cpsw.c 99.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio/consumer.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38
#include <linux/kmemleak.h>
39
#include <linux/sys_soc.h>
40

41
#include <linux/pinctrl/consumer.h>
42
#include <net/pkt_cls.h>
43

44
#include "cpsw.h"
45
#include "cpsw_ale.h"
46
#include "cpts.h"
47 48
#include "davinci_cpdma.h"

49 50
#include <net/pkt_sched.h>

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

84 85
#define ALE_ALL_PORTS		0x7

86 87 88 89
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

90 91
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
92
#define CPSW_VERSION_3		0x19010f
93
#define CPSW_VERSION_4		0x190112
94 95

#define HOST_PORT_NUM		0
96
#define CPSW_ALE_PORTS_NUM	3
97 98 99 100 101 102 103
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
104
#define CPSW1_HW_STATS		0x400
105 106 107 108 109 110 111 112
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
113
#define CPSW2_HW_STATS		0x900
114 115 116 117 118 119
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

120 121 122 123 124 125 126 127
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
128
#define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
129
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
130 131 132
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
				 ETH_FCS_LEN +\
				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133 134 135

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
136
#define CPDMA_TX_PRIORITY_MAP	0x76543210
137

138
#define CPSW_VLAN_AWARE		BIT(1)
139
#define CPSW_RX_VLAN_ENCAP	BIT(2)
140 141
#define CPSW_ALE_VLAN_AWARE	1

142 143 144
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
145

146 147 148 149 150 151 152
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

153 154 155
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
156
#define IRQ_NUM			2
157
#define CPSW_MAX_QUEUES		8
158
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 160 161
#define CPSW_FIFO_QUEUE_TYPE_SHIFT	16
#define CPSW_FIFO_SHAPE_EN_SHIFT	16
#define CPSW_FIFO_RATE_EN_SHIFT		20
162 163
#define CPSW_TC_NUM			4
#define CPSW_FIFO_SHAPERS_NUM		(CPSW_TC_NUM - 1)
164
#define CPSW_PCT_MASK			0x7f
165

166 167 168 169 170 171 172 173 174 175 176 177
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
#define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
enum {
	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
};

178 179 180 181 182 183 184 185 186 187 188 189
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

190 191 192 193
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

194
struct cpsw_wr_regs {
195 196 197 198 199 200 201 202
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
203 204 205 206 207 208 209 210 211
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

212 213
};

214
struct cpsw_ss_regs {
215 216 217 218 219
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
220 221 222 223 224 225 226 227
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
228 229
};

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
265 266 267 268
#define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
269
#define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
270 271 272 273 274 275 276 277 278 279 280 281 282
#define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
#define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
#define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
#define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
#define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
283

284 285 286
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
287

288 289 290 291 292 293
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
294
	(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295 296 297 298 299 300
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
301 302 303 304 305 306 307 308 309

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310

311 312 313 314 315 316 317 318
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

319 320 321 322
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

323 324 325
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
326
	u32	tx_in_ctl;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
struct cpsw_slave_data {
	struct device_node *phy_node;
	char		phy_id[MII_BUS_ID_SIZE];
	int		phy_if;
	u8		mac_addr[ETH_ALEN];
	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
};

struct cpsw_platform_data {
	struct cpsw_slave_data	*slave_data;
	u32	ss_reg_ofs;	/* Subsystem control register offset */
	u32	channels;	/* number of cpdma channels (symmetric) */
	u32	slaves;		/* number of slave cpgmac ports */
	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
	u32	ale_entries;	/* ale table size */
	u32	bd_ram_size;  /*buffer descriptor ram size */
	u32	mac_control;	/* Mac control register */
	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
	bool	dual_emac;	/* Enable Dual EMAC mode */
};

405
struct cpsw_slave {
406
	void __iomem			*regs;
407 408 409 410 411
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
412 413
	struct net_device		*ndev;
	u32				port_vlan;
414 415
};

416 417
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
418
	return readl_relaxed(slave->regs + offset);
419 420 421 422
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
423
	writel_relaxed(val, slave->regs + offset);
424 425
}

426 427 428 429 430
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

431
struct cpsw_common {
432
	struct device			*dev;
433
	struct cpsw_platform_data	data;
434 435
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
436 437 438 439
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
440 441 442 443
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
444
	struct cpsw_slave		*slaves;
445
	struct cpdma_ctlr		*dma;
446 447
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
448
	struct cpsw_ale			*ale;
449 450 451 452
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
453
	struct cpts			*cpts;
454
	int				rx_ch_num, tx_ch_num;
455
	int				speed;
456
	int				usage_count;
457 458 459
};

struct cpsw_priv {
460 461 462 463
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
464 465
	bool				rx_pause;
	bool				tx_pause;
466
	bool				mqprio_hw;
467 468
	int				fifo_bw[CPSW_TC_NUM];
	int				shp_cfg_speed;
469 470
	int				tx_ts_enabled;
	int				rx_ts_enabled;
471
	u32 emac_port;
472
	struct cpsw_common *cpsw;
473 474
};

475 476 477 478 479 480 481 482 483 484 485 486 487 488
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
489
				FIELD_SIZEOF(struct cpsw_hw_stats, m), \
490 491
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
492
				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
493 494
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
495
				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
553

554
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
555
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
556 557
#define for_each_slave(priv, func, arg...)				\
	do {								\
558
		struct cpsw_slave *slave;				\
559
		struct cpsw_common *cpsw = (priv)->cpsw;		\
560
		int n;							\
561 562
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
563
		else							\
564 565
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
566 567
					n; n--)				\
				(func)(slave++, ##arg);			\
568 569
	} while (0)

570 571 572
static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
				    __be16 proto, u16 vid);

573
static inline int cpsw_get_slave_port(u32 slave_num)
574
{
575
	return slave_num + 1;
576
}
577

578 579
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
580 581
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
582 583
	int i;

584
	if (cpsw->data.dual_emac) {
585 586 587 588 589 590
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
591 592
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

614
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
615
			for (i = 0; i <= cpsw->data.slaves; i++) {
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
632
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
633
			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
634 635 636 637 638

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
639
			/* Don't Flood All Unicast Packets to Host port */
640 641
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

642
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
643
			for (i = 0; i <= cpsw->data.slaves; i++) {
644 645 646 647 648 649 650 651 652 653
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
struct addr_sync_ctx {
	struct net_device *ndev;
	const u8 *addr;		/* address to be synched */
	int consumed;		/* number of address instances */
	int flush;		/* flush flag */
};

/**
 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
 * if it's not deleted
 * @ndev: device to sync
 * @addr: address to be added or deleted
 * @vid: vlan id, if vid < 0 set/unset address for real device
 * @add: add address if the flag is set or remove otherwise
 */
static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
		       int vid, int add)
671 672
{
	struct cpsw_priv *priv = netdev_priv(ndev);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	struct cpsw_common *cpsw = priv->cpsw;
	int mask, flags, ret;

	if (vid < 0) {
		if (cpsw->data.dual_emac)
			vid = cpsw->slaves[priv->emac_port].port_vlan;
		else
			vid = 0;
	}

	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
	flags = vid ? ALE_VLAN : 0;

	if (add)
		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
	else
		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);

	return ret;
}

static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0, ret = 0;

	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
	}

	if (found)
		sync_ctx->consumed++;

	if (sync_ctx->flush) {
		if (!found)
			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
		return 0;
	}

	if (found)
		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);

	return ret;
}

static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;
	int ret;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 0;

