raid5.c 167.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
204 205
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206
				   sh->bm_seq - conf->seq_write > 0) {
207
				list_add_tail(&sh->lru, &conf->bitmap_list);
208 209
				blk_plug_device(conf->mddev->queue);
			} else {
210
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
211
				list_add_tail(&sh->lru, &conf->handle_list);
212
			}
L
Linus Torvalds 已提交
213 214
			md_wakeup_thread(conf->mddev->thread);
		} else {
215
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
216 217 218 219 220 221
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
222 223
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
224
				wake_up(&conf->wait_for_stripe);
225 226
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
227
			}
L
Linus Torvalds 已提交
228 229 230
		}
	}
}
231

L
Linus Torvalds 已提交
232 233 234 235
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
236

L
Linus Torvalds 已提交
237 238 239 240 241
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

242
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
243
{
244 245
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
246

247
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
248 249
}

250
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
251
{
252
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
253

254 255
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
256 257

	CHECK_DEVLOCK();
258
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

280
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
281 282 283
{
	struct page *p;
	int i;
284
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
285

286
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
287 288 289 290
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
291
		put_page(p);
L
Linus Torvalds 已提交
292 293 294
	}
}

295
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
296 297
{
	int i;
298
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
299

300
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
301 302 303 304 305 306 307 308 309 310
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

311
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 313
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
314

315
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
316 317
{
	raid5_conf_t *conf = sh->raid_conf;
318
	int i;
L
Linus Torvalds 已提交
319

320 321
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322
	BUG_ON(stripe_operations_active(sh));
323

L
Linus Torvalds 已提交
324
	CHECK_DEVLOCK();
325
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
326 327 328
		(unsigned long long)sh->sector);

	remove_hash(sh);
329

330
	sh->generation = conf->generation - previous;
331
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
332
	sh->sector = sector;
333
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
334 335
	sh->state = 0;

336 337

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
338 339
		struct r5dev *dev = &sh->dev[i];

340
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
341
		    test_bit(R5_LOCKED, &dev->flags)) {
342
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
343
			       (unsigned long long)sh->sector, i, dev->toread,
344
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
345 346 347 348
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
349
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
350 351 352 353
	}
	insert_hash(conf, sh);
}

354 355
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
356 357
{
	struct stripe_head *sh;
358
	struct hlist_node *hn;
L
Linus Torvalds 已提交
359 360

	CHECK_DEVLOCK();
361
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
364
			return sh;
365
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
366 367 368
	return NULL;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

L
Linus Torvalds 已提交
436
static void unplug_slaves(mddev_t *mddev);
437
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
438

439 440
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
441
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
442 443 444
{
	struct stripe_head *sh;

445
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
446 447 448 449

	spin_lock_irq(&conf->device_lock);

	do {
450
		wait_event_lock_irq(conf->wait_for_stripe,
451
				    conf->quiesce == 0 || noquiesce,
452
				    conf->device_lock, /* nothing */);
453
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
454 455 456 457 458 459 460 461 462
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
463 464
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
465 466
						     || !conf->inactive_blocked),
						    conf->device_lock,
467
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
468 469 470
					);
				conf->inactive_blocked = 0;
			} else
471
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
472 473
		} else {
			if (atomic_read(&sh->count)) {
474 475
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
476 477 478
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
479 480
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
481 482
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
483 484 485 486 487 488 489 490 491 492 493
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

494 495 496 497
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
498

499
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
534
			if (s->syncing || s->expanding || s->expanded)
535 536
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
537 538
			set_bit(STRIPE_IO_STARTED, &sh->state);

539 540
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
541
				__func__, (unsigned long long)sh->sector,
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
578
	struct async_submit_ctl submit;
D
Dan Williams 已提交
579
	enum async_tx_flags flags = 0;
580 581 582 583 584

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
585

D
Dan Williams 已提交
586 587 588 589
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
611
						  b_offset, clen, &submit);
612 613
			else
				tx = async_memcpy(bio_page, page, b_offset,
614
						  page_offset, clen, &submit);
615
		}
616 617 618
		/* chain the operations */
		submit.depend_tx = tx;

619 620 621 622 623 624 625 626 627 628 629 630 631
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
632
	int i;
633

634
	pr_debug("%s: stripe %llu\n", __func__,
635 636 637
		(unsigned long long)sh->sector);

	/* clear completed biofills */
638
	spin_lock_irq(&conf->device_lock);
639 640 641 642
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
643 644
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
645
		 * !STRIPE_BIOFILL_RUN
646 647
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
648 649 650 651 652 653 654 655
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
656
				if (!raid5_dec_bi_phys_segments(rbi)) {
657 658 659 660 661 662 663
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
664 665
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
666 667 668

	return_io(return_bi);

669
	set_bit(STRIPE_HANDLE, &sh->state);
670 671 672 673 674 675 676
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
677
	struct async_submit_ctl submit;
678 679
	int i;

680
	pr_debug("%s: stripe %llu\n", __func__,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
701 702
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
703 704
}

705
static void mark_target_uptodate(struct stripe_head *sh, int target)
706
{
707
	struct r5dev *tgt;
708

709 710
	if (target < 0)
		return;
711

712
	tgt = &sh->dev[target];
713 714 715
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
716 717
}

718
static void ops_complete_compute(void *stripe_head_ref)
719 720 721
{
	struct stripe_head *sh = stripe_head_ref;

722
	pr_debug("%s: stripe %llu\n", __func__,
723 724
		(unsigned long long)sh->sector);

725
	/* mark the computed target(s) as uptodate */
726
	mark_target_uptodate(sh, sh->ops.target);
727
	mark_target_uptodate(sh, sh->ops.target2);
728

729 730 731
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
732 733 734 735
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

736 737 738 739 740 741 742 743 744
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
745 746
{
	int disks = sh->disks;
747
	struct page **xor_srcs = percpu->scribble;
748 749 750 751 752
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
753
	struct async_submit_ctl submit;
754 755 756
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
757
		__func__, (unsigned long long)sh->sector, target);
758 759 760 761 762 763 764 765
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
766
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
767
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
768
	if (unlikely(count == 1))
769
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
770
	else
771
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
772 773 774 775

	return tx;
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
794
		srcs[i] = NULL;
795 796 797 798 799 800 801 802 803 804

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

805
	return syndrome_disks;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
826
	else
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
843 844
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
845 846 847 848 849 850 851 852 853 854 855
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
856 857
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
858 859 860
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
861 862 863 864

	return tx;
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

886
	/* we need to open-code set_syndrome_sources to handle the
887 888 889
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
890
		blocks[i] = NULL;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
917 918 919
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
920
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
940 941 942 943
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
944 945 946 947
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
948 949 950
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
951 952 953 954
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
955 956 957 958 959 960 961 962 963 964 965 966 967 968
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
969 970 971 972
	}
}


973 974 975 976
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

977
	pr_debug("%s: stripe %llu\n", __func__,
978 979 980 981
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
982 983
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
984 985
{
	int disks = sh->disks;
986
	struct page **xor_srcs = percpu->scribble;
987
	int count = 0, pd_idx = sh->pd_idx, i;
988
	struct async_submit_ctl submit;
989 990 991 992

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

993
	pr_debug("%s: stripe %llu\n", __func__,
994 995 996 997 998
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
999
		if (test_bit(R5_Wantdrain, &dev->flags))
1000 1001 1002
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1003
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1004
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1005
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1006 1007 1008 1009 1010

	return tx;
}

static struct dma_async_tx_descriptor *
1011
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1012 1013
{
	int disks = sh->disks;
1014
	int i;
1015

1016
	pr_debug("%s: stripe %llu\n", __func__,
1017 1018 1019 1020 1021 1022
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1023
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1045
static void ops_complete_reconstruct(void *stripe_head_ref)
1046 1047
{
	struct stripe_head *sh = stripe_head_ref;
1048 1049 1050 1051
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1052

1053
	pr_debug("%s: stripe %llu\n", __func__,
1054 1055 1056 1057
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1058 1059

		if (dev->written || i == pd_idx || i == qd_idx)
1060 1061 1062
			set_bit(R5_UPTODATE, &dev->flags);
	}

1063 1064 1065 1066 1067 1068 1069 1070
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1071 1072 1073 1074 1075 1076

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1077 1078
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1079 1080
{
	int disks = sh->disks;
1081
	struct page **xor_srcs = percpu->scribble;
1082
	struct async_submit_ctl submit;
1083 1084
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1085
	int prexor = 0;
1086 1087
	unsigned long flags;

