intel_lrc.c 65.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233
static int intel_lr_context_pin(struct i915_gem_context *ctx,
234
				struct intel_engine_cs *engine);
235 236 237 238
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
239

240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242
 * @dev_priv: i915 device private
243 244 245
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
246
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
247 248 249
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
250
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251
{
252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 257
		return 1;

258
	if (INTEL_GEN(dev_priv) >= 9)
259 260
		return 1;

261 262 263
	if (enable_execlists == 0)
		return 0;

264 265 266
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
267 268 269 270
		return 1;

	return 0;
}
271

272
static void
273
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274
{
275
	struct drm_i915_private *dev_priv = engine->i915;
276

277
	engine->disable_lite_restore_wa =
278
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279
		(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	if (IS_GEN8(dev_priv))
283 284
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 286 287 288 289 290 291

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 293
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 295
}

296
/**
297 298 299
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
300
 * @engine: Engine the descriptor will be used with
301
 *
302 303 304 305 306
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
307 308 309 310 311 312 313
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
314
 */
315
static void
316
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317
				   struct intel_engine_cs *engine)
318
{
319
	struct intel_context *ce = &ctx->engine[engine->id];
320
	u64 desc;
321

322
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323

324 325
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
326
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327
								/* bits 12-31 */
328
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ce->lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340 341
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
342
{
343 344 345 346 347 348
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
349

350
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 352
}

353 354 355 356 357 358 359 360 361
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

362
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363
{
364
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366
	u32 *reg_state = ce->lrc_reg_state;
367

C
Chris Wilson 已提交
368
	reg_state[CTX_RING_TAIL+1] = rq->tail;
369

370 371 372 373 374 375 376
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
377 378

	return ce->lrc_desc;
379 380
}

381
static void execlists_submit_ports(struct intel_engine_cs *engine)
382
{
383 384
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
385 386 387 388
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

389 390 391 392 393 394 395 396 397 398 399 400
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
401 402 403
	} else {
		desc[1] = 0;
	}
404
	GEM_BUG_ON(desc[0] == desc[1]);
405 406 407 408 409 410 411 412 413 414

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

415
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416
{
417 418 419
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
420

421 422 423 424 425
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
426

427 428
	if (ctx_single_port_submission(prev))
		return false;
429

430
	return true;
431 432
}

433
static void execlists_dequeue(struct intel_engine_cs *engine)
434
{
435 436 437 438 439 440 441 442
	struct drm_i915_gem_request *cursor, *last;
	struct execlist_port *port = engine->execlist_port;
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
443
		 * as we resubmit the request. See gen8_emit_breadcrumb()
444 445 446 447
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
448

449
	GEM_BUG_ON(port[1].request);
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
470
	 */
471

472 473 474 475 476
	spin_lock(&engine->execlist_lock);
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
477
		 *
478 479 480 481
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
482
		 */
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
			if (ctx_single_port_submission(cursor->ctx))
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
		last = cursor;
		submit = true;
	}
	if (submit) {
		/* Decouple all the requests submitted from the queue */
		engine->execlist_queue.next = &cursor->execlist_link;
		cursor->execlist_link.prev = &engine->execlist_queue;

		i915_gem_request_assign(&port->request, last);
513
	}
514
	spin_unlock(&engine->execlist_lock);
515

516 517
	if (submit)
		execlists_submit_ports(engine);
518 519
}

520
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
521
{
522
	return !engine->execlist_port[0].request;
523 524
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

547
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
548
{
549
	int port;
B
Ben Widawsky 已提交
550

551 552 553
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
554

555
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
556 557
}

558
/*
559 560 561
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
562
static void intel_lrc_irq_handler(unsigned long data)
563
{
564
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
565
	struct execlist_port *port = engine->execlist_port;
566
	struct drm_i915_private *dev_priv = engine->i915;
567

568
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
601

602 603
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
604 605
		}

606 607 608
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
609 610
	}

611 612
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
613

614
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
615 616
}

617
static void execlists_submit_request(struct drm_i915_gem_request *request)
618
{
619
	struct intel_engine_cs *engine = request->engine;
620
	unsigned long flags;
621

