cpsw.c 96.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio/consumer.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38
#include <linux/kmemleak.h>
39
#include <linux/sys_soc.h>
40

41
#include <linux/pinctrl/consumer.h>
42
#include <net/pkt_cls.h>
43

44
#include "cpsw.h"
45
#include "cpsw_ale.h"
46
#include "cpts.h"
47 48
#include "davinci_cpdma.h"

49 50
#include <net/pkt_sched.h>

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

84 85
#define ALE_ALL_PORTS		0x7

86 87 88 89
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

90 91
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
92
#define CPSW_VERSION_3		0x19010f
93
#define CPSW_VERSION_4		0x190112
94 95

#define HOST_PORT_NUM		0
96
#define CPSW_ALE_PORTS_NUM	3
97 98 99 100 101 102 103
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
104
#define CPSW1_HW_STATS		0x400
105 106 107 108 109 110 111 112
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
113
#define CPSW2_HW_STATS		0x900
114 115 116 117 118 119
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

120 121 122 123 124 125 126 127
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
128
#define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
129
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
130 131 132
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
				 ETH_FCS_LEN +\
				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133 134 135

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
136
#define CPDMA_TX_PRIORITY_MAP	0x76543210
137

138
#define CPSW_VLAN_AWARE		BIT(1)
139
#define CPSW_RX_VLAN_ENCAP	BIT(2)
140 141
#define CPSW_ALE_VLAN_AWARE	1

142 143 144
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
145

146 147 148 149 150 151 152
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

153 154 155
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
156
#define IRQ_NUM			2
157
#define CPSW_MAX_QUEUES		8
158
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 160 161
#define CPSW_FIFO_QUEUE_TYPE_SHIFT	16
#define CPSW_FIFO_SHAPE_EN_SHIFT	16
#define CPSW_FIFO_RATE_EN_SHIFT		20
162 163
#define CPSW_TC_NUM			4
#define CPSW_FIFO_SHAPERS_NUM		(CPSW_TC_NUM - 1)
164
#define CPSW_PCT_MASK			0x7f
165

166 167 168 169 170 171 172 173 174 175 176 177
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
#define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
enum {
	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
};

178 179 180 181 182 183 184 185 186 187 188 189
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

190 191 192 193
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

194
struct cpsw_wr_regs {
195 196 197 198 199 200 201 202
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
203 204 205 206 207 208 209 210 211
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

212 213
};

214
struct cpsw_ss_regs {
215 216 217 218 219
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
220 221 222 223 224 225 226 227
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
228 229
};

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
265 266 267 268
#define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
269
#define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
270 271 272 273 274 275 276 277 278 279 280 281 282
#define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
#define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
#define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
#define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
#define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
283

284 285 286
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
287

288 289 290 291 292 293
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
294
	(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295 296 297 298 299 300
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
301 302 303 304 305 306 307 308 309

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310

311 312 313 314 315 316 317 318
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

319 320 321 322
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

323 324 325
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
326
	u32	tx_in_ctl;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
struct cpsw_slave_data {
	struct device_node *phy_node;
	char		phy_id[MII_BUS_ID_SIZE];
	int		phy_if;
	u8		mac_addr[ETH_ALEN];
	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
};

struct cpsw_platform_data {
	struct cpsw_slave_data	*slave_data;
	u32	ss_reg_ofs;	/* Subsystem control register offset */
	u32	channels;	/* number of cpdma channels (symmetric) */
	u32	slaves;		/* number of slave cpgmac ports */
	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
	u32	ale_entries;	/* ale table size */
	u32	bd_ram_size;  /*buffer descriptor ram size */
	u32	mac_control;	/* Mac control register */
	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
	bool	dual_emac;	/* Enable Dual EMAC mode */
};

405
struct cpsw_slave {
406
	void __iomem			*regs;
407 408 409 410 411
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
412 413
	struct net_device		*ndev;
	u32				port_vlan;
414 415
};

416 417
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
418
	return readl_relaxed(slave->regs + offset);
419 420 421 422
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
423
	writel_relaxed(val, slave->regs + offset);
424 425
}

426 427 428 429 430
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

431
struct cpsw_common {
432
	struct device			*dev;
433
	struct cpsw_platform_data	data;
434 435
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
436 437 438 439
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
440 441 442 443
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
444
	struct cpsw_slave		*slaves;
445
	struct cpdma_ctlr		*dma;
446 447
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
448
	struct cpsw_ale			*ale;
449 450 451 452
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
453
	struct cpts			*cpts;
454
	int				rx_ch_num, tx_ch_num;
455
	int				speed;
456
	int				usage_count;
457 458 459
};

struct cpsw_priv {
460 461 462 463
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
464 465
	bool				rx_pause;
	bool				tx_pause;
466
	bool				mqprio_hw;
467 468
	int				fifo_bw[CPSW_TC_NUM];
	int				shp_cfg_speed;
469
	u32 emac_port;
470
	struct cpsw_common *cpsw;
471 472
};

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
551

552
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
553
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
554 555
#define for_each_slave(priv, func, arg...)				\
	do {								\
556
		struct cpsw_slave *slave;				\
557
		struct cpsw_common *cpsw = (priv)->cpsw;		\
558
		int n;							\
559 560
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
561
		else							\
562 563
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
564 565
					n; n--)				\
				(func)(slave++, ##arg);			\
566 567
	} while (0)

568
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
569
	do {								\
570
		if (!cpsw->data.dual_emac)				\
571 572
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
573
			ndev = cpsw->slaves[0].ndev;			\
574 575
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
576
			ndev = cpsw->slaves[1].ndev;			\
577 578
			skb->dev = ndev;				\
		}							\
579
	} while (0)
580
#define cpsw_add_mcast(cpsw, priv, addr)				\
581
	do {								\
582 583
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
584
						priv->emac_port;	\
585
			int slave_port = cpsw_get_slave_port(		\
586
						slave->slave_num);	\
587
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
588
				1 << slave_port | ALE_PORT_HOST,	\
589 590
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
591
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
592
				ALE_ALL_PORTS,				\
593 594 595 596
				0, 0, 0);				\
		}							\
	} while (0)

597
static inline int cpsw_get_slave_port(u32 slave_num)
598
{
599
	return slave_num + 1;
600
}
601

602 603
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
604 605
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
606 607
	int i;

608
	if (cpsw->data.dual_emac) {
609 610 611 612 613 614
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
615 616
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

638
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
639
			for (i = 0; i <= cpsw->data.slaves; i++) {
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
656
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
657 658 659 660 661

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
662
			/* Don't Flood All Unicast Packets to Host port */
663 664
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

665
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
666
			for (i = 0; i <= cpsw->data.slaves; i++) {
667 668 669 670 671 672 673 674 675 676
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

677 678 679
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
680
	struct cpsw_common *cpsw = priv->cpsw;
681 682
	int vid;

683 684
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
685
	else
686
		vid = cpsw->data.default_vlan;
687 688 689

