = platform_get_irq(pdev, 2);
3251 3252
	if (irq < 0) {
		ret = irq;
3253
		goto clean_dma_ret;
3254
	}
3255

3256
	cpsw->irqs_table[1] = irq;
3257
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3258
			       0, dev_name(&pdev->dev), cpsw);
3259 3260
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3261
		goto clean_dma_ret;
3262
	}
3263

3264 3265 3266
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3267

3268 3269
	pm_runtime_put(&pdev->dev);

3270 3271
	return 0;

3272 3273
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3274
clean_dma_ret:
3275
	cpdma_ctlr_destroy(cpsw->dma);
3276 3277
clean_dt_ret:
	cpsw_remove_dt(pdev);
3278
	pm_runtime_put_sync(&pdev->dev);
3279
clean_runtime_disable_ret:
3280
	pm_runtime_disable(&pdev->dev);
3281
clean_ndev_ret:
3282
	free_netdev(priv->ndev);
3283 3284 3285
	return ret;
}

B
Bill Pemberton 已提交
3286
static int cpsw_remove(struct platform_device *pdev)
3287 3288
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3289
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3290 3291 3292 3293 3294 3295 3296
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3297

3298 3299
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3300
	unregister_netdev(ndev);
3301

3302
	cpts_release(cpsw->cpts);
3303
	cpdma_ctlr_destroy(cpsw->dma);
3304
	cpsw_remove_dt(pdev);
3305 3306
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3307 3308
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3309 3310 3311 3312
	free_netdev(ndev);
	return 0;
}

3313
#ifdef CONFIG_PM_SLEEP
3314 3315 3316 3317
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3318
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3319

3320
	if (cpsw->data.dual_emac) {
3321
		int i;
3322

3323 3324 3325
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3326 3327 3328 3329 3330
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3331

3332
	/* Select sleep pin state */
3333
	pinctrl_pm_select_sleep_state(dev);
3334

3335 3336 3337 3338 3339 3340 3341
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3342
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3343

3344
	/* Select default pin state */
3345
	pinctrl_pm_select_default_state(dev);
3346

3347 3348
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3349
	if (cpsw->data.dual_emac) {
3350 3351
		int i;

3352 3353 3354
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3355 3356 3357 3358 3359
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3360 3361
	rtnl_unlock();

3362 3363
	return 0;
}
3364
#endif
3365

3366
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3367 3368 3369 3370 3371

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3372
		.of_match_table = cpsw_of_mtable,
3373 3374
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3375
	.remove = cpsw_remove,
3376 3377
};

3378
module_platform_driver(cpsw_driver);
3379 3380 3381 3382 3383

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");