622
	spin_lock_irqsave(&engine->execlist_lock, flags);
623

C
Chris Wilson 已提交
624 625 626 627 628 629 630 631 632
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;

633
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
634 635
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
636

637
	spin_unlock_irqrestore(&engine->execlist_lock, flags);
638 639
}

640
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
641
{
642
	struct intel_engine_cs *engine = request->engine;
643
	struct intel_context *ce = &request->ctx->engine[engine->id];
644
	int ret;
645

646 647 648 649
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
650
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
651

652
	if (!ce->state) {
653 654 655 656 657
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

658
	request->ring = ce->ring;
659

660 661 662 663
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;

664 665 666 667 668 669
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
670
		ret = i915_guc_wq_reserve(request);
671
		if (ret)
672
			goto err_unpin;
673 674
	}

675 676
	ret = intel_ring_begin(request, 0);
	if (ret)
677
		goto err_unreserve;
678

679
	if (!ce->initialised) {
680 681
		ret = engine->init_context(request);
		if (ret)
682
			goto err_unreserve;
683

684
		ce->initialised = true;
685 686 687 688 689 690 691 692 693
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

694
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
695 696
	return 0;

697 698 699
err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
700
err_unpin:
701
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
702
	return ret;
703 704
}

705
static int intel_lr_context_pin(struct i915_gem_context *ctx,
706
				struct intel_engine_cs *engine)
707
{
708
	struct intel_context *ce = &ctx->engine[engine->id];
709
	void *vaddr;
710
	int ret;
711

712
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
713

714
	if (ce->pin_count++)
715 716
		return 0;

717 718
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
719
	if (ret)
720
		goto err;
721

722
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
723 724
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
725
		goto unpin_vma;
726 727
	}

728
	ret = intel_ring_pin(ce->ring);
729
	if (ret)
730
		goto unpin_map;
731

732
	intel_lr_context_descriptor_update(ctx, engine);
733

734 735
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
736
		i915_ggtt_offset(ce->ring->vma);
737

C
Chris Wilson 已提交
738
	ce->state->obj->mm.dirty = true;
739

740
	/* Invalidate GuC TLB. */
741 742
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
743
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
744
	}
745

746
	i915_gem_context_get(ctx);
747
	return 0;
748

749
unpin_map:
750 751 752
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
753
err:
754
	ce->pin_count = 0;
755 756 757
	return ret;
}

758
void intel_lr_context_unpin(struct i915_gem_context *ctx,
759
			    struct intel_engine_cs *engine)
760
{
761
	struct intel_context *ce = &ctx->engine[engine->id];
762

763
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
764
	GEM_BUG_ON(ce->pin_count == 0);
765

766
	if (--ce->pin_count)
767
		return;
768

769
	intel_ring_unpin(ce->ring);
770

771 772
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
773

774
	i915_gem_context_put(ctx);
775 776
}

777
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
778 779
{
	int ret, i;
780
	struct intel_ring *ring = req->ring;
781
	struct i915_workarounds *w = &req->i915->workarounds;
782

783
	if (w->count == 0)
784 785
		return 0;

786
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
787 788 789
	if (ret)
		return ret;

790
	ret = intel_ring_begin(req, w->count * 2 + 2);
791 792 793
	if (ret)
		return ret;

794
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
795
	for (i = 0; i < w->count; i++) {
796 797
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
798
	}
799
	intel_ring_emit(ring, MI_NOOP);
800

801
	intel_ring_advance(ring);
802

803
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
804 805 806 807 808 809
	if (ret)
		return ret;

	return 0;
}

810
#define wa_ctx_emit(batch, index, cmd)					\
811
	do {								\
812 813
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
814 815
			return -ENOSPC;					\
		}							\
816
		batch[__index] = (cmd);					\
817 818
	} while (0)

V
Ville Syrjälä 已提交
819
#define wa_ctx_emit_reg(batch, index, reg) \
820
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
838
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
839
						uint32_t *batch,
840 841
						uint32_t index)
{
D
Dave Airlie 已提交
842
	struct drm_i915_private *dev_priv = engine->i915;
843 844
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

845
	/*
846
	 * WaDisableLSQCROPERFforOCL:kbl
847 848 849 850
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
851
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
852 853
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