1088
	pr_debug("%s: stripe %llu\n", __func__,
1089 1090 1091 1092 1093
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1094 1095
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1116
	flags = ASYNC_TX_ACK |
1117 1118 1119 1120
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1121
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1122
			  to_addr_conv(sh, percpu));
1123 1124 1125 1126
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1146 1147 1148 1149 1150 1151
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1152
	pr_debug("%s: stripe %llu\n", __func__,
1153 1154
		(unsigned long long)sh->sector);

1155
	sh->check_state = check_state_check_result;
1156 1157 1158 1159
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1160
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1161 1162
{
	int disks = sh->disks;
1163 1164 1165
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1166
	struct page **xor_srcs = percpu->scribble;
1167
	struct dma_async_tx_descriptor *tx;
1168
	struct async_submit_ctl submit;
1169 1170
	int count;
	int i;
1171

1172
	pr_debug("%s: stripe %llu\n", __func__,
1173 1174
		(unsigned long long)sh->sector);

1175 1176 1177
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1178
	for (i = disks; i--; ) {
1179 1180 1181
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1182 1183
	}

1184 1185
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1186
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1187
			   &sh->ops.zero_sum_result, &submit);
1188 1189

	atomic_inc(&sh->count);
1190 1191
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1192 1193
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1206 1207

	atomic_inc(&sh->count);
1208 1209 1210 1211
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1212 1213
}

1214
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1215 1216 1217
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1218
	raid5_conf_t *conf = sh->raid_conf;
1219
	int level = conf->level;
1220 1221
	struct raid5_percpu *percpu;
	unsigned long cpu;
1222

1223 1224
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1225
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1226 1227 1228 1229
		ops_run_biofill(sh);
		overlap_clear++;
	}

1230
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1241 1242
			async_tx_ack(tx);
	}
1243

1244
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1245
		tx = ops_run_prexor(sh, percpu, tx);
1246

1247
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1248
		tx = ops_run_biodrain(sh, tx);
1249 1250 1251
		overlap_clear++;
	}

1252 1253 1254 1255 1256 1257
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1269 1270 1271 1272 1273 1274 1275

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1276
	put_cpu();
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1309
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1310 1311
{
	struct stripe_head *sh;
1312 1313 1314
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1315
	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1316 1317
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1318 1319 1320
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1321

1322 1323
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1337
	struct kmem_cache *sc;
1338
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1339

1340 1341 1342 1343 1344 1345 1346 1347
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1348 1349
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1350
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1351
			       0, 0, NULL);
L
Linus Torvalds 已提交
1352 1353 1354
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1355
	conf->pool_size = devs;
1356
	while (num--)
1357
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1358 1359 1360
			return 1;
	return 0;
}
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1412
	unsigned long cpu;
1413
	int err;
1414
	struct kmem_cache *sc;
1415 1416 1417 1418 1419
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1420 1421 1422
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1423

1424 1425 1426
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427
			       0, 0, NULL);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1440 1441 1442
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1465
				    unplug_slaves(conf->mddev)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1481
	 * conf->disks and the scribble region
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1511 1512 1513 1514
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1532

1533
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1534 1535 1536
{
	struct stripe_head *sh;

1537 1538 1539 1540 1541
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1542
	BUG_ON(atomic_read(&sh->count));
1543
	shrink_buffers(sh);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1554 1555
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1556 1557 1558
	conf->slab_cache = NULL;
}

1559
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1560
{
1561
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1562
	raid5_conf_t *conf = sh->raid_conf;
1563
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1564
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1565 1566
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1567 1568 1569 1570 1571 1572


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1573 1574
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1575 1576 1577
		uptodate);
	if (i == disks) {
		BUG();
1578
		return;
L
Linus Torvalds 已提交
1579 1580 1581 1582
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1583
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1584
			rdev = conf->disks[i].rdev;
1585
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1586 1587 1588 1589 1590
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1591 1592 1593
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1594 1595
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1596
	} else {
1597
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1598
		int retry = 0;
1599 1600
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1601
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1602
		atomic_inc(&rdev->read_errors);
1603
		if (conf->mddev->degraded >= conf->max_degraded)
1604
			printk_rl(KERN_WARNING
1605
				  "md/raid:%s: read error not correctable "
1606 1607 1608 1609 1610
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1611
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1612
			/* Oh, no!!! */
1613
			printk_rl(KERN_WARNING
1614
				  "md/raid:%s: read error NOT corrected!! "
1615 1616 1617 1618 1619
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1620
		else if (atomic_read(&rdev->read_errors)
1621
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1622
			printk(KERN_WARNING
1623
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1624
			       mdname(conf->mddev), bdn);
1625 1626 1627 1628 1629
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1630 1631
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1632
			md_error(conf->mddev, rdev);
1633
		}
L
Linus Torvalds 已提交
1634 1635 1636 1637 1638 1639 1640
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1641
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1642
{
1643
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1644
	raid5_conf_t *conf = sh->raid_conf;
1645
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650 1651
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1652
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1653 1654 1655 1656
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1657
		return;
L
Linus Torvalds 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1667
	release_stripe(sh);
L
Linus Torvalds 已提交
1668 1669 1670
}


1671
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1672
	
1673
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1689
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1690 1691 1692 1693 1694
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1695
	raid5_conf_t *conf = mddev->private;
1696
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1697

1698
	if (!test_bit(Faulty, &rdev->flags)) {
1699
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1700 1701 1702
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1703
			mddev->degraded++;
1704
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1705 1706 1707
			/*
			 * if recovery was running, make sure it aborts.
			 */
1708
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1709
		}
1710
		set_bit(Faulty, &rdev->flags);
1711
		printk(KERN_ALERT
1712 1713 1714 1715 1716 1717 1718
		       "md/raid:%s: Disk failure on %s, disabling device.\n"
		       KERN_ALERT
		       "md/raid:%s: Operation continuing on %d devices.\n",
		       mdname(mddev),
		       bdevname(rdev->bdev, b),
		       mdname(mddev),
		       conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1719
	}
1720
}
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1726
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1727 1728
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1729
{
N
NeilBrown 已提交
1730
	sector_t stripe, stripe2;
1731
	sector_t chunk_number;
L
Linus Torvalds 已提交
1732
	unsigned int chunk_offset;
1733
	int pd_idx, qd_idx;
1734
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1735
	sector_t new_sector;
1736 1737
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1738 1739
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1740 1741 1742
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1755 1756
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1757
	stripe2 = stripe;
L
Linus Torvalds 已提交
1758 1759 1760
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1761
	pd_idx = qd_idx = ~0;
1762 1763
	switch(conf->level) {
	case 4:
1764
		pd_idx = data_disks;
1765 1766
		break;
	case 5:
1767
		switch (algorithm) {
L
Linus Torvalds 已提交
1768
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1769
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1770
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1771 1772 1773
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1774
			pd_idx = sector_div(stripe2, raid_disks);
1775
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1776 1777 1778
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1779
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1780
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1781 1782
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1783
			pd_idx = sector_div(stripe2, raid_disks);
1784
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1785
			break;
1786 1787 1788 1789 1790 1791 1792
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1793
		default:
1794
			BUG();
1795 1796 1797 1798
		}
		break;
	case 6:

1799
		switch (algorithm) {
1800
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1801
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1802 1803
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1804
				(*dd_idx)++;	/* Q D D D P */
1805 1806
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1807 1808 1809
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1810
			pd_idx = sector_div(stripe2, raid_disks);
1811 1812
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1813
				(*dd_idx)++;	/* Q D D D P */
1814 1815
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1816 1817 1818
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1819
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1820 1821
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1822 1823
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1824
			pd_idx = sector_div(stripe2, raid_disks);
1825 1826
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1827
			break;
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1843
			pd_idx = sector_div(stripe2, raid_disks);
1844 1845 1846 1847 1848 1849
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1850
			ddf_layout = 1;
1851 1852 1853 1854 1855 1856 1857
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1858 1859
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1860 1861 1862 1863 1864 1865
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1866
			ddf_layout = 1;
1867 1868 1869 1870
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1871
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1872 1873
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1874
			ddf_layout = 1;
1875 1876 1877 1878
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1879
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1880 1881 1882 1883 1884 1885
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1886
			pd_idx = sector_div(stripe2, raid_disks-1);
1887 1888 1889 1890 1891 1892
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1893
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1894 1895 1896 1897 1898
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1899
			pd_idx = sector_div(stripe2, raid_disks-1);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1910
		default:
1911
			BUG();
1912 1913
		}
		break;
L
Linus Torvalds 已提交
1914 1915
	}