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
690
		cpsw_set_promiscious(ndev, true);
691
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
692
		return;
693 694 695
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
696 697
	}

698
	/* Restore allmulti on vlans if necessary */
699
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
700

701
	/* Clear all mcast from ALE */
702
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
703 704 705 706 707 708

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
709
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
710 711 712 713
		}
	}
}

714
static void cpsw_intr_enable(struct cpsw_common *cpsw)
715
{
716 717
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
718

719
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
720 721 722
	return;
}

723
static void cpsw_intr_disable(struct cpsw_common *cpsw)
724
{
725 726
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
727

728
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
729 730 731
	return;
}

732
static void cpsw_tx_handler(void *token, int len, int status)
733
{
734
	struct netdev_queue	*txq;
735 736
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
737
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
738

739 740 741
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
742 743 744 745
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

746
	cpts_tx_timestamp(cpsw->cpts, skb);
747 748
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
749 750 751
	dev_kfree_skb_any(skb);
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	struct cpsw_common *cpsw = priv->cpsw;
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;
	/* Ignore default vlans in dual mac mode */
	if (cpsw->data.dual_emac &&
	    vid == cpsw->slaves[priv->emac_port].port_vlan)
		return;

	prio = (rx_vlan_encap_hdr >>
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

795
static void cpsw_rx_handler(void *token, int len, int status)
796
{
797
	struct cpdma_chan	*ch;
798
	struct sk_buff		*skb = token;
799
	struct sk_buff		*new_skb;
800 801
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
802
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
803

804
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
805

806
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
807
		/* In dual emac mode check for all interfaces */
808
		if (cpsw->data.dual_emac && cpsw->usage_count &&
809
		    (status >= 0)) {
810 811
			/* The packet received is for the interface which
			 * is already down and the other interface is up
812
			 * and running, instead of freeing which results
813 814 815 816 817 818 819
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

820
		/* the interface is going down, skbs are purged */
821 822 823
		dev_kfree_skb_any(skb);
		return;
	}
824

825
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
826
	if (new_skb) {
827
		skb_copy_queue_mapping(new_skb, skb);
828
		skb_put(skb, len);
829 830
		if (status & CPDMA_RX_VLAN_ENCAP)
			cpsw_rx_vlan_encap(skb);
831
		cpts_rx_timestamp(cpsw->cpts, skb);
832 833
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
834 835
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
836
		kmemleak_not_leak(new_skb);
837
	} else {
838
		ndev->stats.rx_dropped++;
839
		new_skb = skb;
840 841
	}

842
requeue:
843 844 845 846 847
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

848
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
849
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
850
				skb_tailroom(new_skb), 0);
851 852
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
853 854
}

855
static void cpsw_split_res(struct net_device *ndev)
856 857
{
	struct cpsw_priv *priv = netdev_priv(ndev);
858
	u32 consumed_rate = 0, bigest_rate = 0;
859 860
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
861
	int i, ch_weight, rlim_ch_num = 0;
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
877 878 879 880
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
881
	} else {
882 883 884 885 886 887 888 889 890 891
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
892

893 894 895 896 897 898 899
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

900
	/* split tx weight/budget */
901 902 903 904 905 906
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
907
				txv[i].budget++;
908 909 910 911
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
912 913 914 915 916

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
917 918 919 920
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
921
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

942
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
943
{
944
	struct cpsw_common *cpsw = dev_id;
945

946
	writel(0, &cpsw->wr_regs->tx_en);
947
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
948

949 950 951
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
952 953
	}

954
	napi_schedule(&cpsw->napi_tx);
955 956 957 958 959
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
960
	struct cpsw_common *cpsw = dev_id;
961

962
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
963
	writel(0, &cpsw->wr_regs->rx_en);
964

965 966 967
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
968 969
	}

970
	napi_schedule(&cpsw->napi_rx);
971
	return IRQ_HANDLED;
972 973
}

974
static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
975
{
976
	u32			ch_map;
977
	int			num_tx, cur_budget, ch;
978
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
979
	struct cpsw_vector	*txv;
980

981 982
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
983 984
	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
		if (!(ch_map & 0x80))
985 986
			continue;

987 988 989 990 991 992 993
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
994 995
		if (num_tx >= budget)
			break;
996 997
	}

998 999
	if (num_tx < budget) {
		napi_complete(napi_tx);
1000
		writel(0xff, &cpsw->wr_regs->tx_en);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	}

	return num_tx;
}

static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
1016 1017
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1018
		}
1019 1020 1021 1022 1023
	}

	return num_tx;
}

1024
static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1025
{
1026
	u32			ch_map;
1027
	int			num_rx, cur_budget, ch;
1028
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1029
	struct cpsw_vector	*rxv;
1030

1031 1032
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1033
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1034 1035 1036
		if (!(ch_map & 0x01))
			continue;

1037 1038 1039 1040 1041 1042 1043
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1044 1045
		if (num_rx >= budget)
			break;
1046 1047
	}

1048
	if (num_rx < budget) {
1049
		napi_complete_done(napi_rx, num_rx);
1050
		writel(0xff, &cpsw->wr_regs->rx_en);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	}

	return num_rx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
1066 1067
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1068
		}
1069 1070 1071 1072 1073 1074 1075 1076 1077
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

1078
	writel_relaxed(1, reg);
1079 1080
	do {
		cpu_relax();
1081
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1082

1083
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1084 1085 1086 1087 1088
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
1089 1090
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1091 1092
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = 7 << shift;
	val = val & mask;

	return !val;
}

static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = (1 << --fifo) << shift;
	val = on ? val | mask : val & ~mask;

	writel_relaxed(val, &cpsw->regs->ptype);
}

1125 1126 1127 1128 1129 1130
static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
1131
	struct cpsw_common *cpsw = priv->cpsw;
1132 1133 1134 1135

	if (!phy)
		return;

1136
	slave_port = cpsw_get_slave_port(slave->slave_num);
1137 1138

	if (phy->link) {
1139
		mac_control = cpsw->data.mac_control;
1140 1141

		/* enable forwarding */
1142
		cpsw_ale_control_set(cpsw->ale, slave_port,
1143 1144 1145 1146 1147 1148
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1149 1150 1151 1152

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1153 1154
		/* in band mode only works in 10Mbps RGMII mode */
		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1155
			mac_control |= BIT(18); /* In Band mode */
1156

1157 1158 1159 1160 1161 1162
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1163
		*link = true;
1164 1165 1166 1167 1168 1169

		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed &&
		    !cpsw_shp_is_off(priv))
			dev_warn(priv->dev,
				 "Speed was changed, CBS shaper speeds are changed!");
1170 1171 1172
	} else {
		mac_control = 0;
		/* disable forwarding */
1173
		cpsw_ale_control_set(cpsw->ale, slave_port,
1174 1175 1176 1177 1178
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1179
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1180 1181 1182 1183 1184
	}

	slave->mac_control = mac_control;
}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1223 1224 1225
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1226
	struct cpsw_common	*cpsw = priv->cpsw;
1227 1228 1229 1230 1231
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1232 1233 1234
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1235 1236
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1237
			netif_tx_wake_all_queues(ndev);
1238 1239
	} else {
		netif_carrier_off(ndev);
1240
		netif_tx_stop_all_queues(ndev);
1241 1242 1243
	}
}