854
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
855
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
856
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
857
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
858 859 860
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
861
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
862 863 864 865 866 867 868 869 870 871
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

872
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
873
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
874
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
875
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
876
	wa_ctx_emit(batch, index, 0);
877 878 879 880

	return index;
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

900 901 902 903 904 905
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
906
 *
907 908
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
909
 *
910 911 912 913
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
914
 */
915
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
916
				    struct i915_wa_ctx_bb *wa_ctx,
917
				    uint32_t *batch,
918 919
				    uint32_t *offset)
{
920
	uint32_t scratch_addr;
921 922
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

923
	/* WaDisableCtxRestoreArbitration:bdw,chv */
924
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
925

926
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
927
	if (IS_BROADWELL(engine->i915)) {
928
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
929 930 931
		if (rc < 0)
			return rc;
		index = rc;
932 933
	}

934 935
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
936
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
937

938 939 940 941 942 943 944 945 946
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
947

948 949
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
950
		wa_ctx_emit(batch, index, MI_NOOP);
951 952 953 954 955 956 957 958 959 960

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

961 962 963
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
964
 *
965
 *  The number of DWORDS written are returned using this field.
966 967 968 969
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
970
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
971
			       struct i915_wa_ctx_bb *wa_ctx,
972
			       uint32_t *batch,
973 974 975 976
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

977
	/* WaDisableCtxRestoreArbitration:bdw,chv */
978
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
979

980
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
981 982 983 984

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

985
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
986
				    struct i915_wa_ctx_bb *wa_ctx,
987
				    uint32_t *batch,
988 989
				    uint32_t *offset)
{
990
	int ret;
D
Dave Airlie 已提交
991
	struct drm_i915_private *dev_priv = engine->i915;
992 993
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

994 995
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
996
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
997

998
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
999
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1000 1001 1002 1003
	if (ret < 0)
		return ret;
	index = ret;

1004 1005 1006 1007 1008 1009 1010
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1011 1012
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1013
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1014
		u32 scratch_addr =
1015
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1052 1053 1054 1055 1056 1057 1058
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1059
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1060
			       struct i915_wa_ctx_bb *wa_ctx,
1061
			       uint32_t *batch,
1062 1063 1064 1065
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1066 1067
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1068
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1069
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1070 1071 1072 1073 1074
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1075
	/* WaClearTdlStateAckDirtyBits:bxt */
1076
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1094 1095
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1096 1097
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1098 1099 1100 1101 1102
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1103
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1104
{
1105 1106 1107
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1108

1109 1110 1111
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1112

1113 1114 1115 1116
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1117 1118
	}

1119 1120 1121 1122 1123
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1124
	return 0;
1125 1126 1127 1128

err:
	i915_gem_object_put(obj);
	return err;
1129 1130
}

1131
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1132
{
1133
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1134 1135
}

1136
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1137
{
1138
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1139 1140 1141
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1142
	int ret;
1143

1144
	WARN_ON(engine->id != RCS);
1145

1146
	/* update this when WA for higher Gen are added */
1147
	if (INTEL_GEN(engine->i915) > 9) {
1148
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1149
			  INTEL_GEN(engine->i915));
1150
		return 0;
1151
	}
1152

1153
	/* some WA perform writes to scratch page, ensure it is valid */
1154
	if (!engine->scratch) {
1155
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1156 1157 1158
		return -EINVAL;
	}

1159
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1160 1161 1162 1163 1164
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1165
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1166 1167 1168
	batch = kmap_atomic(page);
	offset = 0;

1169
	if (IS_GEN8(engine->i915)) {
1170
		ret = gen8_init_indirectctx_bb(engine,
1171 1172 1173 1174 1175 1176
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1177
		ret = gen8_init_perctx_bb(engine,
1178 1179 1180 1181 1182
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1183
	} else if (IS_GEN9(engine->i915)) {
1184
		ret = gen9_init_indirectctx_bb(engine,
1185 1186 1187 1188 1189 1190
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1191
		ret = gen9_init_perctx_bb(engine,
1192 1193 1194 1195 1196
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1197 1198 1199 1200 1201
	}

out:
	kunmap_atomic(batch);
	if (ret)
1202
		lrc_destroy_wa_ctx_obj(engine);
1203 1204 1205 1206

	return ret;
}

1207 1208
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1209
	struct drm_i915_private *dev_priv = engine->i915;
1210 1211