1916 1917 1918
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1919
		sh->ddf_layout = ddf_layout;
1920
	}
L
Linus Torvalds 已提交
1921 1922 1923 1924 1925 1926 1927 1928
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1929
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1930 1931
{
	raid5_conf_t *conf = sh->raid_conf;
1932 1933
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1934
	sector_t new_sector = sh->sector, check;
1935 1936
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1937 1938
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1939 1940
	sector_t stripe;
	int chunk_offset;
1941 1942
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1943
	sector_t r_sector;
1944
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1945

1946

L
Linus Torvalds 已提交
1947 1948 1949
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1950 1951 1952 1953 1954
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1955
		switch (algorithm) {
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1967 1968 1969 1970 1971
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1972
		default:
1973
			BUG();
1974 1975 1976
		}
		break;
	case 6:
1977
		if (i == sh->qd_idx)
1978
			return 0; /* It is the Q disk */
1979
		switch (algorithm) {
1980 1981
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1982 1983 1984 1985
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2000 2001 2002 2003 2004 2005
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2006
			/* Like left_symmetric, but P is before Q */
2007 2008
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2009 2010 2011 2012 2013 2014
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2030
		default:
2031
			BUG();
2032 2033
		}
		break;
L
Linus Torvalds 已提交
2034 2035 2036
	}

	chunk_number = stripe * data_disks + i;
2037
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2038

2039
	check = raid5_compute_sector(conf, r_sector,
2040
				     previous, &dummy1, &sh2);
2041 2042
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2043 2044
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2045 2046 2047 2048 2049 2050
		return 0;
	}
	return r_sector;
}


2051
static void
2052
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2053
			 int rcw, int expand)
2054 2055
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2056 2057
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2058 2059 2060 2061 2062 2063 2064

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2065 2066 2067 2068
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2069

2070
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2071 2072 2073 2074 2075 2076

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2077
				set_bit(R5_Wantdrain, &dev->flags);
2078 2079
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2080
				s->locked++;
2081 2082
			}
		}
2083
		if (s->locked + conf->max_degraded == disks)
2084
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2085
				atomic_inc(&conf->pending_full_writes);
2086
	} else {
2087
		BUG_ON(level == 6);
2088 2089 2090
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2091
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2092 2093
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2094
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2095 2096 2097 2098 2099 2100 2101 2102

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2103 2104
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2105 2106
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2107
				s->locked++;
2108 2109 2110 2111
			}
		}
	}

2112
	/* keep the parity disk(s) locked while asynchronous operations
2113 2114 2115 2116
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2117
	s->locked++;
2118

2119 2120 2121 2122 2123 2124 2125 2126 2127
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2128
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2129
		__func__, (unsigned long long)sh->sector,
2130
		s->locked, s->ops_request);
2131
}
2132

L
Linus Torvalds 已提交
2133 2134
/*
 * Each stripe/dev can have one or more bion attached.
2135
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2142
	int firstwrite=0;
L
Linus Torvalds 已提交
2143

2144
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2145 2146 2147 2148 2149 2150
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2151
	if (forwrite) {
L
Linus Torvalds 已提交
2152
		bip = &sh->dev[dd_idx].towrite;
2153 2154 2155
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2165
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2166 2167 2168
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2169
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2170 2171 2172
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2173
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2174 2175 2176
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2177 2178 2179
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2180
		sh->bm_seq = conf->seq_flush+1;
2181 2182 2183
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2206 2207
static void end_reshape(raid5_conf_t *conf);

2208 2209
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2210
{
2211
	int sectors_per_chunk =
2212
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2213
	int dd_idx;
2214
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2215
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2216

2217 2218
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2219
			     *sectors_per_chunk + chunk_offset,
2220
			     previous,
2221
			     &dd_idx, sh);
2222 2223
}

2224
static void
2225
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2259
			if (!raid5_dec_bi_phys_segments(bi)) {
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2274
			if (!raid5_dec_bi_phys_segments(bi)) {
2275 2276 2277 2278 2279 2280 2281
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2282 2283 2284 2285 2286 2287
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2298
				if (!raid5_dec_bi_phys_segments(bi)) {
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2311 2312 2313
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2314 2315
}

2316 2317 2318 2319 2320
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2321
 */
2322 2323
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2324 2325 2326 2327 2328 2329
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2330 2331 2332 2333 2334 2335 2336 2337
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2338 2339
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2340 2341
		 */
		if ((s->uptodate == disks - 1) &&
2342
		    (s->failed && disk_idx == s->failed_num)) {
2343 2344
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2345 2346
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2347
			sh->ops.target2 = -1;
2348 2349
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2350
			 * of raid_run_ops which services 'compute' operations
2351 2352 2353 2354 2355
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2356
			return 1; /* uptodate + compute == disks */
2357
		} else if (test_bit(R5_Insync, &dev->flags)) {
2358 2359 2360 2361 2362 2363 2364 2365
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2366
	return 0;
2367 2368
}

2369 2370 2371 2372
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2373 2374 2375
			struct stripe_head_state *s, int disks)
{
	int i;
2376 2377 2378 2379 2380

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2381
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2382
	    !sh->reconstruct_state)
2383
		for (i = disks; i--; )
2384
			if (fetch_block5(sh, s, i, disks))
2385
				break;
2386 2387 2388
	set_bit(STRIPE_HANDLE, &sh->state);
}

2389 2390 2391 2392 2393 2394 2395 2396
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2397
{
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2421
			 */
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2443
			}
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2463 2464
		}
	}
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2487 2488 2489 2490
	set_bit(STRIPE_HANDLE, &sh->state);
}


2491
/* handle_stripe_clean_event
2492 2493 2494 2495
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2496
static void handle_stripe_clean_event(raid5_conf_t *conf,
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2510
				pr_debug("Return write for disc %d\n", i);
2511 2512 2513 2514 2515 2516
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2517
					if (!raid5_dec_bi_phys_segments(wbi)) {
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2535 2536 2537 2538

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2539 2540
}

2541
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2542 2543 2544 2545 2546 2547 2548 2549
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2550 2551
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2552 2553 2554 2555 2556 2557 2558 2559
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2560 2561 2562
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2563 2564 2565 2566
			else
				rcw += 2*disks;
		}
	}
2567
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2568 2569 2570 2571 2572 2573 2574 2575
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2576 2577
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2578 2579 2580
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2581
					pr_debug("Read_old block "
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2599 2600
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2601 2602 2603
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604
					pr_debug("Read_old block "
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2618 2619
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2620 2621
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2622 2623 2624
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2625 2626 2627
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2628
		schedule_reconstruction(sh, s, rcw == 0, 0);
2629 2630
}

2631
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2632 2633 2634
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2635
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2636
	int qd_idx = sh->qd_idx;
2637 2638

	set_bit(STRIPE_HANDLE, &sh->state);
2639 2640
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2665 2666 2667 2668 2669 2670
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2671 2672
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2673
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2674
		schedule_reconstruction(sh, s, 1, 0);
2675 2676 2677 2678 2679 2680
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2681
	struct r5dev *dev = NULL;
2682

2683
	set_bit(STRIPE_HANDLE, &sh->state);
2684

2685 2686 2687
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2688 2689
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2690 2691
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2692 2693
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2694
			break;
2695
		}
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2706

2707 2708 2709 2710 2711
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2712
		s->locked++;
2713
		set_bit(R5_Wantwrite, &dev->flags);
2714

2715 2716
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2733
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2745
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2746 2747 2748 2749
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2750
				sh->ops.target2 = -1;
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2762 2763 2764 2765 2766
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2767 2768
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2769 2770
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2771
	int qd_idx = sh->qd_idx;
2772
	struct r5dev *dev;
2773 2774 2775 2776

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2777

2778 2779 2780 2781 2782 2783
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2784 2785 2786
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2787
		if (s->failed == r6s->q_failed) {
2788
			/* The only possible failed device holds Q, so it
2789 2790 2791
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2792
			sh->check_state = check_state_run;
2793 2794
		}
		if (!r6s->q_failed && s->failed < 2) {
2795
			/* Q is not failed, and we didn't use it to generate
2796 2797
			 * anything, so it makes sense to check it
			 */
2798 2799 2800 2801
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2802 2803
		}

2804 2805
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2806

2807 2808 2809 2810
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2811
		}
2812 2813 2814 2815 2816 2817 2818
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2819 2820
		}