1244 1245 1246
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1247
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1248

1249
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1262
	struct cpsw_common *cpsw = priv->cpsw;
1263 1264 1265

	coal_intvl = coal->rx_coalesce_usecs;

1266
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1267
	prescale = cpsw->bus_freq_mhz * 4;
1268

1269 1270 1271 1272 1273
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1295 1296
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1297 1298 1299 1300

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1301 1302

update_return:
1303
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1304 1305

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1306
	cpsw->coal_intvl = coal_intvl;
1307 1308 1309 1310

	return 0;
}

1311 1312
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1313 1314
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1315 1316
	switch (sset) {
	case ETH_SS_STATS:
1317 1318 1319
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1320 1321 1322 1323 1324
	default:
		return -EOPNOTSUPP;
	}
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
1335 1336
			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
			 (long)(i / CPSW_STATS_CH_LEN),
1337 1338 1339 1340 1341
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1342 1343
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1344
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1345 1346 1347 1348 1349
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1350
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1351 1352 1353 1354
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1355 1356 1357

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1358 1359 1360 1361 1362 1363 1364 1365
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1366
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1367 1368
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1369 1370

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1371 1372 1373 1374 1375
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1376
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1377 1378 1379 1380 1381 1382
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1383

1384
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1385
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1386 1387 1388 1389
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1390 1391 1392 1393
		}
	}
}

1394
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1395 1396
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1397
{
1398 1399
	struct cpsw_common *cpsw = priv->cpsw;

1400
	skb_tx_timestamp(skb);
1401
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1402
				 priv->emac_port + cpsw->data.dual_emac);
1403 1404 1405 1406 1407 1408
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1409
	struct cpsw_common *cpsw = priv->cpsw;
1410
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1411

1412
	if (cpsw->version == CPSW_VERSION_1)
1413 1414 1415
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1416
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1417
			  port_mask, port_mask, 0);
1418
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1419
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1420 1421 1422
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1423 1424
	cpsw_ale_control_set(cpsw->ale, slave_port,
			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1425 1426
}

1427
static void soft_reset_slave(struct cpsw_slave *slave)
1428 1429 1430
{
	char name[32];

1431
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1432
	soft_reset(name, &slave->sliver->soft_reset);
1433 1434 1435 1436 1437
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1438
	struct phy_device *phy;
1439
	struct cpsw_common *cpsw = priv->cpsw;
1440 1441

	soft_reset_slave(slave);
1442 1443

	/* setup priority mapping */
1444
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1445

1446
	switch (cpsw->version) {
1447 1448
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1449 1450 1451 1452 1453 1454
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1455 1456
		break;
	case CPSW_VERSION_2:
1457
	case CPSW_VERSION_3:
1458
	case CPSW_VERSION_4:
1459
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1460 1461 1462 1463 1464 1465
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1466 1467
		break;
	}
1468 1469

	/* setup max packet size, and mac address */
1470
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1471 1472 1473 1474
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1475
	slave_port = cpsw_get_slave_port(slave->slave_num);
1476

1477
	if (cpsw->data.dual_emac)
1478 1479
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1480
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1481
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1482

1483
	if (slave->data->phy_node) {
1484
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1485
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1486
		if (!phy) {
1487 1488
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1489 1490 1491 1492
				slave->slave_num);
			return;
		}
	} else {
1493
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1494
				 &cpsw_adjust_link, slave->data->phy_if);
1495
		if (IS_ERR(phy)) {
1496 1497 1498
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1499
				PTR_ERR(phy));
1500 1501 1502
			return;
		}
	}
1503

1504 1505
	slave->phy = phy;

1506
	phy_attached_info(slave->phy);
1507

1508 1509 1510
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1511
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1512 1513
}

1514 1515
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1516 1517
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1518 1519
	u32 reg;
	int i;
1520
	int unreg_mcast_mask;
1521

1522
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1523 1524
	       CPSW2_PORT_VLAN;

1525
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1526

1527 1528
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1529

1530 1531 1532 1533 1534
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1535
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1536 1537
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1538 1539
}

1540 1541
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1542
	u32 fifo_mode;
1543 1544
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1545

1546
	/* soft reset the controller and initialize ale */
1547
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1548
	cpsw_ale_start(cpsw->ale);
1549 1550

	/* switch to vlan unaware mode */
1551
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1552
			     CPSW_ALE_VLAN_AWARE);
1553
	control_reg = readl(&cpsw->regs->control);
1554
	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1555
	writel(control_reg, &cpsw->regs->control);
1556
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1557
		     CPSW_FIFO_NORMAL_MODE;
1558
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1559 1560

	/* setup host port priority mapping */
1561 1562 1563
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1564

1565
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1566 1567
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1568
	if (!cpsw->data.dual_emac) {
1569
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1570
				   0, 0);
1571
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1572
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1573
	}
1574 1575
}

1576 1577 1578 1579 1580
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1581 1582 1583
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1584
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1585 1586 1587 1588 1589 1590 1591 1592
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1593

1594
			skb_set_queue_mapping(skb, ch);
1595 1596 1597
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1598 1599 1600 1601 1602 1603 1604 1605
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1606 1607
		}

1608 1609 1610
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1611

1612
	return 0;
1613 1614
}

1615
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1616
{
1617 1618
	u32 slave_port;

1619
	slave_port = cpsw_get_slave_port(slave->slave_num);
1620

1621 1622 1623 1624 1625
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1626
	cpsw_ale_control_set(cpsw->ale, slave_port,
1627
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1628
	soft_reset_slave(slave);
1629 1630
}

1631 1632 1633 1634 1635 1636 1637 1638
static int cpsw_tc_to_fifo(int tc, int num_tc)
{
	if (tc == num_tc - 1)
		return 0;

	return CPSW_FIFO_SHAPERS_NUM - tc;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 val = 0, send_pct, shift;
	struct cpsw_slave *slave;
	int pct = 0, i;

	if (bw > priv->shp_cfg_speed * 1000)
		goto err;

	/* shaping has to stay enabled for highest fifos linearly
	 * and fifo bw no more then interface can allow
	 */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	send_pct = slave_read(slave, SEND_PERCENT);
	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
		if (!bw) {
			if (i >= fifo || !priv->fifo_bw[i])
				continue;

			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
			continue;
		}

		if (!priv->fifo_bw[i] && i > fifo) {
			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
			return -EINVAL;
		}

		shift = (i - 1) * 8;
		if (i == fifo) {
			send_pct &= ~(CPSW_PCT_MASK << shift);
			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
			if (!val)
				val = 1;

			send_pct |= val << shift;
			pct += val;
			continue;
		}

		if (priv->fifo_bw[i])
			pct += (send_pct >> shift) & CPSW_PCT_MASK;
	}

	if (pct >= 100)
		goto err;

	slave_write(slave, send_pct, SEND_PERCENT);
	priv->fifo_bw[fifo] = bw;