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1212
		   engine->status_page.ggtt_offset);
1213 1214 1215
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1216
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1217
{
1218
	struct drm_i915_private *dev_priv = engine->i915;
1219 1220 1221 1222 1223
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1224

1225
	lrc_init_hws(engine);
1226

1227
	intel_engine_reset_breadcrumbs(engine);
1228

1229
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1230

1231
	I915_WRITE(RING_MODE_GEN7(engine),
1232 1233
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1234

1235
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1236

1237
	intel_engine_init_hangcheck(engine);
1238

1239 1240 1241 1242
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1243
		execlists_submit_ports(engine);
1244
	}
1245 1246

	return 0;
1247 1248
}

1249
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1250
{
1251
	struct drm_i915_private *dev_priv = engine->i915;
1252 1253
	int ret;

1254
	ret = gen8_init_common_ring(engine);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1268
	return init_workarounds_ring(engine);
1269 1270
}

1271
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1272 1273 1274
{
	int ret;

1275
	ret = gen8_init_common_ring(engine);
1276 1277 1278
	if (ret)
		return ret;

1279
	return init_workarounds_ring(engine);
1280 1281
}

1282 1283 1284 1285 1286 1287 1288
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1299
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1300 1301
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1302
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1320 1321 1322

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1323 1324
}

1325 1326 1327
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1328
	struct intel_ring *ring = req->ring;
1329
	struct intel_engine_cs *engine = req->engine;
1330 1331 1332
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1333
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1334 1335 1336
	if (ret)
		return ret;

1337
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1338 1339 1340
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1341 1342 1343 1344
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1345 1346
	}

1347 1348
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1349 1350 1351 1352

	return 0;
}

1353
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1354 1355
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1356
{
1357
	struct intel_ring *ring = req->ring;
1358
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1359 1360
	int ret;

1361 1362 1363 1364
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1365 1366
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1367
	if (req->ctx->ppgtt &&
1368
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1369
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1370
		    !intel_vgpu_active(req->i915)) {
1371 1372 1373 1374
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1375

1376
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1377 1378
	}

1379
	ret = intel_ring_begin(req, 4);
1380 1381 1382 1383
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1384 1385 1386 1387 1388 1389 1390 1391
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1392 1393 1394 1395

	return 0;
}

1396
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1397
{
1398
	struct drm_i915_private *dev_priv = engine->i915;
1399 1400 1401
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1402 1403
}

1404
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1405
{
1406
	struct drm_i915_private *dev_priv = engine->i915;
1407
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1408 1409
}

1410
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1411
{
1412 1413
	struct intel_ring *ring = request->ring;
	u32 cmd;
1414 1415
	int ret;

1416
	ret = intel_ring_begin(request, 4);
1417 1418 1419 1420 1421
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1422 1423 1424 1425 1426 1427 1428
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1429
	if (mode & EMIT_INVALIDATE) {
1430
		cmd |= MI_INVALIDATE_TLB;
1431
		if (request->engine->id == VCS)
1432
			cmd |= MI_INVALIDATE_BSD;
1433 1434
	}

1435 1436 1437 1438 1439 1440 1441
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1442 1443 1444 1445

	return 0;
}

1446
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1447
				  u32 mode)
1448
{
1449
	struct intel_ring *ring = request->ring;
1450
	struct intel_engine_cs *engine = request->engine;
1451 1452
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1453
	bool vf_flush_wa = false, dc_flush_wa = false;
1454 1455
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1456
	int len;
1457 1458 1459

	flags |= PIPE_CONTROL_CS_STALL;

1460
	if (mode & EMIT_FLUSH) {
1461 1462
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1463
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1464
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1465 1466
	}

1467
	if (mode & EMIT_INVALIDATE) {
1468 1469 1470 1471 1472 1473 1474 1475 1476
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1477 1478 1479 1480
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1481
		if (IS_GEN9(request->i915))
1482
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1483 1484 1485 1486