2821 2822 2823 2824 2825
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2826

2827 2828 2829
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2830 2831

		/* now write out any block on a failed drive,
2832
		 * or P or Q if they were recomputed
2833
		 */
2834
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2847
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2848 2849 2850 2851 2852
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2853
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2854 2855 2856 2857 2858 2859 2860 2861
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2937
	struct dma_async_tx_descriptor *tx = NULL;
2938 2939
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2940
		if (i != sh->pd_idx && i != sh->qd_idx) {
2941
			int dd_idx, j;
2942
			struct stripe_head *sh2;
2943
			struct async_submit_ctl submit;
2944

2945
			sector_t bn = compute_blocknr(sh, i, 1);
2946 2947
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2948
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2961 2962

			/* place all the copies on one channel */
2963
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2964
			tx = async_memcpy(sh2->dev[dd_idx].page,
2965
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2966
					  &submit);
2967

2968 2969 2970 2971
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2972
				    (!r6s || j != sh2->qd_idx) &&
2973 2974 2975 2976 2977 2978 2979
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2980

2981
		}
2982 2983 2984 2985 2986
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2987
}
L
Linus Torvalds 已提交
2988

2989

L
Linus Torvalds 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
3006

3007
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
3008 3009
{
	raid5_conf_t *conf = sh->raid_conf;
3010 3011 3012
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
3013
	struct r5dev *dev;
3014
	mdk_rdev_t *blocked_rdev = NULL;
3015
	int prexor;
3016
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3017

3018
	memset(&s, 0, sizeof(s));
3019 3020 3021 3022
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3028 3029 3030
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
3031

3032
	/* Now to look around and see what can be done */
3033
	rcu_read_lock();
L
Linus Torvalds 已提交
3034 3035
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
3036 3037

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3038

3039 3040 3041 3042 3043 3044 3045
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
3046
		 * ops_complete_biofill is guaranteed to be inactive
3047 3048
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3049
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3050
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3051 3052

		/* now count some things */
3053 3054
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3055
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
3056

3057 3058 3059
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
3060
			s.to_read++;
L
Linus Torvalds 已提交
3061
		if (dev->towrite) {
3062
			s.to_write++;
L
Linus Torvalds 已提交
3063
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3064
				s.non_overwrite++;
L
Linus Torvalds 已提交
3065
		}
3066 3067
		if (dev->written)
			s.written++;
3068
		rdev = rcu_dereference(conf->disks[i].rdev);
3069 3070
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3071 3072 3073
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3085
			/* The ReadError flag will just be confusing now */
3086 3087 3088
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3089 3090 3091
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3092 3093
			s.failed++;
			s.failed_num = i;
3094
		}
L
Linus Torvalds 已提交
3095
	}
3096
	rcu_read_unlock();
3097

3098
	if (unlikely(blocked_rdev)) {
3099 3100 3101 3102 3103 3104 3105 3106
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3107 3108
	}

3109 3110 3111 3112
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3113

3114
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3115
		" to_write=%d failed=%d failed_num=%d\n",
3116 3117
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3118 3119 3120
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3121
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3122
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3123
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3124 3125
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3126
		s.syncing = 0;
L
Linus Torvalds 已提交
3127 3128 3129 3130 3131 3132
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3133 3134 3135 3136 3137
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3138
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3139 3140 3141 3142 3143

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3144
	if (s.to_read || s.non_overwrite ||
3145
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3146
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3147

3148 3149 3150
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3151
	prexor = 0;
3152
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3153
		prexor = 1;
3154 3155
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3156
		sh->reconstruct_state = reconstruct_state_idle;
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3168 3169
				if (prexor)
					continue;
3170 3171 3172 3173 3174
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3175 3176
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3177 3178 3179 3180 3181 3182 3183 3184
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3185
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3186
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3187 3188

	/* maybe we need to check and possibly fix the parity for this stripe
3189 3190 3191
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3192
	 */
3193 3194
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3195
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3196
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3197
		handle_parity_checks5(conf, sh, &s, disks);
3198

3199
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3200 3201 3202
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3203 3204 3205 3206

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3207 3208 3209 3210
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3211
		) {
3212
		dev = &sh->dev[s.failed_num];
3213 3214 3215 3216
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3217
			s.locked++;
3218 3219 3220 3221
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3222
			s.locked++;
3223 3224 3225
		}
	}

3226 3227
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3228
		struct stripe_head *sh2
3229
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3245
		sh->reconstruct_state = reconstruct_state_idle;
3246
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3247
		for (i = conf->raid_disks; i--; ) {
3248
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3249
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3250
			s.locked++;
D
Dan Williams 已提交
3251
		}
3252 3253 3254
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3255
	    !sh->reconstruct_state) {
3256 3257
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3258
		stripe_set_idx(sh->sector, conf, 0, sh);
3259
		schedule_reconstruction(sh, &s, 1, 1);
3260
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3261
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3262
		atomic_dec(&conf->reshape_stripes);
3263 3264 3265 3266
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3267
	if (s.expanding && s.locked == 0 &&
3268
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3269
		handle_stripe_expansion(conf, sh, NULL);
3270

3271
 unlock:
L
Linus Torvalds 已提交
3272 3273
	spin_unlock(&sh->lock);

3274 3275 3276 3277
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3278
	if (s.ops_request)
3279
		raid_run_ops(sh, s.ops_request);
3280

3281
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3282

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3293
	return_io(return_bi);
L
Linus Torvalds 已提交
3294 3295
}

3296
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3297
{
3298
	raid5_conf_t *conf = sh->raid_conf;
3299
	int disks = sh->disks;
3300
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3301
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3302 3303
	struct stripe_head_state s;
	struct r6_state r6s;
3304
	struct r5dev *dev, *pdev, *qdev;
3305
	mdk_rdev_t *blocked_rdev = NULL;
3306
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3307

3308
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3309
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3310
	       (unsigned long long)sh->sector, sh->state,
3311 3312
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3313
	memset(&s, 0, sizeof(s));
3314

3315 3316 3317 3318
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3319 3320 3321
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3322
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3323 3324

	rcu_read_lock();
3325 3326 3327
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3328

3329
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3330
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3331 3332 3333 3334 3335 3336 3337 3338
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3339

3340
		/* now count some things */
3341 3342
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3343 3344 3345 3346
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3347

3348 3349 3350
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3351
			s.to_read++;
3352
		if (dev->towrite) {
3353
			s.to_write++;
3354
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3355
				s.non_overwrite++;
3356
		}
3357 3358
		if (dev->written)
			s.written++;
3359
		rdev = rcu_dereference(conf->disks[i].rdev);
3360 3361
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3362 3363 3364
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3376 3377 3378
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3379
		}
3380 3381 3382
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3383 3384 3385
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3386
		}
L
Linus Torvalds 已提交
3387 3388
	}
	rcu_read_unlock();
3389 3390

	if (unlikely(blocked_rdev)) {
3391 3392 3393 3394 3395 3396 3397 3398
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3399
	}
3400

3401 3402 3403 3404 3405
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3406
	pr_debug("locked=%d uptodate=%d to_read=%d"
3407
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3408 3409 3410 3411
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3412
	 */
3413
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3414
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3415
	if (s.failed > 2 && s.syncing) {
3416 3417
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3418
		s.syncing = 0;
3419 3420 3421 3422 3423 3424 3425
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3426 3427
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3428 3429 3430
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3431 3432 3433

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3434
			     && !test_bit(R5_LOCKED, &pdev->flags)
3435 3436
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3437
			     && !test_bit(R5_LOCKED, &qdev->flags)
3438
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3439
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3440 3441 3442 3443 3444

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3445
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3446
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3447
		handle_stripe_fill6(sh, &s, &r6s, disks);
3448

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3474 3475
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3476 3477
	}

3478 3479 3480 3481 3482 3483 3484
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3485
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3486 3487

	/* maybe we need to check and possibly fix the parity for this stripe
3488
	 * Any reads will already have been scheduled, so we just see if enough
3489 3490
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3491
	 */
3492 3493 3494 3495
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3496
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3497

3498
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3499 3500 3501 3502 3503 3504 3505
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3506 3507 3508
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3509 3510 3511 3512 3513 3514 3515 3516
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3517
					s.locked++;
3518 3519 3520 3521
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3522
					s.locked++;
3523 3524 3525
				}
			}
		}
3526