	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));

	return 0;
err:
	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
	return -EINVAL;
}

static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 tx_in_ctl_rg, val;
	int ret;

	ret = cpsw_set_fifo_bw(priv, fifo, bw);
	if (ret)
		return ret;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;

	if (!bw)
		cpsw_fifo_shp_on(priv, fifo, bw);

	val = slave_read(slave, tx_in_ctl_rg);
	if (cpsw_shp_is_off(priv)) {
		/* disable FIFOs rate limited queues */
		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);

		/* set type of FIFO queues to normal priority mode */
		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);

		/* set type of FIFO queues to be rate limited */
		if (bw)
			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
		else
			priv->shp_cfg_speed = 0;
	}

	/* toggle a FIFO rate limited queue */
	if (bw)
		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	else
		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	slave_write(slave, val, tx_in_ctl_rg);

	/* FIFO transmit shape enable */
	cpsw_fifo_shp_on(priv, fifo, bw);
	return 0;
}

/* Defaults:
 * class A - prio 3
 * class B - prio 2
 * shaping for class A should be set first
 */
static int cpsw_set_cbs(struct net_device *ndev,
			struct tc_cbs_qopt_offload *qopt)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int prev_speed = 0;
	int tc, ret, fifo;
	u32 bw = 0;

	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);

	/* enable channels in backward order, as highest FIFOs must be rate
	 * limited first and for compliance with CPDMA rate limited channels
	 * that also used in bacward order. FIFO0 cannot be rate limited.
	 */
	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
	if (!fifo) {
		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
		return -EINVAL;
	}

	/* do nothing, it's disabled anyway */
	if (!qopt->enable && !priv->fifo_bw[fifo])
		return 0;

	/* shapers can be set if link speed is known */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	if (slave->phy && slave->phy->link) {
		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed)
			prev_speed = priv->shp_cfg_speed;

		priv->shp_cfg_speed = slave->phy->speed;
	}

	if (!priv->shp_cfg_speed) {
		dev_err(priv->dev, "Link speed is not known");
		return -1;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	bw = qopt->enable ? qopt->idleslope : 0;
	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
	if (ret) {
		priv->shp_cfg_speed = prev_speed;
		prev_speed = 0;
	}

	if (bw && prev_speed)
		dev_warn(priv->dev,
			 "Speed was changed, CBS shaper speeds are changed!");

	pm_runtime_put_sync(cpsw->dev);
	return ret;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	int fifo, bw;

	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
		bw = priv->fifo_bw[fifo];
		if (!bw)
			continue;

		cpsw_set_fifo_rlimit(priv, fifo, bw);
	}
}

static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 tx_prio_map = 0;
	int i, tc, fifo;
	u32 tx_prio_rg;

	if (!priv->mqprio_hw)
		return;

	for (i = 0; i < 8; i++) {
		tc = netdev_get_prio_tc_map(priv->ndev, i);
		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
		tx_prio_map |= fifo << (4 * i);
	}

	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave_write(slave, tx_prio_map, tx_prio_rg);
}

/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
	/* restore MQPRIO offload */
	for_each_slave(priv, cpsw_mqprio_resume, priv);

	/* restore CBS offload */
	for_each_slave(priv, cpsw_cbs_resume, priv);
}

1856 1857 1858
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1859
	struct cpsw_common *cpsw = priv->cpsw;
1860
	int ret;
1861 1862
	u32 reg;

1863
	ret = pm_runtime_get_sync(cpsw->dev);
1864
	if (ret < 0) {
1865
		pm_runtime_put_noidle(cpsw->dev);
1866 1867
		return ret;
	}
1868

1869 1870
	netif_carrier_off(ndev);

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1884
	reg = cpsw->version;
1885 1886 1887 1888 1889

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1890 1891
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1892
		cpsw_init_host_port(priv);
1893 1894
	for_each_slave(priv, cpsw_slave_open, priv);

1895
	/* Add default VLAN */
1896
	if (!cpsw->data.dual_emac)
1897 1898
		cpsw_add_default_vlan(priv);
	else
1899
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1900
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1901

1902 1903
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1904
		/* disable priority elevation */
1905
		writel_relaxed(0, &cpsw->regs->ptype);
1906

1907
		/* enable statistics collection only on all ports */
1908
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1909

1910
		/* Enable internal fifo flow control */
1911
		writel(0x7, &cpsw->regs->flow_control);
1912

1913 1914
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1915

1916 1917 1918
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1919 1920
		}

1921 1922 1923
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1924 1925
		}

1926 1927 1928
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1929

1930
		if (cpts_register(cpsw->cpts))
1931 1932
			dev_err(priv->dev, "error registering cpts device\n");

1933 1934
	}

1935 1936
	cpsw_restore(priv);

1937
	/* Enable Interrupt pacing if configured */
1938
	if (cpsw->coal_intvl != 0) {
1939 1940
		struct ethtool_coalesce coal;

1941
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1942 1943 1944
		cpsw_set_coalesce(ndev, &coal);
	}

1945 1946
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1947
	cpsw->usage_count++;
1948

1949 1950
	return 0;

1951
err_cleanup:
1952
	cpdma_ctlr_stop(cpsw->dma);
1953
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1954
	pm_runtime_put_sync(cpsw->dev);
1955 1956
	netif_carrier_off(priv->ndev);
	return ret;
1957 1958 1959 1960 1961
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1962
	struct cpsw_common *cpsw = priv->cpsw;
1963 1964

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1965
	netif_tx_stop_all_queues(priv->ndev);
1966
	netif_carrier_off(priv->ndev);
1967

1968
	if (cpsw->usage_count <= 1) {
1969 1970
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1971
		cpts_unregister(cpsw->cpts);
1972 1973
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1974
		cpsw_ale_stop(cpsw->ale);
1975
	}
1976
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1977 1978 1979 1980

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1981
	cpsw->usage_count--;
1982
	pm_runtime_put_sync(cpsw->dev);
1983 1984 1985 1986 1987 1988 1989
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1990
	struct cpsw_common *cpsw = priv->cpsw;
1991
	struct cpts *cpts = cpsw->cpts;
1992 1993 1994
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1995 1996 1997

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1998
		ndev->stats.tx_dropped++;
1999
		return NET_XMIT_DROP;
2000 2001
	}

2002
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2003
	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
2004 2005
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

2006 2007 2008 2009
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

2010
	txch = cpsw->txv[q_idx].ch;
2011
	txq = netdev_get_tx_queue(ndev, q_idx);
2012
	ret = cpsw_tx_packet_submit(priv, skb, txch);
2013 2014 2015 2016 2017
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

2018 2019 2020
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
2021 2022
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		netif_tx_stop_queue(txq);
2023 2024 2025 2026 2027 2028