	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num && !ret)
		ret = cpsw_set_mc(ndev, addr, -1, 1);

	return ret;
}

static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.consumed = 0;
	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.flush = 1;

	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed == num)
		cpsw_set_mc(ndev, addr, -1, 0);
755 756 757 758

	return 0;
}

759
static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
760
{
761 762 763
	struct addr_sync_ctx *sync_ctx = ctx;
	struct netdev_hw_addr *ha;
	int found = 0;
764

765 766 767 768 769 770 771 772 773
	if (!vdev || !(vdev->flags & IFF_UP))
		return 0;

	/* vlan address is relevant if its sync_cnt != 0 */
	netdev_for_each_mc_addr(ha, vdev) {
		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
			found = ha->sync_cnt;
			break;
		}
774 775
	}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	if (!found)
		return 0;

	sync_ctx->consumed++;
	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
	return 0;
}

static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
{
	struct addr_sync_ctx sync_ctx;

	sync_ctx.addr = addr;
	sync_ctx.ndev = ndev;
	sync_ctx.consumed = 0;

	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
	if (sync_ctx.consumed < num)
		cpsw_set_mc(ndev, addr, -1, 0);

796 797 798 799 800 801
	return 0;
}

static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
802 803 804

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
805
		cpsw_set_promiscious(ndev, true);
806
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
807
		return;
808 809 810
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
811 812
	}

813
	/* Restore allmulti on vlans if necessary */
814
	cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI);
815

816 817 818
	/* add/remove mcast address either for real netdev or for vlan */
	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
			       cpsw_del_mc_addr);
819 820
}

821
static void cpsw_intr_enable(struct cpsw_common *cpsw)
822
{
823 824
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
825

826
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
827 828 829
	return;
}

830
static void cpsw_intr_disable(struct cpsw_common *cpsw)
831
{
832 833
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
834

835
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
836 837 838
	return;
}

839
static void cpsw_tx_handler(void *token, int len, int status)
840
{
841
	struct netdev_queue	*txq;
842 843
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
844
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
845

846 847 848
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
849 850 851 852
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

853
	cpts_tx_timestamp(cpsw->cpts, skb);
854 855
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
856 857 858
	dev_kfree_skb_any(skb);
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
static void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	struct cpsw_common *cpsw = priv->cpsw;
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;
	/* Ignore default vlans in dual mac mode */
	if (cpsw->data.dual_emac &&
	    vid == cpsw->slaves[priv->emac_port].port_vlan)
		return;

	prio = (rx_vlan_encap_hdr >>
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

902
static void cpsw_rx_handler(void *token, int len, int status)
903
{
904
	struct cpdma_chan	*ch;
905
	struct sk_buff		*skb = token;
906
	struct sk_buff		*new_skb;
907
	struct net_device	*ndev = skb->dev;
908
	int			ret = 0, port;
909
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
910
	struct cpsw_priv	*priv;
911

912 913 914 915 916 917 918
	if (cpsw->data.dual_emac) {
		port = CPDMA_RX_SOURCE_PORT(status);
		if (port) {
			ndev = cpsw->slaves[--port].ndev;
			skb->dev = ndev;
		}
	}
919

920
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
921
		/* In dual emac mode check for all interfaces */
922
		if (cpsw->data.dual_emac && cpsw->usage_count &&
923
		    (status >= 0)) {
924 925
			/* The packet received is for the interface which
			 * is already down and the other interface is up
926
			 * and running, instead of freeing which results
927 928 929 930 931 932 933
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

934
		/* the interface is going down, skbs are purged */
935 936 937
		dev_kfree_skb_any(skb);
		return;
	}
938

939
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
940
	if (new_skb) {
941
		skb_copy_queue_mapping(new_skb, skb);
942
		skb_put(skb, len);
943 944
		if (status & CPDMA_RX_VLAN_ENCAP)
			cpsw_rx_vlan_encap(skb);
945 946 947
		priv = netdev_priv(ndev);
		if (priv->rx_ts_enabled)
			cpts_rx_timestamp(cpsw->cpts, skb);
948 949
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
950 951
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
952
		kmemleak_not_leak(new_skb);
953
	} else {
954
		ndev->stats.rx_dropped++;
955
		new_skb = skb;
956 957
	}

958
requeue:
959 960 961 962 963
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

964
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
965
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
966
				skb_tailroom(new_skb), 0);
967 968
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
969 970
}

971
static void cpsw_split_res(struct net_device *ndev)
972 973
{
	struct cpsw_priv *priv = netdev_priv(ndev);
974
	u32 consumed_rate = 0, bigest_rate = 0;
975 976
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
977
	int i, ch_weight, rlim_ch_num = 0;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
993 994 995 996
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
997
	} else {
998 999 1000 1001 1002 1003 1004 1005 1006 1007
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
1008

1009 1010 1011 1012 1013 1014 1015
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

1016
	/* split tx weight/budget */
1017 1018 1019 1020 1021 1022
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
1023
				txv[i].budget++;
1024 1025 1026 1027
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
1028 1029 1030 1031 1032

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
1033 1034 1035 1036
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
1037
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

1058
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
1059
{
1060
	struct cpsw_common *cpsw = dev_id;
1061

1062
	writel(0, &cpsw->wr_regs->tx_en);
1063
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
1064

1065 1066 1067
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
1068 1069
	}

1070
	napi_schedule(&cpsw->napi_tx);
1071 1072 1073 1074 1075
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
1076
	struct cpsw_common *cpsw = dev_id;
1077

1078
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
1079
	writel(0, &cpsw->wr_regs->rx_en);
1080

1081 1082 1083
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
1084 1085
	}

1086
	napi_schedule(&cpsw->napi_rx);
1087
	return IRQ_HANDLED;
1088 1089
}

1090
static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
1091
{
1092
	u32			ch_map;
1093
	int			num_tx, cur_budget, ch;
1094
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
1095
	struct cpsw_vector	*txv;
1096

1097 1098
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
1099 1100
	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
		if (!(ch_map & 0x80))
1101 1102
			continue;

1103 1104 1105 1106 1107 1108 1109
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
1110 1111
		if (num_tx >= budget)
			break;
1112 1113
	}

1114 1115
	if (num_tx < budget) {
		napi_complete(napi_tx);
1116
		writel(0xff, &cpsw->wr_regs->tx_en);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	}

	return num_tx;
}

static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
1132 1133
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1134
		}
1135 1136 1137 1138 1139
	}

	return num_tx;
}

1140
static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1141
{
1142
	u32			ch_map;
1143
	int			num_rx, cur_budget, ch;
1144
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1145
	struct cpsw_vector	*rxv;
1146

1147 1148
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1149
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1150 1151 1152
		if (!(ch_map & 0x01))
			continue;

1153 1154 1155 1156 1157 1158 1159
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1160 1161
		if (num_rx >= budget)
			break;
1162 1163
	}

1164
	if (num_rx < budget) {
1165
		napi_complete_done(napi_rx, num_rx);
1166
		writel(0xff, &cpsw->wr_regs->rx_en);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	}

	return num_rx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
1182 1183
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1184
		}
1185 1186 1187 1188 1189 1190 1191 1192 1193
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

1194
	writel_relaxed(1, reg);
1195 1196
	do {
		cpu_relax();
1197
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1198