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3540
		struct stripe_head *sh2
3541
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3557 3558
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3559
		stripe_set_idx(sh->sector, conf, 0, sh);
3560 3561
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3562 3563 3564 3565 3566 3567
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3568
	if (s.expanding && s.locked == 0 &&
3569
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3570
		handle_stripe_expansion(conf, sh, &r6s);
3571

3572
 unlock:
3573 3574
	spin_unlock(&sh->lock);

3575 3576 3577 3578
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3579 3580 3581
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3582
	ops_run_io(sh, &s);
3583

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3596
	return_io(return_bi);
3597 3598
}

3599
static void handle_stripe(struct stripe_head *sh)
3600 3601
{
	if (sh->raid_conf->level == 6)
3602
		handle_stripe6(sh);
3603
	else
3604
		handle_stripe5(sh);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3618
			list_add_tail(&sh->lru, &conf->hold_list);
3619
		}
3620 3621
	} else
		blk_plug_device(conf->mddev->queue);
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3640
	raid5_conf_t *conf = mddev->private;
3641
	int i;
3642
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3643 3644

	rcu_read_lock();
3645
	for (i = 0; i < devs; i++) {
3646 3647
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3648
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3649 3650 3651 3652

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3653
			blk_unplug(r_queue);
3654 3655 3656 3657 3658 3659 3660 3661

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3662
static void raid5_unplug_device(struct request_queue *q)
3663 3664
{
	mddev_t *mddev = q->queuedata;
3665
	raid5_conf_t *conf = mddev->private;
3666 3667 3668 3669 3670 3671 3672
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3673
	}
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679 3680
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3681 3682 3683
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3684
	raid5_conf_t *conf = mddev->private;
3685 3686 3687 3688

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3689 3690 3691

	if (mddev_congested(mddev, bits))
		return 1;
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3702 3703 3704
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3705 3706 3707
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3708 3709
{
	mddev_t *mddev = q->queuedata;
3710
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3711
	int max;
3712
	unsigned int chunk_sectors = mddev->chunk_sectors;
3713
	unsigned int bio_sectors = bvm->bi_size >> 9;
3714

3715
	if ((bvm->bi_rw & 1) == WRITE)
3716 3717
		return biovec->bv_len; /* always allow writes to be mergeable */

3718 3719
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3720 3721 3722 3723 3724 3725 3726 3727
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3728 3729 3730 3731

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3732
	unsigned int chunk_sectors = mddev->chunk_sectors;
3733 3734
	unsigned int bio_sectors = bio->bi_size >> 9;

3735 3736
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3737 3738 3739 3740
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3770
		conf->retry_read_aligned_list = bi->bi_next;
3771
		bi->bi_next = NULL;
3772 3773 3774 3775
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3776 3777 3778 3779 3780 3781 3782
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3783 3784 3785 3786 3787 3788
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3789
static void raid5_align_endio(struct bio *bi, int error)
3790 3791
{
	struct bio* raid_bi  = bi->bi_private;
3792 3793 3794 3795 3796
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3797
	bio_put(bi);
3798 3799 3800

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3801 3802
	mddev = rdev->mddev;
	conf = mddev->private;
3803 3804 3805 3806

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3807
		bio_endio(raid_bi, 0);
3808 3809
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3810
		return;
3811 3812 3813
	}


3814
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3815 3816

	add_bio_to_retry(raid_bi, conf);
3817 3818
}

3819 3820
static int bio_fits_rdev(struct bio *bi)
{
3821
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3822

3823
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3824 3825
		return 0;
	blk_recount_segments(q, bi);
3826
	if (bi->bi_phys_segments > queue_max_segments(q))
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3839
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3840
{
3841
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3842
	int dd_idx;
3843 3844 3845 3846
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3847
		pr_debug("chunk_aligned_read : non aligned\n");
3848 3849 3850
		return 0;
	}
	/*
3851
	 * use bio_clone to make a copy of the bio
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3865 3866
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3867
						    &dd_idx, NULL);
3868 3869 3870 3871 3872 3873

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3874 3875 3876 3877 3878
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3879 3880 3881 3882 3883 3884 3885
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3886 3887 3888 3889 3890 3891 3892
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3893 3894 3895 3896
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3897
		bio_put(align_bi);
3898 3899 3900 3901
		return 0;
	}
}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3954

3955
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3956
{
3957
	raid5_conf_t *conf = mddev->private;
3958
	int dd_idx;
L
Linus Torvalds 已提交
3959 3960 3961
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3962
	const int rw = bio_data_dir(bi);
3963
	int remaining;
L
Linus Torvalds 已提交
3964

3965
	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3966 3967 3968 3969 3970 3971 3972
		/* Drain all pending writes.  We only really need
		 * to ensure they have been submitted, but this is
		 * easier.
		 */
		mddev->pers->quiesce(mddev, 1);
		mddev->pers->quiesce(mddev, 0);
		md_barrier_request(mddev, bi);
3973 3974 3975
		return 0;
	}

3976
	md_write_start(mddev, bi);
3977

3978
	if (rw == READ &&
3979
	     mddev->reshape_position == MaxSector &&
3980
	     chunk_aligned_read(mddev,bi))
3981
		return 0;
3982

L
Linus Torvalds 已提交
3983 3984 3985 3986
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3987

L
Linus Torvalds 已提交
3988 3989
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3990
		int disks, data_disks;
3991
		int previous;
3992

3993
	retry:
3994
		previous = 0;
3995
		disks = conf->raid_disks;
3996
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3997
		if (unlikely(conf->reshape_progress != MaxSector)) {
3998
			/* spinlock is needed as reshape_progress may be
3999 4000
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4001
			 * Ofcourse reshape_progress could change after
4002 4003 4004 4005
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4006
			spin_lock_irq(&conf->device_lock);
4007 4008 4009
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4010
				disks = conf->previous_raid_disks;
4011 4012
				previous = 1;
			} else {
4013 4014 4015
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4016 4017 4018 4019 4020
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4021 4022
			spin_unlock_irq(&conf->device_lock);
		}
4023 4024
		data_disks = disks - conf->max_degraded;

4025 4026
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4027
						  &dd_idx, NULL);
4028
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4029 4030 4031
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4032
		sh = get_active_stripe(conf, new_sector, previous,
4033
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4034
		if (sh) {
4035
			if (unlikely(previous)) {
4036
				/* expansion might have moved on while waiting for a
4037 4038 4039 4040 4041 4042
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4043 4044 4045
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4046 4047 4048
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4049 4050 4051 4052 4053
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4054
					schedule();
4055 4056 4057
					goto retry;
				}
			}
4058

4059 4060
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
4061 4062
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4073 4074
				goto retry;
			}
4075 4076 4077 4078 4079

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4080 4081 4082 4083 4084 4085 4086 4087
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4088 4089
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4090 4091 4092
			if (mddev->barrier && 
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4103
	remaining = raid5_dec_bi_phys_segments(bi);
4104 4105
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4106

4107
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4108
			md_write_end(mddev);
4109

4110
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4111
	}
4112 4113 4114 4115 4116 4117 4118 4119

	if (mddev->barrier) {
		/* We need to wait for the stripes to all be handled.
		 * So: wait for preread_active_stripes to drop to 0.
		 */
		wait_event(mddev->thread->wqueue,
			   atomic_read(&conf->preread_active_stripes) == 0);
	}
L
Linus Torvalds 已提交
4120 4121 4122
	return 0;
}

D
Dan Williams 已提交
4123 4124
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4125
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4126
{
4127 4128 4129 4130 4131 4132 4133 4134 4135
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4136
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4137
	struct stripe_head *sh;
4138
	sector_t first_sector, last_sector;
4139 4140 4141
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4142 4143
	int i;
	int dd_idx;
4144
	sector_t writepos, readpos, safepos;
4145
	sector_t stripe_addr;
4146
	int reshape_sectors;
4147
	struct list_head stripes;
4148

4149 4150 4151 4152 4153 4154
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4155
		} else if (mddev->delta_disks >= 0 &&
4156 4157
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4158
		sector_div(sector_nr, new_data_disks);
4159
		if (sector_nr) {
4160 4161
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4162 4163 4164
			*skipped = 1;
			return sector_nr;
		}
4165 4166
	}

4167 4168 4169 4170
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4171 4172
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4173
	else
4174
		reshape_sectors = mddev->chunk_sectors;
4175

4176 4177 4178 4179 4180
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4181 4182
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4183
	 */
4184
	writepos = conf->reshape_progress;
4185
	sector_div(writepos, new_data_disks);
4186 4187
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4188
	safepos = conf->reshape_safe;
4189
	sector_div(safepos, data_disks);
4190
	if (mddev->delta_disks < 0) {
4191
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4192
		readpos += reshape_sectors;
4193
		safepos += reshape_sectors;
4194
	} else {
4195
		writepos += reshape_sectors;
4196 4197
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4198
	}
4199