		/* Barrier, so that stop_queue visible to other cpus */
		smp_mb__after_atomic();

		if (cpdma_check_free_tx_desc(txch))
			netif_tx_wake_queue(txq);
2029
	}
2030

2031 2032
	return NETDEV_TX_OK;
fail:
2033
	ndev->stats.tx_dropped++;
2034
	netif_tx_stop_queue(txq);
2035 2036 2037 2038 2039 2040 2041

	/* Barrier, so that stop_queue visible to other cpus */
	smp_mb__after_atomic();

	if (cpdma_check_free_tx_desc(txch))
		netif_tx_wake_queue(txq);

2042 2043 2044
	return NETDEV_TX_BUSY;
}

2045
#if IS_ENABLED(CONFIG_TI_CPTS)
2046

2047
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
2048
{
2049
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2050 2051
	u32 ts_en, seq_id;

2052 2053
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
2054 2055 2056 2057 2058 2059 2060
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

2061
	if (cpts_is_tx_enabled(cpsw->cpts))
2062 2063
		ts_en |= CPSW_V1_TS_TX_EN;

2064
	if (cpts_is_rx_enabled(cpsw->cpts))
2065 2066 2067 2068 2069 2070 2071 2072
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
2073
	struct cpsw_slave *slave;
2074
	struct cpsw_common *cpsw = priv->cpsw;
2075 2076
	u32 ctrl, mtype;

2077
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2078

2079
	ctrl = slave_read(slave, CPSW2_CONTROL);
2080
	switch (cpsw->version) {
2081 2082
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
2083

2084
		if (cpts_is_tx_enabled(cpsw->cpts))
2085
			ctrl |= CTRL_V2_TX_TS_BITS;
2086

2087
		if (cpts_is_rx_enabled(cpsw->cpts))
2088
			ctrl |= CTRL_V2_RX_TS_BITS;
2089
		break;
2090 2091 2092 2093
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

2094
		if (cpts_is_tx_enabled(cpsw->cpts))
2095 2096
			ctrl |= CTRL_V3_TX_TS_BITS;

2097
		if (cpts_is_rx_enabled(cpsw->cpts))
2098
			ctrl |= CTRL_V3_RX_TS_BITS;
2099
		break;
2100
	}
2101 2102 2103 2104 2105

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
2106
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2107 2108
}

2109
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2110
{
2111
	struct cpsw_priv *priv = netdev_priv(dev);
2112
	struct hwtstamp_config cfg;
2113 2114
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
2115

2116 2117 2118
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
2119 2120
		return -EOPNOTSUPP;

2121 2122 2123 2124 2125 2126 2127
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

2128
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2129 2130 2131 2132
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
2133
		cpts_rx_enable(cpts, 0);
2134 2135
		break;
	case HWTSTAMP_FILTER_ALL:
2136 2137
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
2138 2139 2140
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2141 2142 2143
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
2144 2145 2146 2147 2148 2149 2150 2151 2152
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2153
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
2154 2155 2156 2157 2158 2159
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

2160
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
2161

2162
	switch (cpsw->version) {
2163
	case CPSW_VERSION_1:
2164
		cpsw_hwtstamp_v1(cpsw);
2165 2166
		break;
	case CPSW_VERSION_2:
2167
	case CPSW_VERSION_3:
2168 2169 2170
		cpsw_hwtstamp_v2(priv);
		break;
	default:
2171
		WARN_ON(1);
2172 2173 2174 2175 2176
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

2177 2178
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
2179 2180
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
2181 2182
	struct hwtstamp_config cfg;

2183 2184 2185
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
2186 2187 2188
		return -EOPNOTSUPP;

	cfg.flags = 0;
2189 2190 2191
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
2192
			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
2193 2194 2195

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
2196 2197 2198 2199 2200
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
2201

2202 2203 2204 2205
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
2206 2207 2208 2209
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2210
	struct cpsw_priv *priv = netdev_priv(dev);
2211 2212
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2213

2214 2215 2216
	if (!netif_running(dev))
		return -EINVAL;

2217 2218
	switch (cmd) {
	case SIOCSHWTSTAMP:
2219 2220 2221
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
2222 2223
	}

2224
	if (!cpsw->slaves[slave_no].phy)
2225
		return -EOPNOTSUPP;
2226
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2227 2228
}

2229 2230 2231
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2232
	struct cpsw_common *cpsw = priv->cpsw;
2233
	int ch;
2234 2235

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2236
	ndev->stats.tx_errors++;
2237
	cpsw_intr_disable(cpsw);
2238
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2239 2240
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
2241 2242
	}

2243
	cpsw_intr_enable(cpsw);
2244 2245
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
2246 2247
}

2248 2249 2250 2251
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
2252
	struct cpsw_common *cpsw = priv->cpsw;
2253 2254
	int flags = 0;
	u16 vid = 0;
2255
	int ret;
2256 2257 2258 2259

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

2260
	ret = pm_runtime_get_sync(cpsw->dev);
2261
	if (ret < 0) {
2262
		pm_runtime_put_noidle(cpsw->dev);
2263 2264 2265
		return ret;
	}

2266 2267
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
2268 2269 2270
		flags = ALE_VLAN;
	}

2271
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2272
			   flags, vid);
2273
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2274 2275 2276 2277 2278 2279
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

2280
	pm_runtime_put(cpsw->dev);
2281

2282 2283 2284
	return 0;
}

2285 2286 2287
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
2288
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2289

2290 2291 2292 2293
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
2294 2295 2296
}
#endif

2297 2298 2299 2300
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
2301 2302
	int unreg_mcast_mask = 0;
	u32 port_mask;
2303
	struct cpsw_common *cpsw = priv->cpsw;
2304

2305
	if (cpsw->data.dual_emac) {
2306
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2307

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
2318

2319
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2320
				unreg_mcast_mask);
2321 2322 2323
	if (ret != 0)
		return ret;

2324
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2325
				 HOST_PORT_NUM, ALE_VLAN, vid);
2326 2327 2328
	if (ret != 0)
		goto clean_vid;

2329
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2330
				 port_mask, ALE_VLAN, vid, 0);
2331 2332 2333 2334 2335
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
2336
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2337
			   HOST_PORT_NUM, ALE_VLAN, vid);
2338
clean_vid:
2339
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2340 2341 2342 2343
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2344
				    __be16 proto, u16 vid)
2345 2346
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2347
	struct cpsw_common *cpsw = priv->cpsw;
2348
	int ret;
2349

2350
	if (vid == cpsw->data.default_vlan)
2351 2352
		return 0;

2353
	ret = pm_runtime_get_sync(cpsw->dev);
2354
	if (ret < 0) {
2355
		pm_runtime_put_noidle(cpsw->dev);
2356 2357 2358
		return ret;
	}

2359
	if (cpsw->data.dual_emac) {
2360 2361 2362 2363 2364 2365
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

2366 2367
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2368 2369 2370 2371
				return -EINVAL;
		}
	}

2372
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2373 2374
	ret = cpsw_add_vlan_ale_entry(priv, vid);