1199
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1200 1201 1202 1203 1204
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
1205 1206
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = 7 << shift;
	val = val & mask;

	return !val;
}

static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = (1 << --fifo) << shift;
	val = on ? val | mask : val & ~mask;

	writel_relaxed(val, &cpsw->regs->ptype);
}

1241 1242 1243 1244 1245 1246
static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
1247
	struct cpsw_common *cpsw = priv->cpsw;
1248 1249 1250 1251

	if (!phy)
		return;

1252
	slave_port = cpsw_get_slave_port(slave->slave_num);
1253 1254

	if (phy->link) {
1255
		mac_control = cpsw->data.mac_control;
1256 1257

		/* enable forwarding */
1258
		cpsw_ale_control_set(cpsw->ale, slave_port,
1259 1260 1261 1262 1263 1264
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1265 1266 1267 1268

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1269 1270
		/* in band mode only works in 10Mbps RGMII mode */
		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1271
			mac_control |= BIT(18); /* In Band mode */
1272

1273 1274 1275 1276 1277 1278
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1279
		*link = true;
1280 1281 1282 1283 1284 1285

		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed &&
		    !cpsw_shp_is_off(priv))
			dev_warn(priv->dev,
				 "Speed was changed, CBS shaper speeds are changed!");
1286 1287 1288
	} else {
		mac_control = 0;
		/* disable forwarding */
1289
		cpsw_ale_control_set(cpsw->ale, slave_port,
1290 1291 1292 1293 1294
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1295
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1296 1297 1298 1299 1300
	}

	slave->mac_control = mac_control;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1339 1340 1341
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1342
	struct cpsw_common	*cpsw = priv->cpsw;
1343 1344 1345 1346 1347
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1348 1349 1350
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1351 1352
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1353
			netif_tx_wake_all_queues(ndev);
1354 1355
	} else {
		netif_carrier_off(ndev);
1356
		netif_tx_stop_all_queues(ndev);
1357 1358 1359
	}
}

1360 1361 1362
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1363
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1364

1365
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1378
	struct cpsw_common *cpsw = priv->cpsw;
1379 1380 1381

	coal_intvl = coal->rx_coalesce_usecs;

1382
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1383
	prescale = cpsw->bus_freq_mhz * 4;
1384

1385 1386 1387 1388 1389
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1411 1412
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1413 1414 1415 1416

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1417 1418

update_return:
1419
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1420 1421

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1422
	cpsw->coal_intvl = coal_intvl;
1423 1424 1425 1426

	return 0;
}

1427 1428
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1429 1430
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1431 1432
	switch (sset) {
	case ETH_SS_STATS:
1433 1434 1435
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1436 1437 1438 1439 1440
	default:
		return -EOPNOTSUPP;
	}
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
1451 1452
			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
			 (long)(i / CPSW_STATS_CH_LEN),
1453 1454 1455 1456 1457
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1458 1459
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1460
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1461 1462 1463 1464 1465
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1466
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1467 1468 1469 1470
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1471 1472 1473

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1474 1475 1476 1477 1478 1479 1480 1481
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1482
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1483 1484
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1485 1486

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1487 1488 1489 1490 1491
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1492
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1493 1494 1495 1496 1497 1498
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1499

1500
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1501
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1502 1503 1504 1505
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1506 1507 1508 1509
		}
	}
}

1510
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1511 1512
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1513
{
1514 1515
	struct cpsw_common *cpsw = priv->cpsw;

1516
	skb_tx_timestamp(skb);
1517
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1518
				 priv->emac_port + cpsw->data.dual_emac);
1519 1520 1521 1522 1523 1524
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1525
	struct cpsw_common *cpsw = priv->cpsw;
1526
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1527

1528
	if (cpsw->version == CPSW_VERSION_1)
1529 1530 1531
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1532
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1533
			  port_mask, port_mask, 0);
1534
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1535
			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
1536 1537 1538
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1539 1540
	cpsw_ale_control_set(cpsw->ale, slave_port,
			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1541 1542
}

1543
static void soft_reset_slave(struct cpsw_slave *slave)
1544 1545 1546
{
	char name[32];

1547
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1548
	soft_reset(name, &slave->sliver->soft_reset);
1549 1550 1551 1552 1553
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1554
	struct phy_device *phy;
1555
	struct cpsw_common *cpsw = priv->cpsw;
1556 1557

	soft_reset_slave(slave);
1558 1559

	/* setup priority mapping */
1560
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1561

1562
	switch (cpsw->version) {
1563 1564
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1565 1566 1567 1568 1569 1570
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1571 1572
		break;
	case CPSW_VERSION_2:
1573
	case CPSW_VERSION_3:
1574
	case CPSW_VERSION_4:
1575
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1576 1577 1578 1579 1580 1581
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1582 1583
		break;
	}
1584 1585

	/* setup max packet size, and mac address */
1586
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1587 1588 1589 1590
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1591
	slave_port = cpsw_get_slave_port(slave->slave_num);
1592

1593
	if (cpsw->data.dual_emac)
1594 1595
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1596
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1597
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1598

1599
	if (slave->data->phy_node) {
1600
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1601
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1602
		if (!phy) {
1603 1604
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1605 1606 1607 1608
				slave->slave_num);
			return;
		}
	} else {
1609
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1610
				 &cpsw_adjust_link, slave->data->phy_if);
1611
		if (IS_ERR(phy)) {
1612 1613 1614
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1615
				PTR_ERR(phy));
1616 1617 1618
			return;
		}
	}
1619

1620 1621
	slave->phy = phy;

1622
	phy_attached_info(slave->phy);
1623

1624 1625 1626
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1627
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1628 1629
}

1630 1631
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1632 1633
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1634 1635
	u32 reg;
	int i;
1636
	int unreg_mcast_mask;
1637

1638
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1639 1640
	       CPSW2_PORT_VLAN;

1641
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1642

1643 1644
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1645

1646 1647 1648 1649 1650
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1651
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1652 1653
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1654 1655
}

1656 1657
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1658
	u32 fifo_mode;
1659 1660
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1661

1662
	/* soft reset the controller and initialize ale */
1663
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1664
	cpsw_ale_start(cpsw->ale);
1665 1666

	/* switch to vlan unaware mode */
1667
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1668
			     CPSW_ALE_VLAN_AWARE);
1669
	control_reg = readl(&cpsw->regs->control);
1670
	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1671
	writel(control_reg, &cpsw->regs->control);
1672
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1673
		     CPSW_FIFO_NORMAL_MODE;
1674
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1675 1676

	/* setup host port priority mapping */
1677 1678 1679
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1680

1681
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1682 1683
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1684
	if (!cpsw->data.dual_emac) {
1685
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1686
				   0, 0);
1687
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1688
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1689
	}
1690 1691
}

1692 1693 1694 1695 1696
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1697 1698 1699
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1700
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1701 1702 1703 1704 1705 1706 1707 1708
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1709

1710
			skb_set_queue_mapping(skb, ch);
1711 1712 1713
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1714 1715 1716 1717 1718 1719 1720 1721
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1722 1723
		}

1724 1725 1726
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1727

1728
	return 0;
1729 1730
}

1731
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1732
{
1733 1734
	u32 slave_port;