4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4217
	if ((mddev->delta_disks < 0
4218 4219 4220
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4221 4222 4223
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4224
		mddev->reshape_position = conf->reshape_progress;
4225
		mddev->curr_resync_completed = mddev->curr_resync;
4226
		conf->reshape_checkpoint = jiffies;
4227
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4228
		md_wakeup_thread(mddev->thread);
4229
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4230 4231
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4232
		conf->reshape_safe = mddev->reshape_position;
4233 4234
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4235
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4236 4237
	}

4238 4239 4240 4241
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4242 4243
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4244 4245
		       != sector_nr);
	} else {
4246
		BUG_ON(writepos != sector_nr + reshape_sectors);
4247 4248
		stripe_addr = sector_nr;
	}
4249
	INIT_LIST_HEAD(&stripes);
4250
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4251
		int j;
4252
		int skipped_disk = 0;
4253
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4254 4255 4256 4257 4258 4259 4260 4261 4262
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4263
			if (conf->level == 6 &&
4264
			    j == sh->qd_idx)
4265
				continue;
4266
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4267
			if (s < raid5_size(mddev, 0, 0)) {
4268
				skipped_disk = 1;
4269 4270 4271 4272 4273 4274
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4275
		if (!skipped_disk) {
4276 4277 4278
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4279
		list_add(&sh->lru, &stripes);
4280 4281
	}
	spin_lock_irq(&conf->device_lock);
4282
	if (mddev->delta_disks < 0)
4283
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4284
	else
4285
		conf->reshape_progress += reshape_sectors * new_data_disks;
4286 4287 4288 4289 4290 4291 4292
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4293
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4294
				     1, &dd_idx, NULL);
4295
	last_sector =
4296
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4297
					    * new_data_disks - 1),
4298
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4299 4300
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4301
	while (first_sector <= last_sector) {
4302
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4303 4304 4305 4306 4307
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4308 4309 4310 4311 4312 4313 4314 4315
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4316 4317 4318
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4319
	sector_nr += reshape_sectors;
4320 4321
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4322 4323 4324
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4325
		mddev->reshape_position = conf->reshape_progress;
4326
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4327
		conf->reshape_checkpoint = jiffies;
4328 4329 4330 4331 4332 4333
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4334
		conf->reshape_safe = mddev->reshape_position;
4335 4336
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4337
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4338
	}
4339
	return reshape_sectors;
4340 4341 4342 4343 4344
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4345
	raid5_conf_t *conf = mddev->private;
4346
	struct stripe_head *sh;
A
Andre Noll 已提交
4347
	sector_t max_sector = mddev->dev_sectors;
4348
	int sync_blocks;
4349 4350
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4351

4352
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4353 4354
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4355

4356 4357 4358 4359
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4360 4361 4362 4363

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4364
		else /* completed sync */
4365 4366 4367
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4368 4369
		return 0;
	}
4370

4371 4372 4373
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4374 4375
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4376

4377 4378 4379 4380 4381 4382
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4383
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4384 4385 4386
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4387
	if (mddev->degraded >= conf->max_degraded &&
4388
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4389
		sector_t rv = mddev->dev_sectors - sector_nr;
4390
		*skipped = 1;
L
Linus Torvalds 已提交
4391 4392
		return rv;
	}
4393
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4394
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4395 4396 4397 4398 4399 4400
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4401

N
NeilBrown 已提交
4402 4403 4404

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4405
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4406
	if (sh == NULL) {
4407
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4408
		/* make sure we don't swamp the stripe cache if someone else
4409
		 * is trying to get access
L
Linus Torvalds 已提交
4410
		 */
4411
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4412
	}
4413 4414 4415 4416
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4417
	for (i = 0; i < conf->raid_disks; i++)
4418 4419 4420 4421 4422 4423
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4424 4425 4426 4427
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4428
	handle_stripe(sh);
L
Linus Torvalds 已提交
4429 4430 4431 4432 4433
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4447
	int dd_idx;
4448 4449 4450 4451 4452 4453
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4454
	sector = raid5_compute_sector(conf, logical_sector,
4455
				      0, &dd_idx, NULL);
4456 4457 4458
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4459 4460 4461
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4462

4463
		if (scnt < raid5_bi_hw_segments(raid_bio))
4464 4465 4466
			/* already done this stripe */
			continue;

4467
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4468 4469 4470

		if (!sh) {
			/* failed to get a stripe - must wait */
4471
			raid5_set_bi_hw_segments(raid_bio, scnt);
4472 4473 4474 4475 4476
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4477 4478
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4479
			raid5_set_bi_hw_segments(raid_bio, scnt);
4480 4481 4482 4483
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4484
		handle_stripe(sh);
4485 4486 4487 4488
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4489
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4490
	spin_unlock_irq(&conf->device_lock);
4491 4492
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4493 4494 4495 4496 4497 4498
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4499 4500 4501 4502 4503 4504 4505
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4506
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4507 4508
{
	struct stripe_head *sh;
4509
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4510 4511
	int handled;

4512
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4513 4514 4515 4516 4517 4518

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4519
		struct bio *bio;
L
Linus Torvalds 已提交
4520

4521
		if (conf->seq_flush != conf->seq_write) {
4522
			int seq = conf->seq_flush;
4523
			spin_unlock_irq(&conf->device_lock);
4524
			bitmap_unplug(mddev->bitmap);
4525
			spin_lock_irq(&conf->device_lock);
4526 4527 4528 4529
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4540 4541
		sh = __get_priority_stripe(conf);

4542
		if (!sh)
L
Linus Torvalds 已提交
4543 4544 4545 4546
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4547 4548 4549
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4550 4551 4552

		spin_lock_irq(&conf->device_lock);
	}
4553
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4554 4555 4556

	spin_unlock_irq(&conf->device_lock);

4557
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4558 4559
	unplug_slaves(mddev);

4560
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4561 4562
}

4563
static ssize_t
4564
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4565
{
4566
	raid5_conf_t *conf = mddev->private;
4567 4568 4569 4570
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4571 4572
}

4573 4574
int
raid5_set_cache_size(mddev_t *mddev, int size)
4575
{
4576
	raid5_conf_t *conf = mddev->private;
4577 4578
	int err;

4579
	if (size <= 16 || size > 32768)
4580
		return -EINVAL;
4581
	while (size < conf->max_nr_stripes) {
4582 4583 4584 4585 4586
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4587 4588 4589
	err = md_allow_write(mddev);
	if (err)
		return err;
4590
	while (size > conf->max_nr_stripes) {
4591 4592 4593 4594
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4616 4617
	return len;
}
4618

4619 4620 4621 4622
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4623

4624 4625 4626
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4627
	raid5_conf_t *conf = mddev->private;
4628 4629 4630 4631 4632 4633 4634 4635 4636
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4637
	raid5_conf_t *conf = mddev->private;
4638
	unsigned long new;
4639 4640 4641 4642 4643
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4644
	if (strict_strtoul(page, 10, &new))
4645
		return -EINVAL;
4646
	if (new > conf->max_nr_stripes)
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4658
static ssize_t
4659
stripe_cache_active_show(mddev_t *mddev, char *page)
4660
{
4661
	raid5_conf_t *conf = mddev->private;
4662 4663 4664 4665
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4666 4667
}

4668 4669
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4670

4671
static struct attribute *raid5_attrs[] =  {
4672 4673
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4674
	&raid5_preread_bypass_threshold.attr,
4675 4676
	NULL,
};
4677 4678 4679
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4680 4681
};

4682 4683 4684
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4685
	raid5_conf_t *conf = mddev->private;
4686 4687 4688

	if (!sectors)
		sectors = mddev->dev_sectors;
4689
	if (!raid_disks)
4690
		/* size is defined by the smallest of previous and new size */
4691
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4692

4693
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4694
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4695 4696 4697
	return sectors * (raid_disks - conf->max_degraded);
}