2375
	pm_runtime_put(cpsw->dev);
2376
	return ret;
2377 2378 2379
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2380
				     __be16 proto, u16 vid)
2381 2382
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2383
	struct cpsw_common *cpsw = priv->cpsw;
2384 2385
	int ret;

2386
	if (vid == cpsw->data.default_vlan)
2387 2388
		return 0;

2389
	ret = pm_runtime_get_sync(cpsw->dev);
2390
	if (ret < 0) {
2391
		pm_runtime_put_noidle(cpsw->dev);
2392 2393 2394
		return ret;
	}

2395
	if (cpsw->data.dual_emac) {
2396 2397
		int i;

2398 2399
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2400 2401 2402 2403
				return -EINVAL;
		}
	}

2404
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2405
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2406 2407 2408
	if (ret != 0)
		return ret;

2409
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2410
				 HOST_PORT_NUM, ALE_VLAN, vid);
2411 2412 2413
	if (ret != 0)
		return ret;

2414
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2415
				 0, ALE_VLAN, vid);
2416
	pm_runtime_put(cpsw->dev);
2417
	return ret;
2418 2419
}

2420 2421 2422 2423
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2424
	struct cpsw_slave *slave;
2425
	u32 min_rate;
2426
	u32 ch_rate;
2427
	int i, ret;
2428 2429 2430 2431 2432

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2433 2434 2435 2436 2437
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2438 2439 2440
		return -EINVAL;
	}

2441
	if (rate > cpsw->speed) {
2442
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2443 2444 2445 2446 2447 2448 2449 2450 2451
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2452 2453
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2454

2455 2456
	if (ret)
		return ret;
2457

2458 2459 2460 2461 2462 2463 2464 2465 2466
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2467
	cpsw_split_res(ndev);
2468 2469 2470
	return ret;
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
	struct tc_mqprio_qopt_offload *mqprio = type_data;
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int fifo, num_tc, count, offset;
	struct cpsw_slave *slave;
	u32 tx_prio_map = 0;
	int i, tc, ret;

	num_tc = mqprio->qopt.num_tc;
	if (num_tc > CPSW_TC_NUM)
		return -EINVAL;

	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
		return -EINVAL;

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	if (num_tc) {
		for (i = 0; i < 8; i++) {
			tc = mqprio->qopt.prio_tc_map[i];
			fifo = cpsw_tc_to_fifo(tc, num_tc);
			tx_prio_map |= fifo << (4 * i);
		}

		netdev_set_num_tc(ndev, num_tc);
		for (i = 0; i < num_tc; i++) {
			count = mqprio->qopt.count[i];
			offset = mqprio->qopt.offset[i];
			netdev_set_tc_queue(ndev, i, count, offset);
		}
	}

	if (!mqprio->qopt.hw) {
		/* restore default configuration */
		netdev_reset_tc(ndev);
		tx_prio_map = TX_PRIORITY_MAPPING;
	}

	priv->mqprio_hw = mqprio->qopt.hw;

	offset = cpsw->version == CPSW_VERSION_1 ?
		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	slave_write(slave, tx_prio_map, offset);

	pm_runtime_put_sync(cpsw->dev);

	return 0;
}

static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			     void *type_data)
{
	switch (type) {
2532 2533 2534
	case TC_SETUP_QDISC_CBS:
		return cpsw_set_cbs(ndev, type_data);

2535 2536 2537 2538 2539 2540 2541 2542
	case TC_SETUP_QDISC_MQPRIO:
		return cpsw_set_mqprio(ndev, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

2543 2544 2545 2546
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2547
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2548
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2549 2550
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2551
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2552
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2553 2554 2555
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2556 2557
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2558
	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2559 2560
};

2561 2562
static int cpsw_get_regs_len(struct net_device *ndev)
{
2563
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2564

2565
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2566 2567 2568 2569 2570 2571
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2572
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2573 2574

	/* update CPSW IP version */
2575
	regs->version = cpsw->version;
2576

2577
	cpsw_ale_dump(cpsw->ale, reg);
2578 2579
}

2580 2581 2582
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2583
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2584
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2585

2586
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2587
	strlcpy(info->version, "1.0", sizeof(info->version));
2588
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2603
#if IS_ENABLED(CONFIG_TI_CPTS)
2604 2605 2606
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2607
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2608 2609 2610 2611 2612 2613 2614 2615

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2616
	info->phc_index = cpsw->cpts->phc_index;
2617 2618 2619 2620 2621
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2622
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2623
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2624 2625
	return 0;
}
2626
#else
2627 2628 2629
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2630 2631 2632 2633 2634 2635 2636 2637 2638
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2639
#endif
2640

2641 2642
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2643 2644
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2645 2646
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2647

2648
	if (!cpsw->slaves[slave_no].phy)
2649
		return -EOPNOTSUPP;
2650 2651 2652

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2653 2654
}

2655 2656
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2657 2658
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2659 2660
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2661

2662
	if (cpsw->slaves[slave_no].phy)
2663 2664
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2665 2666 2667 2668
	else
		return -EOPNOTSUPP;
}

2669 2670 2671
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2672 2673
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2674 2675 2676 2677

	wol->supported = 0;
	wol->wolopts = 0;

2678 2679
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2680 2681 2682 2683 2684
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2685 2686
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2687

2688 2689
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2690 2691 2692 2693
	else
		return -EOPNOTSUPP;
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2717 2718 2719
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2720
	struct cpsw_common *cpsw = priv->cpsw;
2721 2722
	int ret;

2723
	ret = pm_runtime_get_sync(cpsw->dev);
2724 2725
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2726
		pm_runtime_put_noidle(cpsw->dev);
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2737
	ret = pm_runtime_put(priv->cpsw->dev);
2738 2739 2740 2741
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2742 2743 2744 2745 2746
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

2747 2748
	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	ch->max_combined = 0;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
2760 2761 2762 2763 2764
	if (cpsw->quirk_irq) {
		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
		return -EOPNOTSUPP;
	}

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2783
	struct netdev_queue *queue;
2784
	struct cpsw_vector *vec;
2785
	int ret, *ch, vch;
2786 2787 2788

	if (rx) {
		ch = &cpsw->rx_ch_num;
2789
		vec = cpsw->rxv;
2790 2791 2792
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2793
		vec = cpsw->txv;
2794 2795 2796 2797
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2798 2799
		vch = rx ? *ch : 7 - *ch;
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2800 2801
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2802

2803 2804
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2805

2806
		if (!vec[*ch].ch)
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2817
		ret = cpdma_chan_destroy(vec[*ch].ch);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2844
static void cpsw_suspend_data_pass(struct net_device *ndev)
2845
{
2846
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2847
	struct cpsw_slave *slave;
2848
	int i;
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
2881
	if (cpsw->usage_count) {
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2935
	if (cpsw->usage_count)
2936
		cpsw_split_res(ndev);
2937