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1487
	}
1488

M
Mika Kuoppala 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1498 1499 1500
	if (ret)
		return ret;

1501
	if (vf_flush_wa) {
1502 1503 1504 1505 1506 1507
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1508 1509
	}

M
Mika Kuoppala 已提交
1510
	if (dc_flush_wa) {
1511 1512 1513 1514 1515 1516
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1517 1518
	}

1519 1520 1521 1522 1523 1524
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1525 1526

	if (dc_flush_wa) {
1527 1528 1529 1530 1531 1532
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1533 1534
	}

1535
	intel_ring_advance(ring);
1536 1537 1538 1539

	return 0;
}

1540
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1552
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1553 1554
}

1555 1556 1557 1558 1559
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1560
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1561
{
C
Chris Wilson 已提交
1562 1563 1564 1565
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1566

C
Chris Wilson 已提交
1567 1568 1569
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1570 1571
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1572

C
Chris Wilson 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1582
}
1583

1584 1585
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1586 1587
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1588
{
1589 1590 1591
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1592 1593 1594 1595
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1596 1597 1598 1599 1600 1601 1602
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1603
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1604 1605 1606 1607 1608 1609
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1610 1611
}

1612 1613
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1614
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1615 1616 1617
{
	int ret;

1618
	ret = intel_logical_ring_workarounds_emit(req);
1619 1620 1621
	if (ret)
		return ret;

1622 1623 1624 1625 1626 1627 1628 1629
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1630
	return i915_gem_render_state_emit(req);
1631 1632
}

1633 1634
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1635
 * @engine: Engine Command Streamer.
1636
 */
1637
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1638
{
1639
	struct drm_i915_private *dev_priv;
1640

1641 1642 1643 1644 1645 1646 1647
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1648
	dev_priv = engine->i915;
1649

1650 1651
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1652
	}
1653

1654 1655
	if (engine->cleanup)
		engine->cleanup(engine);
1656

1657
	intel_engine_cleanup_common(engine);
1658

1659 1660 1661
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1662
	}
1663
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1664

1665
	lrc_destroy_wa_ctx_obj(engine);
1666
	engine->i915 = NULL;
1667 1668
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1669 1670
}

1671 1672 1673
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1674
	enum intel_engine_id id;
1675

1676
	for_each_engine(engine, dev_priv, id)
1677
		engine->submit_request = execlists_submit_request;
1678 1679
}

1680
static void
1681
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1682 1683
{
	/* Default vfuncs which can be overriden by each engine. */
1684
	engine->init_hw = gen8_init_common_ring;
1685
	engine->reset_hw = reset_common_ring;
1686
	engine->emit_flush = gen8_emit_flush;
1687
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1688
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1689
	engine->submit_request = execlists_submit_request;
1690

1691 1692
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1693
	engine->emit_bb_start = gen8_emit_bb_start;
1694
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1695
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1696 1697
}

1698
static inline void
1699
logical_ring_default_irqs(struct intel_engine_cs *engine)
1700
{
1701
	unsigned shift = engine->irq_shift;
1702 1703
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1704 1705
}

1706
static int
1707
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1708
{
1709
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1710
	void *hws;
1711 1712

	/* The HWSP is part of the default context object in LRC mode. */
1713
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1714 1715
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1716 1717

	engine->status_page.page_addr = hws + hws_offset;
1718
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1719
	engine->status_page.vma = vma;
1720 1721

	return 0;
1722 1723
}

1724 1725 1726 1727 1728 1729
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1730 1731
	intel_engine_setup_common(engine);

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1757 1758 1759 1760 1761 1762
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1763
	ret = intel_engine_init_common(engine);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1793
int logical_render_ring_init(struct intel_engine_cs *engine)
1794 1795 1796 1797
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1798 1799
	logical_ring_setup(engine);

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1810
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1811
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1812

1813
	ret = intel_engine_create_scratch(engine, 4096);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1836
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1837 1838 1839 1840
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1841 1842
}