1735
	slave_port = cpsw_get_slave_port(slave->slave_num);
1736

1737 1738 1739 1740 1741
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1742
	cpsw_ale_control_set(cpsw->ale, slave_port,
1743
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1744
	soft_reset_slave(slave);
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754
static int cpsw_tc_to_fifo(int tc, int num_tc)
{
	if (tc == num_tc - 1)
		return 0;

	return CPSW_FIFO_SHAPERS_NUM - tc;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 val = 0, send_pct, shift;
	struct cpsw_slave *slave;
	int pct = 0, i;

	if (bw > priv->shp_cfg_speed * 1000)
		goto err;

	/* shaping has to stay enabled for highest fifos linearly
	 * and fifo bw no more then interface can allow
	 */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	send_pct = slave_read(slave, SEND_PERCENT);
	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
		if (!bw) {
			if (i >= fifo || !priv->fifo_bw[i])
				continue;

			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
			continue;
		}

		if (!priv->fifo_bw[i] && i > fifo) {
			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
			return -EINVAL;
		}

		shift = (i - 1) * 8;
		if (i == fifo) {
			send_pct &= ~(CPSW_PCT_MASK << shift);
			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
			if (!val)
				val = 1;

			send_pct |= val << shift;
			pct += val;
			continue;
		}

		if (priv->fifo_bw[i])
			pct += (send_pct >> shift) & CPSW_PCT_MASK;
	}

	if (pct >= 100)
		goto err;

	slave_write(slave, send_pct, SEND_PERCENT);
	priv->fifo_bw[fifo] = bw;

	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));

	return 0;
err:
	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
	return -EINVAL;
}

static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 tx_in_ctl_rg, val;
	int ret;

	ret = cpsw_set_fifo_bw(priv, fifo, bw);
	if (ret)
		return ret;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;

	if (!bw)
		cpsw_fifo_shp_on(priv, fifo, bw);

	val = slave_read(slave, tx_in_ctl_rg);
	if (cpsw_shp_is_off(priv)) {
		/* disable FIFOs rate limited queues */
		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);

		/* set type of FIFO queues to normal priority mode */
		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);

		/* set type of FIFO queues to be rate limited */
		if (bw)
			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
		else
			priv->shp_cfg_speed = 0;
	}

	/* toggle a FIFO rate limited queue */
	if (bw)
		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	else
		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	slave_write(slave, val, tx_in_ctl_rg);

	/* FIFO transmit shape enable */
	cpsw_fifo_shp_on(priv, fifo, bw);
	return 0;
}

/* Defaults:
 * class A - prio 3
 * class B - prio 2
 * shaping for class A should be set first
 */
static int cpsw_set_cbs(struct net_device *ndev,
			struct tc_cbs_qopt_offload *qopt)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int prev_speed = 0;
	int tc, ret, fifo;
	u32 bw = 0;

	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);

	/* enable channels in backward order, as highest FIFOs must be rate
	 * limited first and for compliance with CPDMA rate limited channels
	 * that also used in bacward order. FIFO0 cannot be rate limited.
	 */
	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
	if (!fifo) {
		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
		return -EINVAL;
	}

	/* do nothing, it's disabled anyway */
	if (!qopt->enable && !priv->fifo_bw[fifo])
		return 0;

	/* shapers can be set if link speed is known */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	if (slave->phy && slave->phy->link) {
		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed)
			prev_speed = priv->shp_cfg_speed;

		priv->shp_cfg_speed = slave->phy->speed;
	}

	if (!priv->shp_cfg_speed) {
		dev_err(priv->dev, "Link speed is not known");
		return -1;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	bw = qopt->enable ? qopt->idleslope : 0;
	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
	if (ret) {
		priv->shp_cfg_speed = prev_speed;
		prev_speed = 0;
	}

	if (bw && prev_speed)
		dev_warn(priv->dev,
			 "Speed was changed, CBS shaper speeds are changed!");

	pm_runtime_put_sync(cpsw->dev);
	return ret;
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	int fifo, bw;

	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
		bw = priv->fifo_bw[fifo];
		if (!bw)
			continue;

		cpsw_set_fifo_rlimit(priv, fifo, bw);
	}
}

static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 tx_prio_map = 0;
	int i, tc, fifo;
	u32 tx_prio_rg;

	if (!priv->mqprio_hw)
		return;

	for (i = 0; i < 8; i++) {
		tc = netdev_get_prio_tc_map(priv->ndev, i);
		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
		tx_prio_map |= fifo << (4 * i);
	}

	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave_write(slave, tx_prio_map, tx_prio_rg);
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
{
	struct cpsw_priv *priv = arg;

	if (!vdev)
		return 0;

	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
	return 0;
}

1973 1974 1975
/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
1976 1977 1978
	/* restore vlan configurations */
	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);

1979 1980 1981 1982 1983 1984 1985
	/* restore MQPRIO offload */
	for_each_slave(priv, cpsw_mqprio_resume, priv);

	/* restore CBS offload */
	for_each_slave(priv, cpsw_cbs_resume, priv);
}

1986 1987 1988
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1989
	struct cpsw_common *cpsw = priv->cpsw;
1990
	int ret;
1991 1992
	u32 reg;

1993
	ret = pm_runtime_get_sync(cpsw->dev);
1994
	if (ret < 0) {
1995
		pm_runtime_put_noidle(cpsw->dev);
1996 1997
		return ret;
	}
1998

1999 2000
	netif_carrier_off(ndev);

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

2014
	reg = cpsw->version;
2015 2016 2017 2018 2019

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

2020 2021
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
2022
		cpsw_init_host_port(priv);
2023 2024
	for_each_slave(priv, cpsw_slave_open, priv);

2025
	/* Add default VLAN */
2026
	if (!cpsw->data.dual_emac)
2027 2028
		cpsw_add_default_vlan(priv);
	else
2029
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
2030
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
2031

2032 2033
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
2034
		/* disable priority elevation */
2035
		writel_relaxed(0, &cpsw->regs->ptype);
2036

2037
		/* enable statistics collection only on all ports */
2038
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
2039

2040
		/* Enable internal fifo flow control */
2041
		writel(0x7, &cpsw->regs->flow_control);
2042

2043 2044
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
2045

2046 2047 2048
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
2049 2050
		}

2051 2052 2053
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
2054 2055
		}

2056 2057 2058
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
2059

2060
		if (cpts_register(cpsw->cpts))
2061 2062
			dev_err(priv->dev, "error registering cpts device\n");

2063 2064
	}

2065 2066
	cpsw_restore(priv);

2067
	/* Enable Interrupt pacing if configured */
2068
	if (cpsw->coal_intvl != 0) {
2069 2070
		struct ethtool_coalesce coal;

2071
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
2072 2073 2074
		cpsw_set_coalesce(ndev, &coal);
	}

2075 2076
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
2077
	cpsw->usage_count++;
2078

2079 2080
	return 0;

2081
err_cleanup:
2082
	cpdma_ctlr_stop(cpsw->dma);
2083
	for_each_slave(priv, cpsw_slave_stop, cpsw);
2084
	pm_runtime_put_sync(cpsw->dev);
2085 2086
	netif_carrier_off(priv->ndev);
	return ret;
2087 2088 2089 2090 2091
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2092
	struct cpsw_common *cpsw = priv->cpsw;
2093 2094

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
2095
	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
2096
	netif_tx_stop_all_queues(priv->ndev);
2097
	netif_carrier_off(priv->ndev);
2098