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4710
		kfree(percpu->scribble);
4711 4712 4713 4714 4715 4716 4717 4718 4719
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4720 4721 4722
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4723
	raid5_free_percpu(conf);
4724 4725 4726 4727 4728
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4740
		if (conf->level == 6 && !percpu->spare_page)
4741
			percpu->spare_page = alloc_page(GFP_KERNEL);
4742 4743 4744 4745 4746 4747 4748
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4749 4750
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4751
			return notifier_from_errno(-ENOMEM);
4752 4753 4754 4755 4756
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4757
		kfree(percpu->scribble);
4758
		percpu->spare_page = NULL;
4759
		percpu->scribble = NULL;
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4772
	struct raid5_percpu __percpu *allcpus;
4773
	void *scribble;
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4784 4785 4786 4787 4788 4789 4790 4791
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4792
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4793
		if (!scribble) {
4794 4795 4796
			err = -ENOMEM;
			break;
		}
4797
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4810
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4811 4812
{
	raid5_conf_t *conf;
4813
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4814 4815 4816
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4817 4818 4819
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4820
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4821 4822
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4823
	}
N
NeilBrown 已提交
4824 4825 4826 4827
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4828
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4829 4830
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4831
	}
N
NeilBrown 已提交
4832
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4833
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4834 4835
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4836 4837
	}

4838 4839 4840
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4841 4842
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4843
		return ERR_PTR(-EINVAL);
4844 4845
	}

N
NeilBrown 已提交
4846 4847
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4848
		goto abort;
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4861 4862 4863 4864 4865

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4866
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4867 4868
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4869

4870
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4871 4872 4873
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4874

L
Linus Torvalds 已提交
4875 4876
	conf->mddev = mddev;

4877
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4878 4879
		goto abort;

4880 4881 4882 4883
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4884
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4885

4886
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4887
		raid_disk = rdev->raid_disk;
4888
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4895
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4896
			char b[BDEVNAME_SIZE];
4897 4898 4899
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4900 4901 4902
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4903 4904
	}

4905
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4906
	conf->level = mddev->new_level;
4907 4908 4909 4910
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4911
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4912
	conf->max_nr_stripes = NR_STRIPES;
4913
	conf->reshape_progress = mddev->reshape_position;
4914
	if (conf->reshape_progress != MaxSector) {
4915
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4916 4917
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4918

N
NeilBrown 已提交
4919
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4920
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4921 4922
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4923 4924
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4925 4926
		goto abort;
	} else
4927 4928
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4929

4930
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4931 4932
	if (!conf->thread) {
		printk(KERN_ERR
4933
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4934
		       mdname(mddev));
4935 4936
		goto abort;
	}
N
NeilBrown 已提交
4937 4938 4939 4940 4941

	return conf;

 abort:
	if (conf) {
4942
		free_conf(conf);
N
NeilBrown 已提交
4943 4944 4945 4946 4947
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4975 4976 4977
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4978
	int working_disks = 0, chunk_size;
4979
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4980
	mdk_rdev_t *rdev;
4981
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4982

4983
	if (mddev->recovery_cp != MaxSector)
4984
		printk(KERN_NOTICE "md/raid:%s: not clean"
4985 4986
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4987 4988 4989 4990 4991 4992 4993 4994
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4995
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4996

4997
		if (mddev->new_level != mddev->level) {
4998
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5009
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5010
			       (mddev->raid_disks - max_degraded))) {
5011 5012
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5013 5014
			return -EINVAL;
		}
5015
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5016 5017
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5018
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5019 5020 5021
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
5033 5034 5035
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
5036 5037 5038 5039 5040 5041 5042
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
5043
			/* Reading from the same stripe as writing to - bad */
5044 5045 5046
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5047 5048
			return -EINVAL;
		}
5049 5050
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5051 5052 5053 5054
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5055
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5056
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5057
	}
N
NeilBrown 已提交
5058

5059 5060 5061 5062 5063
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5074 5075 5076
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
5077
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5078
			working_disks++;
5079 5080
			continue;
		}
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5109

5110 5111
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5112

5113
	if (has_failed(conf)) {
5114
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5115
			" (%d/%d failed)\n",
5116
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5117 5118 5119
		goto abort;
	}

N
NeilBrown 已提交
5120
	/* device size must be a multiple of chunk size */
5121
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5122 5123
	mddev->resync_max_sectors = mddev->dev_sectors;

5124
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5125
	    mddev->recovery_cp != MaxSector) {
5126 5127
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5128 5129
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5130 5131 5132
			       mdname(mddev));
		else {
			printk(KERN_ERR
5133
			       "md/raid:%s: cannot start dirty degraded array.\n",
5134 5135 5136
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5137 5138 5139
	}

	if (mddev->degraded == 0)
5140 5141
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5142 5143
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5144
	else
5145 5146 5147 5148 5149
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5150 5151 5152

	print_raid5_conf(conf);

5153 5154
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5155 5156 5157 5158 5159 5160
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5161
							"reshape");
5162 5163
	}

L
Linus Torvalds 已提交
5164 5165

	/* Ok, everything is just fine now */
5166 5167
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5168 5169
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5170
		printk(KERN_WARNING
5171
		       "raid5: failed to create sysfs attributes for %s\n",
5172
		       mdname(mddev));
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));

	if (mddev->queue) {
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;

		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
	}
5188

N
NeilBrown 已提交
5189 5190
	mddev->queue->queue_lock = &conf->device_lock;

5191
	mddev->queue->unplug_fn = raid5_unplug_device;
5192
	mddev->queue->backing_dev_info.congested_data = mddev;
5193
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5194

5195 5196 5197 5198 5199 5200 5201 5202
	chunk_size = mddev->chunk_sectors << 9;
	blk_queue_io_min(mddev->queue, chunk_size);
	blk_queue_io_opt(mddev->queue, chunk_size *
			 (conf->raid_disks - conf->max_degraded));

	list_for_each_entry(rdev, &mddev->disks, same_set)
		disk_stack_limits(mddev->gendisk, rdev->bdev,
				  rdev->data_offset << 9);
5203

L
Linus Torvalds 已提交
5204 5205
	return 0;
abort:
5206
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5207
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5208 5209
	if (conf) {
		print_raid5_conf(conf);
5210
		free_conf(conf);
L
Linus Torvalds 已提交
5211 5212
	}
	mddev->private = NULL;
5213
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5214 5215 5216
	return -EIO;
}

5217
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5218
{
5219
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5220 5221 5222

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
5223
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
5224
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5225
	free_conf(conf);
5226 5227
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5228 5229 5230
	return 0;
}

5231
#ifdef DEBUG
5232
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5233 5234 5235
{
	int i;

5236 5237 5238 5239 5240
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5241
	for (i = 0; i < sh->disks; i++) {
5242 5243
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5244
	}
5245
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5246 5247
}

5248
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5249 5250
{
	struct stripe_head *sh;
5251
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5252 5253 5254 5255
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5256
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5257 5258
			if (sh->raid_conf != conf)
				continue;
5259
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5260 5261 5262 5263 5264 5265
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5266
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5267
{
5268
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5269 5270
	int i;

5271 5272
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5273
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5274 5275 5276
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5277
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5278
	seq_printf (seq, "]");
5279
#ifdef DEBUG
5280 5281
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5282 5283 5284 5285 5286 5287 5288 5289
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5290
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5291 5292 5293 5294
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5295 5296 5297
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5298 5299 5300 5301 5302

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5303 5304 5305
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5318
		    && tmp->rdev->recovery_offset == MaxSector
5319
		    && !test_bit(Faulty, &tmp->rdev->flags)
5320 5321 5322
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5323
			mddev->degraded--;
5324
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5341 5342 5343 5344
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5345
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5346 5347 5348 5349
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5350 5351 5352 5353
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5354
		    !has_failed(conf) &&
5355
		    number < conf->raid_disks) {
5356 5357 5358
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5359
		p->rdev = NULL;
5360
		synchronize_rcu();
L
Linus Torvalds 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5376
	int err = -EEXIST;
L
Linus Torvalds 已提交
5377 5378
	int disk;
	struct disk_info *p;
5379 5380
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5381

5382
	if (has_failed(conf))
L
Linus Torvalds 已提交
5383
		/* no point adding a device */
5384
		return -EINVAL;
L
Linus Torvalds 已提交
5385

5386 5387
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5388 5389

	/*
5390 5391
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5392
	 */
5393
	if (rdev->saved_raid_disk >= 0 &&
5394
	    rdev->saved_raid_disk >= first &&
5395 5396 5397
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5398 5399
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5400
		if ((p=conf->disks + disk)->rdev == NULL) {
5401
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5402
			rdev->raid_disk = disk;
5403
			err = 0;
5404 5405
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5406
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5407 5408 5409
			break;
		}
	print_raid5_conf(conf);
5410
	return err;
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5422
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5423 5424
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5425 5426 5427
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5428
	set_capacity(mddev->gendisk, mddev->array_sectors);
5429
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5430 5431
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5432 5433
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5434
	mddev->dev_sectors = sectors;
5435
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5436 5437 5438
	return 0;
}