2938 2939 2940
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2941 2942 2943 2944 2945 2946
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2983 2984 2985 2986 2987 2988 2989 2990 2991
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2992
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2993 2994 2995 2996 2997 2998 2999 3000
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
3001
	int ret;
3002 3003 3004 3005

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
3006 3007
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
3008 3009 3010 3011 3012
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

3013
	cpsw_suspend_data_pass(ndev);
3014 3015 3016

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

3017
	if (cpsw->usage_count)
3018 3019
		cpdma_chan_split_pool(cpsw->dma);

3020 3021 3022
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
3023

3024
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3025 3026 3027 3028
	dev_close(ndev);
	return ret;
}

3029 3030 3031 3032 3033
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
3034
	.get_ts_info	= cpsw_get_ts_info,
3035 3036
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
3037 3038 3039
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
3040 3041
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
3042 3043
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
3044 3045
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
3046 3047
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
3048 3049
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
3050 3051
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
3052 3053
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
3054
	.nway_reset	= cpsw_nway_reset,
3055 3056
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
3057 3058
};

3059
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3060
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
3061
{
3062
	void __iomem		*regs = cpsw->regs;
3063
	int			slave_num = slave->slave_num;
3064
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
3065 3066

	slave->data	= data;
3067 3068
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
3069
	slave->port_vlan = data->dual_emac_res_vlan;
3070 3071
}

3072
static int cpsw_probe_dt(struct cpsw_platform_data *data,
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
3084
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3085 3086 3087 3088
		return -EINVAL;
	}
	data->slaves = prop;

3089
	if (of_property_read_u32(node, "active_slave", &prop)) {
3090
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3091
		return -EINVAL;
3092
	}
3093
	data->active_slave = prop;
3094

3095 3096 3097
	data->slave_data = devm_kcalloc(&pdev->dev,
					data->slaves,
					sizeof(struct cpsw_slave_data),
3098
					GFP_KERNEL);
3099
	if (!data->slave_data)
3100
		return -ENOMEM;
3101 3102

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3103
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3104
		return -EINVAL;
3105 3106 3107 3108
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
3109
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3110
		return -EINVAL;
3111 3112 3113 3114
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3115
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3116
		return -EINVAL;
3117 3118 3119 3120
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
3121
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3122
		return -EINVAL;
3123 3124 3125
	}
	data->mac_control = prop;

3126 3127
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
3128

3129 3130 3131 3132 3133 3134
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
3135
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
3136

3137
	for_each_available_child_of_node(node, slave_node) {
3138 3139
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
3140 3141 3142
		int lenp;
		const __be32 *parp;

3143 3144 3145 3146
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

3147 3148
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
3149
		parp = of_get_property(slave_node, "phy_id", &lenp);
3150 3151
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
3152 3153
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
3154
		} else if (of_phy_is_fixed_link(slave_node)) {
3155 3156 3157
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
3158
			ret = of_phy_register_fixed_link(slave_node);
3159 3160 3161
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3162
				return ret;
3163
			}
3164
			slave_data->phy_node = of_node_get(slave_node);
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
3184
			put_device(&mdio->dev);
3185
		} else {
3186 3187 3188
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
3189
			goto no_phy_slave;
3190
		}
3191 3192 3193 3194 3195 3196 3197 3198
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
3199
		mac_addr = of_get_mac_address(slave_node);
3200
		if (mac_addr) {
3201
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3202
		} else {
3203 3204 3205 3206
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
3207
		}
3208
		if (data->dual_emac) {
3209
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3210
						 &prop)) {
3211
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3212
				slave_data->dual_emac_res_vlan = i+1;
3213 3214
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
3215 3216 3217 3218 3219
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

3220
		i++;
3221 3222
		if (i == data->slaves)
			break;
3223 3224 3225 3226 3227
	}

	return 0;
}

3228 3229
static void cpsw_remove_dt(struct platform_device *pdev)
{
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

3243 3244
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
3245 3246 3247 3248 3249 3250 3251 3252

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

3253 3254 3255
	of_platform_depopulate(&pdev->dev);
}

3256
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3257
{
3258 3259
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
3260 3261
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
3262
	int ret = 0;
3263

3264
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3265
	if (!ndev) {
3266
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3267 3268 3269 3270
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
3271
	priv_sl2->cpsw = cpsw;
3272 3273 3274 3275 3276 3277 3278
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
3279 3280
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
3281
	} else {
3282
		eth_random_addr(priv_sl2->mac_addr);
3283 3284
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
3285 3286 3287 3288
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
3289
	cpsw->slaves[1].ndev = ndev;
3290
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3291 3292

	ndev->netdev_ops = &cpsw_netdev_ops;
3293
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3294 3295

	/* register the network device */
3296
	SET_NETDEV_DEV(ndev, cpsw->dev);
3297 3298
	ret = register_netdev(ndev);
	if (ret) {
3299
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
3300 3301 3302 3303 3304 3305 3306
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

3307
static const struct of_device_id cpsw_of_mtable[] = {
3308 3309 3310 3311
	{ .compatible = "ti,cpsw"},
	{ .compatible = "ti,am335x-cpsw"},
	{ .compatible = "ti,am4372-cpsw"},
	{ .compatible = "ti,dra7-cpsw"},
3312 3313 3314 3315
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

3316 3317 3318 3319 3320
static const struct soc_device_attribute cpsw_soc_devices[] = {
	{ .family = "AM33xx", .revision = "ES1.0"},
	{ /* sentinel */ }
};

B
Bill Pemberton 已提交
3321
static int cpsw_probe(struct platform_device *pdev)
3322
{
3323
	struct clk			*clk;
3324
	struct cpsw_platform_data	*data;
3325 3326 3327 3328
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
3329
	void __iomem			*ss_regs;
3330
	void __iomem			*cpts_regs;
3331
	struct resource			*res, *ss_res;
3332
	struct gpio_descs		*mode;
3333
	u32 slave_offset, sliver_offset, slave_size;
3334
	const struct soc_device_attribute *soc;
3335
	struct cpsw_common		*cpsw;
3336
	int ret = 0, i, ch;
3337
	int irq;
3338

3339
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3340 3341 3342
	if (!cpsw)
		return -ENOMEM;

3343
	cpsw->dev = &pdev->dev;
3344

3345
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3346
	if (!ndev) {
3347
		dev_err(&pdev->dev, "error allocating net_device\n");
3348 3349 3350 3351 3352
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
3353
	priv->cpsw = cpsw;
3354 3355 3356
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3357
	cpsw->rx_packet_max = max(rx_packet_max, 128);
3358

3359 3360 3361 3362 3363 3364 3365
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

3366 3367 3368 3369 3370
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

3371 3372 3373
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

3374 3375 3376 3377 3378 3379
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
3380
		goto clean_runtime_disable_ret;
3381
	}
3382

3383 3384
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
3385
		goto clean_dt_ret;
3386

3387
	data = &cpsw->data;
3388 3389
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
3390