2099
	if (cpsw->usage_count <= 1) {
2100 2101
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
2102
		cpts_unregister(cpsw->cpts);
2103 2104
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
2105
		cpsw_ale_stop(cpsw->ale);
2106
	}
2107
	for_each_slave(priv, cpsw_slave_stop, cpsw);
2108 2109 2110 2111

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

2112
	cpsw->usage_count--;
2113
	pm_runtime_put_sync(cpsw->dev);
2114 2115 2116 2117 2118 2119 2120
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2121
	struct cpsw_common *cpsw = priv->cpsw;
2122
	struct cpts *cpts = cpsw->cpts;
2123 2124 2125
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
2126 2127 2128

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
2129
		ndev->stats.tx_dropped++;
2130
		return NET_XMIT_DROP;
2131 2132
	}

2133
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2134
	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
2135 2136
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

2137 2138 2139 2140
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

2141
	txch = cpsw->txv[q_idx].ch;
2142
	txq = netdev_get_tx_queue(ndev, q_idx);
2143
	ret = cpsw_tx_packet_submit(priv, skb, txch);
2144 2145 2146 2147 2148
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

2149 2150 2151
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
2152 2153
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
2154 2155 2156 2157 2158 2159

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
2160
	}
2161

2162 2163
	return NETDEV_TX_OK;
fail:
2164
	ndev->stats.tx_dropped++;
2165
	netif_tx_stop_queue(txq);
2166 2167 2168 2169 2170 2171 2172

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

2173 2174 2175
	return NETDEV_TX_BUSY;
}

2176
#if IS_ENABLED(CONFIG_TI_CPTS)
2177

2178
static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
2179
{
2180
	struct cpsw_common *cpsw = priv->cpsw;
2181
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2182 2183
	u32 ts_en, seq_id;

2184
	if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
2185 2186 2187 2188 2189 2190 2191
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

2192
	if (priv->tx_ts_enabled)
2193 2194
		ts_en |= CPSW_V1_TS_TX_EN;

2195
	if (priv->rx_ts_enabled)
2196 2197 2198 2199 2200 2201 2202 2203
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
2204
	struct cpsw_slave *slave;
2205
	struct cpsw_common *cpsw = priv->cpsw;
2206 2207
	u32 ctrl, mtype;

2208
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2209

2210
	ctrl = slave_read(slave, CPSW2_CONTROL);
2211
	switch (cpsw->version) {
2212 2213
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
2214

2215
		if (priv->tx_ts_enabled)
2216
			ctrl |= CTRL_V2_TX_TS_BITS;
2217

2218
		if (priv->rx_ts_enabled)
2219
			ctrl |= CTRL_V2_RX_TS_BITS;
2220
		break;
2221 2222 2223 2224
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

2225
		if (priv->tx_ts_enabled)
2226 2227
			ctrl |= CTRL_V3_TX_TS_BITS;

2228
		if (priv->rx_ts_enabled)
2229
			ctrl |= CTRL_V3_RX_TS_BITS;
2230
		break;
2231
	}
2232 2233 2234 2235 2236

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
2237
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2238 2239
}

2240
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2241
{
2242
	struct cpsw_priv *priv = netdev_priv(dev);
2243
	struct hwtstamp_config cfg;
2244
	struct cpsw_common *cpsw = priv->cpsw;
2245

2246 2247 2248
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
2249 2250
		return -EOPNOTSUPP;

2251 2252 2253 2254 2255 2256 2257
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

2258
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2259 2260 2261 2262
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
2263
		priv->rx_ts_enabled = 0;
2264 2265
		break;
	case HWTSTAMP_FILTER_ALL:
2266 2267
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
2268 2269 2270
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2271
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2272 2273
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
2274 2275 2276 2277 2278 2279 2280 2281 2282
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2283
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
2284 2285 2286 2287 2288 2289
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

2290
	priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
2291

2292
	switch (cpsw->version) {
2293
	case CPSW_VERSION_1:
2294
		cpsw_hwtstamp_v1(priv);
2295 2296
		break;
	case CPSW_VERSION_2:
2297
	case CPSW_VERSION_3:
2298 2299 2300
		cpsw_hwtstamp_v2(priv);
		break;
	default:
2301
		WARN_ON(1);
2302 2303 2304 2305 2306
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

2307 2308
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
2309
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
2310
	struct cpsw_priv *priv = netdev_priv(dev);
2311 2312
	struct hwtstamp_config cfg;

2313 2314 2315
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
2316 2317 2318
		return -EOPNOTSUPP;

	cfg.flags = 0;
2319 2320
	cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = priv->rx_ts_enabled;
2321 2322 2323

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
2324 2325 2326 2327 2328
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
2329

2330 2331 2332 2333
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
2334 2335 2336 2337
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2338
	struct cpsw_priv *priv = netdev_priv(dev);
2339 2340
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2341

2342 2343 2344
	if (!netif_running(dev))
		return -EINVAL;

2345 2346
	switch (cmd) {
	case SIOCSHWTSTAMP:
2347 2348 2349
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
2350 2351
	}

2352
	if (!cpsw->slaves[slave_no].phy)
2353
		return -EOPNOTSUPP;
2354
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2355 2356
}

2357 2358 2359
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2360
	struct cpsw_common *cpsw = priv->cpsw;
2361
	int ch;
2362 2363

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2364
	ndev->stats.tx_errors++;
2365
	cpsw_intr_disable(cpsw);
2366
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2367 2368
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
2369 2370
	}

2371
	cpsw_intr_enable(cpsw);
2372 2373
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
2374 2375
}

2376 2377 2378 2379
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
2380
	struct cpsw_common *cpsw = priv->cpsw;
2381 2382
	int flags = 0;
	u16 vid = 0;
2383
	int ret;
2384 2385 2386 2387

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

2388
	ret = pm_runtime_get_sync(cpsw->dev);
2389
	if (ret < 0) {
2390
		pm_runtime_put_noidle(cpsw->dev);
2391 2392 2393
		return ret;
	}

2394 2395
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
2396 2397 2398
		flags = ALE_VLAN;
	}

2399
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2400
			   flags, vid);
2401
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2402 2403 2404 2405 2406 2407
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

2408
	pm_runtime_put(cpsw->dev);
2409

2410 2411 2412
	return 0;
}

2413 2414 2415
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
2416
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2417

2418 2419 2420 2421
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
2422 2423 2424
}
#endif

2425 2426 2427 2428
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
2429
	int unreg_mcast_mask = 0;
2430
	int mcast_mask;
2431
	u32 port_mask;
2432
	struct cpsw_common *cpsw = priv->cpsw;
2433

2434
	if (cpsw->data.dual_emac) {
2435
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2436

2437
		mcast_mask = ALE_PORT_HOST;
2438
		if (priv->ndev->flags & IFF_ALLMULTI)
2439
			unreg_mcast_mask = mcast_mask;
2440 2441
	} else {
		port_mask = ALE_ALL_PORTS;
2442
		mcast_mask = port_mask;
2443 2444 2445 2446 2447 2448

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
2449

2450
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2451
				unreg_mcast_mask);
2452 2453 2454
	if (ret != 0)
		return ret;

2455
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2456
				 HOST_PORT_NUM, ALE_VLAN, vid);
2457 2458 2459
	if (ret != 0)
		goto clean_vid;