5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5454 5455
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5456 5457 5458 5459 5460 5461 5462
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5463
static int check_reshape(mddev_t *mddev)
5464
{
5465
	raid5_conf_t *conf = mddev->private;
5466

5467 5468
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5469
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5470
		return 0; /* nothing to do */
5471 5472 5473
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5474
	if (has_failed(conf))
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5488

5489
	if (!check_stripe_cache(mddev))
5490 5491
		return -ENOSPC;

5492
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5493 5494 5495 5496
}

static int raid5_start_reshape(mddev_t *mddev)
{
5497
	raid5_conf_t *conf = mddev->private;
5498 5499 5500
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5501
	unsigned long flags;
5502

5503
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5504 5505
		return -EBUSY;

5506 5507 5508
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5509
	list_for_each_entry(rdev, &mddev->disks, same_set)
5510 5511 5512
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5513

5514
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5515 5516 5517 5518 5519
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5520 5521 5522 5523 5524 5525
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5526
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5527 5528 5529 5530
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5531
	atomic_set(&conf->reshape_stripes, 0);
5532 5533
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5534
	conf->raid_disks += mddev->delta_disks;
5535 5536
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5537 5538
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5539 5540 5541 5542 5543
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5544
	conf->generation++;
5545 5546 5547 5548
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5549 5550 5551 5552
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5553
	 */
5554 5555
	if (mddev->delta_disks >= 0)
	    list_for_each_entry(rdev, &mddev->disks, same_set)
5556 5557
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5558
			if (raid5_add_disk(mddev, rdev) == 0) {
5559
				char nm[20];
5560
				if (rdev->raid_disk >= conf->previous_raid_disks) {
5561
					set_bit(In_sync, &rdev->flags);
5562 5563
					added_devices++;
				} else
5564
					rdev->recovery_offset = 0;
5565
				sprintf(nm, "rd%d", rdev->raid_disk);
5566 5567
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
N
NeilBrown 已提交
5568
					/* Failure here is OK */;
5569 5570 5571 5572
			} else
				break;
		}

5573
	/* When a reshape changes the number of devices, ->degraded
5574
	 * is measured against the larger of the pre and post number of
5575
	 * devices.*/
5576 5577
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
5578
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5579 5580 5581
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5582
	mddev->raid_disks = conf->raid_disks;
5583
	mddev->reshape_position = conf->reshape_progress;
5584
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5585

5586 5587 5588 5589 5590
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5591
						"reshape");
5592 5593 5594 5595
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5596
		conf->reshape_progress = MaxSector;
5597 5598 5599
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5600
	conf->reshape_checkpoint = jiffies;
5601 5602 5603 5604 5605
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5606 5607 5608
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5609 5610 5611
static void end_reshape(raid5_conf_t *conf)
{

5612 5613 5614
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5615
		conf->previous_raid_disks = conf->raid_disks;
5616
		conf->reshape_progress = MaxSector;
5617
		spin_unlock_irq(&conf->device_lock);
5618
		wake_up(&conf->wait_for_overlap);
5619 5620 5621 5622

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5623
		if (conf->mddev->queue) {
5624
			int data_disks = conf->raid_disks - conf->max_degraded;
5625
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5626
						   / PAGE_SIZE);
5627 5628 5629
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5630 5631 5632
	}
}

5633 5634 5635
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5636 5637
static void raid5_finish_reshape(mddev_t *mddev)
{
5638
	raid5_conf_t *conf = mddev->private;
5639 5640 5641

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5642 5643 5644
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5645
			revalidate_disk(mddev->gendisk);
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5656 5657 5658 5659 5660 5661 5662 5663 5664
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5665
		}
5666
		mddev->layout = conf->algorithm;
5667
		mddev->chunk_sectors = conf->chunk_sectors;
5668 5669
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5670 5671 5672
	}
}

5673 5674
static void raid5_quiesce(mddev_t *mddev, int state)
{
5675
	raid5_conf_t *conf = mddev->private;
5676 5677

	switch(state) {
5678 5679 5680 5681
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5682 5683
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5684 5685 5686 5687
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5688
		wait_event_lock_irq(conf->wait_for_stripe,
5689 5690
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5691
				    conf->device_lock, /* nothing */);
5692
		conf->quiesce = 1;
5693
		spin_unlock_irq(&conf->device_lock);
5694 5695
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5696 5697 5698 5699 5700 5701
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5702
		wake_up(&conf->wait_for_overlap);
5703 5704 5705 5706
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5707

5708

D
Dan Williams 已提交
5709
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5710
{
D
Dan Williams 已提交
5711
	struct raid0_private_data *raid0_priv = mddev->private;
5712

D
Dan Williams 已提交
5713 5714
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5715 5716
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5717 5718 5719 5720
		return ERR_PTR(-EINVAL);
	}

	mddev->new_level = level;
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5754
	mddev->new_chunk_sectors = chunksect;
5755 5756 5757 5758

	return setup_conf(mddev);
}

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5792

5793
static int raid5_check_reshape(mddev_t *mddev)
5794
{
5795 5796 5797 5798
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5799
	 */
5800
	raid5_conf_t *conf = mddev->private;
5801
	int new_chunk = mddev->new_chunk_sectors;
5802

5803
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5804 5805
		return -EINVAL;
	if (new_chunk > 0) {
5806
		if (!is_power_of_2(new_chunk))
5807
			return -EINVAL;
5808
		if (new_chunk < (PAGE_SIZE>>9))
5809
			return -EINVAL;
5810
		if (mddev->array_sectors & (new_chunk-1))
5811 5812 5813 5814 5815 5816
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5817
	if (mddev->raid_disks == 2) {
5818 5819 5820 5821
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5822 5823
		}
		if (new_chunk > 0) {
5824 5825
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5826 5827 5828
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5829
	}
5830
	return check_reshape(mddev);
5831 5832
}

5833
static int raid6_check_reshape(mddev_t *mddev)
5834
{
5835
	int new_chunk = mddev->new_chunk_sectors;
5836

5837
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5838
		return -EINVAL;
5839
	if (new_chunk > 0) {
5840
		if (!is_power_of_2(new_chunk))
5841
			return -EINVAL;
5842
		if (new_chunk < (PAGE_SIZE >> 9))
5843
			return -EINVAL;
5844
		if (mddev->array_sectors & (new_chunk-1))
5845 5846
			/* not factor of array size */
			return -EINVAL;
5847
	}
5848 5849

	/* They look valid */
5850
	return check_reshape(mddev);
5851 5852
}

5853 5854 5855
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5856
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5857 5858 5859 5860
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5861 5862
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5863 5864
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5865 5866 5867 5868 5869
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5870 5871
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5872 5873 5874 5875

	return ERR_PTR(-EINVAL);
}

5876 5877
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5878 5879 5880
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5881
	 */
D
Dan Williams 已提交
5882 5883
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5884 5885 5886 5887 5888 5889 5890 5891
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5892

5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5957
	.size		= raid5_size,
5958
	.check_reshape	= raid6_check_reshape,
5959
	.start_reshape  = raid5_start_reshape,
5960
	.finish_reshape = raid5_finish_reshape,
5961
	.quiesce	= raid5_quiesce,
5962
	.takeover	= raid6_takeover,
5963
};
5964
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5965 5966
{
	.name		= "raid5",
5967
	.level		= 5,
L
Linus Torvalds 已提交
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5979
	.size		= raid5_size,
5980 5981
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5982
	.finish_reshape = raid5_finish_reshape,
5983
	.quiesce	= raid5_quiesce,
5984
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5985 5986
};

5987
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5988
{
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6002
	.size		= raid5_size,
6003 6004
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6005
	.finish_reshape = raid5_finish_reshape,
6006
	.quiesce	= raid5_quiesce,
6007
	.takeover	= raid4_takeover,
6008 6009 6010 6011
};

static int __init raid5_init(void)
{
6012
	register_md_personality(&raid6_personality);
6013 6014 6015
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6016 6017
}

6018
static void raid5_exit(void)
L
Linus Torvalds 已提交
6019
{
6020
	unregister_md_personality(&raid6_personality);
6021 6022
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6023 6024 6025 6026 6027
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6028
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6029
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6030 6031
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6032 6033
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6034 6035 6036 6037 6038 6039 6040
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");