3391 3392
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3393
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3394
	} else {
J
Joe Perches 已提交
3395
		eth_random_addr(priv->mac_addr);
3396
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3397 3398 3399 3400
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

3401 3402
	cpsw->slaves = devm_kcalloc(&pdev->dev,
				    data->slaves, sizeof(struct cpsw_slave),
3403
				    GFP_KERNEL);
3404
	if (!cpsw->slaves) {
3405
		ret = -ENOMEM;
3406
		goto clean_dt_ret;
3407 3408
	}
	for (i = 0; i < data->slaves; i++)
3409
		cpsw->slaves[i].slave_num = i;
3410

3411
	cpsw->slaves[0].ndev = ndev;
3412 3413
	priv->emac_port = 0;

3414 3415
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
3416
		dev_err(priv->dev, "fck is not found\n");
3417
		ret = -ENODEV;
3418
		goto clean_dt_ret;
3419
	}
3420
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3421

3422 3423 3424 3425
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
3426
		goto clean_dt_ret;
3427
	}
3428
	cpsw->regs = ss_regs;
3429

3430
	cpsw->version = readl(&cpsw->regs->id_ver);
3431

3432
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3433 3434 3435
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
3436
		goto clean_dt_ret;
3437 3438 3439
	}

	memset(&dma_params, 0, sizeof(dma_params));
3440 3441
	memset(&ale_params, 0, sizeof(ale_params));

3442
	switch (cpsw->version) {
3443
	case CPSW_VERSION_1:
3444
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3445
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3446
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3447 3448 3449 3450 3451 3452 3453 3454 3455
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3456
	case CPSW_VERSION_3:
3457
	case CPSW_VERSION_4:
3458
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3459
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3460
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3461 3462 3463 3464 3465 3466 3467
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3468
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3469 3470
		break;
	default:
3471
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3472
		ret = -ENODEV;
3473
		goto clean_dt_ret;
3474
	}
3475 3476 3477 3478
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3479 3480 3481 3482
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3483
	dma_params.dev		= &pdev->dev;
3484 3485 3486 3487 3488
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3489 3490 3491 3492 3493 3494 3495

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3496
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3497
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3498
	dma_params.descs_pool_size	= descs_pool_size;
3499

3500 3501
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3502 3503
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3504
		goto clean_dt_ret;
3505 3506
	}

3507 3508 3509 3510
	soc = soc_device_match(cpsw_soc_devices);
	if (soc)
		cpsw->quirk_irq = 1;

3511 3512
	ch = cpsw->quirk_irq ? 0 : 7;
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3513 3514 3515 3516 3517 3518
	if (IS_ERR(cpsw->txv[0].ch)) {
		dev_err(priv->dev, "error initializing tx dma channel\n");
		ret = PTR_ERR(cpsw->txv[0].ch);
		goto clean_dma_ret;
	}

3519
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3520 3521 3522
	if (IS_ERR(cpsw->rxv[0].ch)) {
		dev_err(priv->dev, "error initializing rx dma channel\n");
		ret = PTR_ERR(cpsw->rxv[0].ch);
3523 3524 3525
		goto clean_dma_ret;
	}

3526
	ale_params.dev			= &pdev->dev;
3527 3528
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
3529
	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3530

3531 3532
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3533 3534 3535 3536 3537
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3538
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3539 3540
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
3541
		goto clean_dma_ret;
3542 3543
	}

3544
	ndev->irq = platform_get_irq(pdev, 1);
3545 3546
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3547
		ret = ndev->irq;
3548
		goto clean_dma_ret;
3549 3550
	}

3551
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3552 3553 3554

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3555 3556 3557 3558 3559 3560
	netif_napi_add(ndev, &cpsw->napi_rx,
		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
		       CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx,
			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
			  CPSW_POLL_WEIGHT);
3561 3562 3563 3564 3565 3566 3567 3568
	cpsw_split_res(ndev);

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3569
		goto clean_dma_ret;
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3580 3581 3582 3583 3584 3585 3586
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3587

3588
	/* RX IRQ */
3589
	irq = platform_get_irq(pdev, 1);
3590 3591
	if (irq < 0) {
		ret = irq;
3592
		goto clean_dma_ret;
3593
	}
3594

3595
	cpsw->irqs_table[0] = irq;
3596
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3597
			       0, dev_name(&pdev->dev), cpsw);
3598 3599
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3600
		goto clean_dma_ret;
3601 3602
	}

3603
	/* TX IRQ */
3604
	irq = platform_get_irq(pdev, 2);
3605 3606
	if (irq < 0) {
		ret = irq;
3607
		goto clean_dma_ret;
3608
	}
3609

3610
	cpsw->irqs_table[1] = irq;
3611
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3612
			       0, dev_name(&pdev->dev), cpsw);
3613 3614
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3615
		goto clean_dma_ret;
3616
	}
3617

3618 3619 3620
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3621

3622 3623
	pm_runtime_put(&pdev->dev);

3624 3625
	return 0;

3626 3627
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3628
clean_dma_ret:
3629
	cpdma_ctlr_destroy(cpsw->dma);
3630 3631
clean_dt_ret:
	cpsw_remove_dt(pdev);
3632
	pm_runtime_put_sync(&pdev->dev);
3633
clean_runtime_disable_ret:
3634
	pm_runtime_disable(&pdev->dev);
3635
clean_ndev_ret:
3636
	free_netdev(priv->ndev);
3637 3638 3639
	return ret;
}

B
Bill Pemberton 已提交
3640
static int cpsw_remove(struct platform_device *pdev)
3641 3642
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3643
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3644 3645 3646 3647 3648 3649 3650
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3651

3652 3653
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3654
	unregister_netdev(ndev);
3655

3656
	cpts_release(cpsw->cpts);
3657
	cpdma_ctlr_destroy(cpsw->dma);
3658
	cpsw_remove_dt(pdev);
3659 3660
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3661 3662
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3663 3664 3665 3666
	free_netdev(ndev);
	return 0;
}

3667
#ifdef CONFIG_PM_SLEEP
3668 3669 3670 3671
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3672
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3673

3674
	if (cpsw->data.dual_emac) {
3675
		int i;
3676

3677 3678 3679
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3680 3681 3682 3683 3684
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3685

3686
	/* Select sleep pin state */
3687
	pinctrl_pm_select_sleep_state(dev);
3688

3689 3690 3691 3692 3693 3694 3695
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3696
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3697

3698
	/* Select default pin state */
3699
	pinctrl_pm_select_default_state(dev);
3700

3701 3702
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3703
	if (cpsw->data.dual_emac) {
3704 3705
		int i;

3706 3707 3708
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3709 3710 3711 3712 3713
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3714 3715
	rtnl_unlock();

3716 3717
	return 0;
}
3718
#endif
3719

3720
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3721 3722 3723 3724 3725

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3726
		.of_match_table = cpsw_of_mtable,
3727 3728
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3729
	.remove = cpsw_remove,
3730 3731
};

3732
module_platform_driver(cpsw_driver);
3733 3734 3735 3736 3737

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");