2460
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2461
				 mcast_mask, ALE_VLAN, vid, 0);
2462 2463 2464 2465 2466
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
2467
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2468
			   HOST_PORT_NUM, ALE_VLAN, vid);
2469
clean_vid:
2470
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2471 2472 2473 2474
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2475
				    __be16 proto, u16 vid)
2476 2477
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2478
	struct cpsw_common *cpsw = priv->cpsw;
2479
	int ret;
2480

2481
	if (vid == cpsw->data.default_vlan)
2482 2483
		return 0;

2484
	ret = pm_runtime_get_sync(cpsw->dev);
2485
	if (ret < 0) {
2486
		pm_runtime_put_noidle(cpsw->dev);
2487 2488 2489
		return ret;
	}

2490
	if (cpsw->data.dual_emac) {
2491 2492 2493 2494 2495 2496
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

2497
		for (i = 0; i < cpsw->data.slaves; i++) {
2498 2499 2500 2501
			if (vid == cpsw->slaves[i].port_vlan) {
				ret = -EINVAL;
				goto err;
			}
2502 2503 2504
		}
	}

2505
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2506
	ret = cpsw_add_vlan_ale_entry(priv, vid);
2507
err:
2508
	pm_runtime_put(cpsw->dev);
2509
	return ret;
2510 2511 2512
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2513
				     __be16 proto, u16 vid)
2514 2515
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2516
	struct cpsw_common *cpsw = priv->cpsw;
2517 2518
	int ret;

2519
	if (vid == cpsw->data.default_vlan)
2520 2521
		return 0;

2522
	ret = pm_runtime_get_sync(cpsw->dev);
2523
	if (ret < 0) {
2524
		pm_runtime_put_noidle(cpsw->dev);
2525 2526 2527
		return ret;
	}

2528
	if (cpsw->data.dual_emac) {
2529 2530
		int i;

2531 2532
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2533
				goto err;
2534 2535 2536
		}
	}

2537
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2538
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2539 2540 2541 2542
	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
				  HOST_PORT_NUM, ALE_VLAN, vid);
	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
				  0, ALE_VLAN, vid);
2543
	ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
2544
err:
2545
	pm_runtime_put(cpsw->dev);
2546
	return ret;
2547 2548
}

2549 2550 2551 2552
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2553
	struct cpsw_slave *slave;
2554
	u32 min_rate;
2555
	u32 ch_rate;
2556
	int i, ret;
2557 2558 2559 2560 2561

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2562 2563 2564 2565 2566
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2567 2568 2569
		return -EINVAL;
	}

2570
	if (rate > cpsw->speed) {
2571
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2572 2573 2574 2575 2576 2577 2578 2579 2580
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2581 2582
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2583

2584 2585
	if (ret)
		return ret;
2586

2587 2588 2589 2590 2591 2592 2593 2594 2595
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2596
	cpsw_split_res(ndev);
2597 2598 2599
	return ret;
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
	struct tc_mqprio_qopt_offload *mqprio = type_data;
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int fifo, num_tc, count, offset;
	struct cpsw_slave *slave;
	u32 tx_prio_map = 0;
	int i, tc, ret;

	num_tc = mqprio->qopt.num_tc;
	if (num_tc > CPSW_TC_NUM)
		return -EINVAL;

	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
		return -EINVAL;

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	if (num_tc) {
		for (i = 0; i < 8; i++) {
			tc = mqprio->qopt.prio_tc_map[i];
			fifo = cpsw_tc_to_fifo(tc, num_tc);
			tx_prio_map |= fifo << (4 * i);
		}

		netdev_set_num_tc(ndev, num_tc);
		for (i = 0; i < num_tc; i++) {
			count = mqprio->qopt.count[i];
			offset = mqprio->qopt.offset[i];
			netdev_set_tc_queue(ndev, i, count, offset);
		}
	}

	if (!mqprio->qopt.hw) {
		/* restore default configuration */
		netdev_reset_tc(ndev);
		tx_prio_map = TX_PRIORITY_MAPPING;
	}

	priv->mqprio_hw = mqprio->qopt.hw;

	offset = cpsw->version == CPSW_VERSION_1 ?
		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	slave_write(slave, tx_prio_map, offset);

	pm_runtime_put_sync(cpsw->dev);

	return 0;
}

static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			     void *type_data)
{
	switch (type) {
2661 2662 2663
	case TC_SETUP_QDISC_CBS:
		return cpsw_set_cbs(ndev, type_data);

2664 2665 2666 2667 2668 2669 2670 2671
	case TC_SETUP_QDISC_MQPRIO:
		return cpsw_set_mqprio(ndev, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

2672 2673 2674 2675
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2676
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2677
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2678 2679
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2680
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2681
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2682 2683 2684
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2685 2686
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2687
	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2688 2689
};

2690 2691
static int cpsw_get_regs_len(struct net_device *ndev)
{
2692
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2693

2694
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2695 2696 2697 2698 2699 2700
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2701
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2702 2703

	/* update CPSW IP version */
2704
	regs->version = cpsw->version;
2705

2706
	cpsw_ale_dump(cpsw->ale, reg);
2707 2708
}

2709 2710 2711
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2712
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2713
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2714

2715
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2716
	strlcpy(info->version, "1.0", sizeof(info->version));
2717
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2732
#if IS_ENABLED(CONFIG_TI_CPTS)
2733 2734 2735
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2736
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2737 2738 2739 2740 2741 2742 2743 2744

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2745
	info->phc_index = cpsw->cpts->phc_index;
2746 2747 2748 2749 2750
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2751
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2752
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2753 2754
	return 0;
}
2755
#else
2756 2757 2758
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2759 2760 2761 2762 2763 2764 2765 2766 2767
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2768
#endif
2769

2770 2771
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2772 2773
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2774 2775
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2776

2777
	if (!cpsw->slaves[slave_no].phy)
2778
		return -EOPNOTSUPP;
2779 2780 2781

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2782 2783
}

2784 2785
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2786 2787
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2788 2789
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2790

2791
	if (cpsw->slaves[slave_no].phy)
2792 2793
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2794 2795 2796 2797
	else
		return -EOPNOTSUPP;
}

2798 2799 2800
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2801 2802
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2803 2804 2805 2806

	wol->supported = 0;
	wol->wolopts = 0;

2807 2808
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2809 2810 2811 2812 2813
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2814 2815
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2816

2817 2818
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2819 2820 2821 2822
	else
		return -EOPNOTSUPP;
}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2846 2847 2848
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2849
	struct cpsw_common *cpsw = priv->cpsw;
2850 2851
	int ret;

2852
	ret = pm_runtime_get_sync(cpsw->dev);
2853 2854
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2855
		pm_runtime_put_noidle(cpsw->dev);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2866
	ret = pm_runtime_put(priv->cpsw->dev);
2867 2868 2869 2870
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2871 2872 2873 2874 2875
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

2876 2877
	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	ch->max_combined = 0;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
2889 2890 2891 2892 2893
	if (cpsw->quirk_irq) {
		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
		return -EOPNOTSUPP;
	}

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2912
	struct netdev_queue *queue;
2913
	struct cpsw_vector *vec;
2914
	int ret, *ch, vch;
2915 2916 2917

	if (rx) {
		ch = &cpsw->rx_ch_num;
2918
		vec = cpsw->rxv;
2919 2920 2921
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2922
		vec = cpsw->txv;
2923 2924 2925 2926
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2927 2928
		vch = rx ? *ch : 7 - *ch;
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2929 2930
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2931