1843
static u32
1844
make_rpcs(struct drm_i915_private *dev_priv)
1845 1846 1847 1848 1849 1850 1851
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1852
	if (INTEL_GEN(dev_priv) < 9)
1853 1854 1855 1856 1857 1858 1859 1860
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1861
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1862
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1863
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1864 1865 1866 1867
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1868
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1869
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1870
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1871 1872 1873 1874
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1875 1876
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1877
			GEN8_RPCS_EU_MIN_SHIFT;
1878
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1879 1880 1881 1882 1883 1884 1885
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1886
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1887 1888 1889
{
	u32 indirect_ctx_offset;

1890
	switch (INTEL_GEN(engine->i915)) {
1891
	default:
1892
		MISSING_CASE(INTEL_GEN(engine->i915));
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1907 1908 1909 1910
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1911
{
1912 1913
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1914 1915 1916 1917 1918 1919

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1920
	reg_state[CTX_LRI_HEADER_0] =
1921 1922 1923
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1924 1925
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1926
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1927
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1928 1929 1930 1931 1932 1933 1934 1935
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1936
		       RING_CTL_SIZE(ring->size) | RING_VALID);
1937 1938 1939 1940 1941 1942
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1943
		       RING_BB_PPGTT);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1957
		if (engine->wa_ctx.vma) {
1958
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1959
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1960 1961 1962 1963 1964 1965

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1966
				intel_lr_indirect_ctx_offset(engine) << 6;
1967 1968 1969 1970 1971

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1972
	}
1973
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1974 1975
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1976
	/* PDP values well be assigned later if needed */
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2006
		execlists_update_context_pdps(ppgtt, reg_state);
2007 2008
	}

2009
	if (engine->id == RCS) {
2010
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2011
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2012
			       make_rpcs(dev_priv));
2013
	}
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2037
	ctx_obj->mm.dirty = true;
2038 2039 2040 2041 2042 2043

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2044

2045
	i915_gem_object_unpin_map(ctx_obj);
2046 2047 2048 2049

	return 0;
}

2050 2051
/**
 * intel_lr_context_size() - return the size of the context for an engine
2052
 * @engine: which engine to find the context size for
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2064
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2065 2066 2067
{
	int ret = 0;

2068
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2069

2070
	switch (engine->id) {
2071
	case RCS:
2072
		if (INTEL_GEN(engine->i915) >= 9)
2073 2074 2075
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2086 2087
}

2088
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2089
					    struct intel_engine_cs *engine)
2090
{
2091
	struct drm_i915_gem_object *ctx_obj;
2092
	struct intel_context *ce = &ctx->engine[engine->id];
2093
	struct i915_vma *vma;
2094
	uint32_t context_size;
2095
	struct intel_ring *ring;
2096 2097
	int ret;

2098
	WARN_ON(ce->state);
2099

2100
	context_size = round_up(intel_lr_context_size(engine), 4096);
2101

2102 2103 2104
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2105
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2106
	if (IS_ERR(ctx_obj)) {
2107
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2108
		return PTR_ERR(ctx_obj);
2109 2110
	}

2111 2112 2113 2114 2115 2116
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2117
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2118 2119
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2120
		goto error_deref_obj;
2121 2122
	}

2123
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2124 2125
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2126
		goto error_ring_free;
2127 2128
	}

2129
	ce->ring = ring;
2130
	ce->state = vma;
2131
	ce->initialised = engine->init_context == NULL;
2132 2133

	return 0;
2134

2135
error_ring_free:
2136
	intel_ring_free(ring);
2137
error_deref_obj:
2138
	i915_gem_object_put(ctx_obj);
2139
	return ret;
2140
}
2141

2142
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2143
{
2144
	struct intel_engine_cs *engine;
2145
	struct i915_gem_context *ctx;
2146
	enum intel_engine_id id;
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2159
		for_each_engine(engine, dev_priv, id) {
2160 2161
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2162

2163 2164
			if (!ce->state)
				continue;
2165

2166 2167 2168 2169
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2170

2171 2172 2173
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2174

C
Chris Wilson 已提交
2175
			ce->state->obj->mm.dirty = true;
2176
			i915_gem_object_unpin_map(ce->state->obj);
2177

2178 2179 2180 2181
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2182 2183
	}
}