2932 2933
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2934

2935
		if (!vec[*ch].ch)
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2946
		ret = cpdma_chan_destroy(vec[*ch].ch);
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2973
static void cpsw_suspend_data_pass(struct net_device *ndev)
2974
{
2975
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2976
	struct cpsw_slave *slave;
2977
	int i;
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
3010
	if (cpsw->usage_count) {
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

3064
	if (cpsw->usage_count)
3065
		cpsw_split_res(ndev);
3066

3067 3068 3069
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
3070 3071 3072 3073 3074 3075
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

3112 3113 3114 3115 3116 3117 3118 3119 3120
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
3121
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
3122 3123 3124 3125 3126 3127 3128 3129
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
3130
	int ret;
3131 3132 3133 3134

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
3135 3136
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
3137 3138 3139 3140 3141
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

3142
	cpsw_suspend_data_pass(ndev);
3143 3144 3145

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

3146
	if (cpsw->usage_count)
3147 3148
		cpdma_chan_split_pool(cpsw->dma);

3149 3150 3151
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
3152

3153
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3154 3155 3156 3157
	dev_close(ndev);
	return ret;
}

3158 3159 3160 3161 3162
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
3163
	.get_ts_info	= cpsw_get_ts_info,
3164 3165
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
3166 3167 3168
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
3169 3170
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
3171 3172
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
3173 3174
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
3175 3176
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
3177 3178
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
3179 3180
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
3181 3182
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
3183
	.nway_reset	= cpsw_nway_reset,
3184 3185
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
3186 3187
};

3188
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3189
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
3190
{
3191
	void __iomem		*regs = cpsw->regs;
3192
	int			slave_num = slave->slave_num;
3193
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
3194 3195

	slave->data	= data;
3196 3197
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
3198
	slave->port_vlan = data->dual_emac_res_vlan;
3199 3200
}

3201
static int cpsw_probe_dt(struct cpsw_platform_data *data,
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
3213
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3214 3215 3216 3217
		return -EINVAL;
	}
	data->slaves = prop;

3218
	if (of_property_read_u32(node, "active_slave", &prop)) {
3219
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3220
		return -EINVAL;
3221
	}
3222
	data->active_slave = prop;
3223

3224 3225 3226
	data->slave_data = devm_kcalloc(&pdev->dev,
					data->slaves,
					sizeof(struct cpsw_slave_data),
3227
					GFP_KERNEL);
3228
	if (!data->slave_data)
3229
		return -ENOMEM;
3230 3231

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3232
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3233
		return -EINVAL;
3234 3235 3236 3237
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
3238
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3239
		return -EINVAL;
3240 3241 3242 3243
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3244
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3245
		return -EINVAL;
3246 3247 3248 3249
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
3250
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3251
		return -EINVAL;
3252 3253 3254
	}
	data->mac_control = prop;

3255 3256
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
3257

3258 3259 3260 3261 3262 3263
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
3264
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
3265

3266
	for_each_available_child_of_node(node, slave_node) {
3267 3268
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
3269 3270 3271
		int lenp;
		const __be32 *parp;

3272 3273 3274 3275
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

3276 3277
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
3278
		parp = of_get_property(slave_node, "phy_id", &lenp);
3279 3280
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
3281 3282
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
3283
		} else if (of_phy_is_fixed_link(slave_node)) {
3284 3285 3286
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
3287
			ret = of_phy_register_fixed_link(slave_node);
3288 3289 3290
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3291
				return ret;
3292
			}
3293
			slave_data->phy_node = of_node_get(slave_node);
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
3313
			put_device(&mdio->dev);
3314
		} else {
3315 3316 3317
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
3318
			goto no_phy_slave;
3319
		}
3320 3321 3322 3323 3324 3325 3326 3327
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
3328
		mac_addr = of_get_mac_address(slave_node);
3329
		if (mac_addr) {
3330
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3331
		} else {
3332 3333 3334 3335
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
3336
		}
3337
		if (data->dual_emac) {
3338
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3339
						 &prop)) {
3340
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3341
				slave_data->dual_emac_res_vlan = i+1;
3342 3343
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
3344 3345 3346 3347 3348
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

3349
		i++;
3350 3351
		if (i == data->slaves)
			break;
3352 3353 3354 3355 3356
	}

	return 0;
}

3357 3358
static void cpsw_remove_dt(struct platform_device *pdev)
{
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

3372 3373
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
3374 3375 3376 3377 3378 3379 3380 3381

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

3382 3383 3384
	of_platform_depopulate(&pdev->dev);
}

3385
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3386
{
3387 3388
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
3389 3390
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
3391
	int ret = 0;
3392

3393
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3394
	if (!ndev) {
3395
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3396 3397 3398 3399
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
3400
	priv_sl2->cpsw = cpsw;
3401 3402 3403 3404 3405 3406 3407
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
3408 3409
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
3410
	} else {
3411
		eth_random_addr(priv_sl2->mac_addr);
3412 3413
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
3414 3415 3416 3417
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
3418
	cpsw->slaves[1].ndev = ndev;
3419
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3420 3421

	ndev->netdev_ops = &cpsw_netdev_ops;
3422
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3423 3424

	/* register the network device */
3425
	SET_NETDEV_DEV(ndev, cpsw->dev);
3426 3427
	ret = register_netdev(ndev);
	if (ret) {
3428
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
3429 3430 3431 3432 3433 3434 3435
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

3436
static const struct of_device_id cpsw_of_mtable[] = {
3437 3438 3439 3440
	{ .compatible = "ti,cpsw"},
	{ .compatible = "ti,am335x-cpsw"},
	{ .compatible = "ti,am4372-cpsw"},
	{ .compatible = "ti,dra7-cpsw"},
3441 3442 3443 3444
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

3445 3446 3447 3448 3449
static const struct soc_device_attribute cpsw_soc_devices[] = {
	{ .family = "AM33xx", .revision = "ES1.0"},
	{ /* sentinel */ }
};

B
Bill Pemberton 已提交
3450
static int cpsw_probe(struct platform_device *pdev)
3451
{
3452
	struct clk			*clk;
3453
	struct cpsw_platform_data	*data;
3454 3455 3456 3457
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
3458
	void __iomem			*ss_regs;
3459
	void __iomem			*cpts_regs;
3460
	struct resource			*res, *ss_res;
3461
	struct gpio_descs		*mode;
3462
	u32 slave_offset, sliver_offset, slave_size;
3463
	const struct soc_device_attribute *soc;
3464
	struct cpsw_common		*cpsw;
3465
	int ret = 0, i, ch;
3466
	int irq;
3467

3468
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3469 3470 3471
	if (!cpsw)
		return -ENOMEM;

3472
	cpsw->dev = &pdev->dev;
3473

3474
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3475
	if (!ndev) {
3476
		dev_err(&pdev->dev, "error allocating net_device\n");
3477 3478 3479 3480 3481
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
3482
	priv->cpsw = cpsw;
3483 3484 3485
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3486
	cpsw->rx_packet_max = max(rx_packet_max, 128);
3487

3488 3489 3490 3491 3492 3493 3494
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

3495 3496 3497 3498 3499
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

3500 3501 3502
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

3503 3504 3505 3506 3507 3508
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
3509
		goto clean_runtime_disable_ret;
3510
	}
3511

3512 3513
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
3514
		goto clean_dt_ret;
3515

3516
	data = &cpsw->data;
3517 3518
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
3519

3520 3521
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3522
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3523
	} else {
J
Joe Perches 已提交
3524
		eth_random_addr(priv->mac_addr);
3525
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3526 3527 3528 3529
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

3530 3531
	cpsw->slaves = devm_kcalloc(&pdev->dev,
				    data->slaves, sizeof(struct cpsw_slave),
3532
				    GFP_KERNEL);
3533
	if (!cpsw->slaves) {
3534
		ret = -ENOMEM;
3535
		goto clean_dt_ret;
3536 3537
	}
	for (i = 0; i < data->slaves; i++)
3538
		cpsw->slaves[i].slave_num = i;
3539

3540
	cpsw->slaves[0].ndev = ndev;
3541 3542
	priv->emac_port = 0;

3543 3544
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
3545
		dev_err(priv->dev, "fck is not found\n");
3546
		ret = -ENODEV;
3547
		goto clean_dt_ret;
3548
	}
3549
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3550

3551 3552 3553 3554
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
3555
		goto clean_dt_ret;
3556
	}
3557
	cpsw->regs = ss_regs;
3558

3559
	cpsw->version = readl(&cpsw->regs->id_ver);
3560

3561
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3562 3563 3564
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
3565
		goto clean_dt_ret;
3566 3567 3568
	}

	memset(&dma_params, 0, sizeof(dma_params));
3569 3570
	memset(&ale_params, 0, sizeof(ale_params));

3571
	switch (cpsw->version) {
3572
	case CPSW_VERSION_1:
3573
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3574
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3575
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3576 3577 3578 3579 3580 3581 3582 3583 3584
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3585
	case CPSW_VERSION_3:
3586
	case CPSW_VERSION_4:
3587
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3588
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3589
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3590 3591 3592 3593 3594 3595 3596
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3597
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3598 3599
		break;
	default:
3600
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3601
		ret = -ENODEV;
3602
		goto clean_dt_ret;
3603
	}
3604 3605 3606 3607
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3608 3609 3610 3611
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3612
	dma_params.dev		= &pdev->dev;
3613 3614 3615 3616 3617
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3618 3619 3620 3621 3622 3623 3624

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3625
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3626
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3627
	dma_params.descs_pool_size	= descs_pool_size;
3628

3629 3630
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3631 3632
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3633
		goto clean_dt_ret;
3634 3635
	}

3636 3637 3638 3639
	soc = soc_device_match(cpsw_soc_devices);
	if (soc)
		cpsw->quirk_irq = 1;

3640 3641
	ch = cpsw->quirk_irq ? 0 : 7;
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3642 3643 3644 3645 3646 3647
	if (IS_ERR(cpsw->txv[0].ch)) {
		dev_err(priv->dev, "error initializing tx dma channel\n");
		ret = PTR_ERR(cpsw->txv[0].ch);
		goto clean_dma_ret;
	}

3648
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3649 3650 3651
	if (IS_ERR(cpsw->rxv[0].ch)) {
		dev_err(priv->dev, "error initializing rx dma channel\n");
		ret = PTR_ERR(cpsw->rxv[0].ch);
3652 3653 3654
		goto clean_dma_ret;
	}

3655
	ale_params.dev			= &pdev->dev;
3656 3657
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
3658
	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3659

3660 3661
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3662 3663 3664 3665 3666
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3667
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3668 3669
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
3670
		goto clean_dma_ret;
3671 3672
	}

3673
	ndev->irq = platform_get_irq(pdev, 1);
3674 3675
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3676
		ret = ndev->irq;
3677
		goto clean_dma_ret;
3678 3679
	}

3680
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3681 3682 3683

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3684 3685 3686 3687 3688 3689
	netif_napi_add(ndev, &cpsw->napi_rx,
		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
		       CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx,
			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
			  CPSW_POLL_WEIGHT);
3690 3691 3692 3693 3694 3695 3696 3697
	cpsw_split_res(ndev);

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3698
		goto clean_dma_ret;
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3709 3710 3711 3712 3713 3714 3715
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3716

3717
	/* RX IRQ */
3718
	irq = platform_get_irq(pdev, 1);
3719 3720
	if (irq < 0) {
		ret = irq;
3721
		goto clean_dma_ret;
3722
	}
3723

3724
	cpsw->irqs_table[0] = irq;
3725
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3726
			       0, dev_name(&pdev->dev), cpsw);
3727 3728
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3729
		goto clean_dma_ret;
3730 3731
	}

3732
	/* TX IRQ */
3733
	irq = platform_get_irq(pdev, 2);
3734 3735
	if (irq < 0) {
		ret = irq;
3736
		goto clean_dma_ret;
3737
	}
3738

3739
	cpsw->irqs_table[1] = irq;
3740
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3741
			       0, dev_name(&pdev->dev), cpsw);
3742 3743
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3744
		goto clean_dma_ret;
3745
	}
3746

3747 3748 3749
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3750

3751 3752
	pm_runtime_put(&pdev->dev);

3753 3754
	return 0;

3755 3756
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3757
clean_dma_ret:
3758
	cpdma_ctlr_destroy(cpsw->dma);
3759 3760
clean_dt_ret:
	cpsw_remove_dt(pdev);
3761
	pm_runtime_put_sync(&pdev->dev);
3762
clean_runtime_disable_ret:
3763
	pm_runtime_disable(&pdev->dev);
3764
clean_ndev_ret:
3765
	free_netdev(priv->ndev);
3766 3767 3768
	return ret;
}

B
Bill Pemberton 已提交
3769
static int cpsw_remove(struct platform_device *pdev)
3770 3771
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3772
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3773 3774 3775 3776 3777 3778 3779
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3780

3781 3782
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3783
	unregister_netdev(ndev);
3784

3785
	cpts_release(cpsw->cpts);
3786
	cpdma_ctlr_destroy(cpsw->dma);
3787
	cpsw_remove_dt(pdev);
3788 3789
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3790 3791
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3792 3793 3794 3795
	free_netdev(ndev);
	return 0;
}

3796
#ifdef CONFIG_PM_SLEEP
3797 3798
static int cpsw_suspend(struct device *dev)
{
3799
	struct net_device	*ndev = dev_get_drvdata(dev);
3800
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3801

3802
	if (cpsw->data.dual_emac) {
3803
		int i;
3804

3805 3806 3807
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3808 3809 3810 3811 3812
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3813

3814
	/* Select sleep pin state */
3815
	pinctrl_pm_select_sleep_state(dev);
3816

3817 3818 3819 3820 3821
	return 0;
}

static int cpsw_resume(struct device *dev)
{
3822
	struct net_device	*ndev = dev_get_drvdata(dev);
3823
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3824

3825
	/* Select default pin state */
3826
	pinctrl_pm_select_default_state(dev);
3827

3828 3829
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3830
	if (cpsw->data.dual_emac) {
3831 3832
		int i;

3833 3834 3835
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3836 3837 3838 3839 3840
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3841 3842
	rtnl_unlock();

3843 3844
	return 0;
}
3845
#endif
3846

3847
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3848 3849 3850 3851 3852

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3853
		.of_match_table = cpsw_of_mtable,
3854 3855
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3856
	.remove = cpsw_remove,
3857 3858
};

3859
module_platform_driver(cpsw_driver);
3860 3861 3862 3863 3864

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");