- 14 5月, 2022 22 次提交
-
-
由 Jason A. Donenfeld 提交于
It's too hard to keep the batches synchronized, and pointless anyway, since in !crng_ready(), we're updating the base_crng key really often, where batching only hurts. So instead, if the crng isn't ready, just call into get_random_bytes(). At this stage nothing is performance critical anyhow. Cc: Theodore Ts'o <tytso@mit.edu> Reviewed-by: NDominik Brodowski <linux@dominikbrodowski.net> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
Since the RNG loses freshness with system suspend/hibernation, when we resume, immediately reseed using whatever data we can, which for this particular case is the various timestamps regarding system suspend time, in addition to more generally the RDSEED/RDRAND/RDTSC values that happen whenever the crng reseeds. On systems that suspend and resume automatically all the time -- such as Android -- we skip the reseeding on suspend resumption, since that could wind up being far too busy. This is the same trade-off made in WireGuard. In addition to reseeding upon resumption always mix into the pool these various stamps on every power notification event. Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
Currently, we do the jitter dance if two consecutive reads to the cycle counter return different values. If they do, then we consider the cycle counter to be fast enough that one trip through the scheduler will yield one "bit" of credited entropy. If those two reads return the same value, then we assume the cycle counter is too slow to show meaningful differences. This methodology is flawed for a variety of reasons, one of which Eric posted a patch to fix in [1]. The issue that patch solves is that on a system with a slow counter, you might be [un]lucky and read the counter _just_ before it changes, so that the second cycle counter you read differs from the first, even though there's usually quite a large period of time in between the two. For example: | real time | cycle counter | | --------- | ------------- | | 3 | 5 | | 4 | 5 | | 5 | 5 | | 6 | 5 | | 7 | 5 | <--- a | 8 | 6 | <--- b | 9 | 6 | <--- c If we read the counter at (a) and compare it to (b), we might be fooled into thinking that it's a fast counter, when in reality it is not. The solution in [1] is to also compare counter (b) to counter (c), on the theory that if the counter is _actually_ slow, and (a)!=(b), then certainly (b)==(c). This helps solve this particular issue, in one sense, but in another sense, it mostly functions to disallow jitter entropy on these systems, rather than simply taking more samples in that case. Instead, this patch takes a different approach. Right now we assume that a difference in one set of consecutive samples means one "bit" of credited entropy per scheduler trip. We can extend this so that a difference in two sets of consecutive samples means one "bit" of credited entropy per /two/ scheduler trips, and three for three, and four for four. In other words, we can increase the amount of jitter "work" we require for each "bit", depending on how slow the cycle counter is. So this patch takes whole bunch of samples, sees how many of them are different, and divides to find the amount of work required per "bit", and also requires that at least some minimum of them are different in order to attempt any jitter entropy. Note that this approach is still far from perfect. It's not a real statistical estimate on how much these samples vary; it's not a real-time analysis of the relevant input data. That remains a project for another time. However, it makes the same (partly flawed) assumptions as the code that's there now, so it's probably not worse than the status quo, and it handles the issue Eric mentioned in [1]. But, again, it's probably a far cry from whatever a really robust version of this would be. [1] https://lore.kernel.org/lkml/20220421233152.58522-1-ebiggers@kernel.org/ https://lore.kernel.org/lkml/20220421192939.250680-1-ebiggers@kernel.org/ Cc: Eric Biggers <ebiggers@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
All platforms are now guaranteed to provide some value for random_get_entropy(). In case some bug leads to this not being so, we print a warning, because that indicates that something is really very wrong (and likely other things are impacted too). This should never be hit, but it's a good and cheap way of finding out if something ever is problematic. Since we now have viable fallback code for random_get_entropy() on all platforms, which is, in the worst case, not worse than jiffies, we can count on getting the best possible value out of it. That means there's no longer a use for using jiffies as entropy input. It also means we no longer have a reason for doing the round-robin register flow in the IRQ handler, which was always of fairly dubious value. Instead we can greatly simplify the IRQ handler inputs and also unify the construction between 64-bits and 32-bits. We now collect the cycle counter and the return address, since those are the two things that matter. Because the return address and the irq number are likely related, to the extent we mix in the irq number, we can just xor it into the top unchanging bytes of the return address, rather than the bottom changing bytes of the cycle counter as before. Then, we can do a fixed 2 rounds of SipHash/HSipHash. Finally, we use the same construction of hashing only half of the [H]SipHash state on 32-bit and 64-bit. We're not actually discarding any entropy, since that entropy is carried through until the next time. And more importantly, it lets us do the same sponge-like construction everywhere. Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is really not the best we can do. Instead, at least calling random_get_entropy_fallback() would be preferable, because that always needs to return _something_, even falling back to jiffies eventually. It's not as though random_get_entropy_fallback() is super high precision or guaranteed to be entropic, but basically anything that's not zero all the time is better than returning zero all the time. This is accomplished by just including the asm-generic code like on other architectures, which means we can get rid of the empty stub function here. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Acked-by: NMax Filippov <jcmvbkbc@gmail.com> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is really not the best we can do. Instead, at least calling random_get_entropy_fallback() would be preferable, because that always needs to return _something_, even falling back to jiffies eventually. It's not as though random_get_entropy_fallback() is super high precision or guaranteed to be entropic, but basically anything that's not zero all the time is better than returning zero all the time. This is accomplished by just including the asm-generic code like on other architectures, which means we can get rid of the empty stub function here. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is really not the best we can do. Instead, at least calling random_get_entropy_fallback() would be preferable, because that always needs to return _something_, even falling back to jiffies eventually. It's not as though random_get_entropy_fallback() is super high precision or guaranteed to be entropic, but basically anything that's not zero all the time is better than returning zero all the time. This is accomplished by just including the asm-generic code like on other architectures, which means we can get rid of the empty stub function here. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Richard Weinberger <richard@nod.at> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Acked-by: NJohannes Berg <johannes@sipsolutions.net> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is suboptimal. Instead, fallback to calling random_get_entropy_fallback(), which isn't extremely high precision or guaranteed to be entropic, but is certainly better than returning zero all the time. If CONFIG_X86_TSC=n, then it's possible for the kernel to run on systems without RDTSC, such as 486 and certain 586, so the fallback code is only required for that case. As well, fix up both the new function and the get_cycles() function from which it was derived to use cpu_feature_enabled() rather than boot_cpu_has(), and use !IS_ENABLED() instead of #ifndef. Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: x86@kernel.org
-
由 Jason A. Donenfeld 提交于
In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is really not the best we can do. Instead, at least calling random_get_entropy_fallback() would be preferable, because that always needs to return _something_, even falling back to jiffies eventually. It's not as though random_get_entropy_fallback() is super high precision or guaranteed to be entropic, but basically anything that's not zero all the time is better than returning zero all the time. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Acked-by: NDinh Nguyen <dinguyen@kernel.org> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is really not the best we can do. Instead, at least calling random_get_entropy_fallback() would be preferable, because that always needs to return _something_, even falling back to jiffies eventually. It's not as though random_get_entropy_fallback() is super high precision or guaranteed to be entropic, but basically anything that's not zero all the time is better than returning zero all the time. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Reviewed-by: NRussell King (Oracle) <rmk+kernel@armlinux.org.uk> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
For situations in which we don't have a c0 counter register available, we've been falling back to reading the c0 "random" register, which is usually bounded by the amount of TLB entries and changes every other cycle or so. This means it wraps extremely often. We can do better by combining this fast-changing counter with a potentially slower-changing counter from random_get_entropy_fallback() in the more significant bits. This commit combines the two, taking into account that the changing bits are in a different bit position depending on the CPU model. In addition, we previously were falling back to 0 for ancient CPUs that Linux does not support anyway; remove that dead path entirely. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Tested-by: NMaciej W. Rozycki <macro@orcam.me.uk> Acked-by: NThomas Bogendoerfer <tsbogend@alpha.franken.de> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is really not the best we can do. Instead, at least calling random_get_entropy_fallback() would be preferable, because that always needs to return _something_, even falling back to jiffies eventually. It's not as though random_get_entropy_fallback() is super high precision or guaranteed to be entropic, but basically anything that's not zero all the time is better than returning zero all the time. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Paul Walmsley <paul.walmsley@sifive.com> Acked-by: NPalmer Dabbelt <palmer@rivosinc.com> Reviewed-by: NPalmer Dabbelt <palmer@rivosinc.com> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is really not the best we can do. Instead, at least calling random_get_entropy_fallback() would be preferable, because that always needs to return _something_, even falling back to jiffies eventually. It's not as though random_get_entropy_fallback() is super high precision or guaranteed to be entropic, but basically anything that's not zero all the time is better than returning zero all the time. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Acked-by: NGeert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
The addition of random_get_entropy_fallback() provides access to whichever time source has the highest frequency, which is useful for gathering entropy on platforms without available cycle counters. It's not necessarily as good as being able to quickly access a cycle counter that the CPU has, but it's still something, even when it falls back to being jiffies-based. In the event that a given arch does not define get_cycles(), falling back to the get_cycles() default implementation that returns 0 is really not the best we can do. Instead, at least calling random_get_entropy_fallback() would be preferable, because that always needs to return _something_, even falling back to jiffies eventually. It's not as though random_get_entropy_fallback() is super high precision or guaranteed to be entropic, but basically anything that's not zero all the time is better than returning zero all the time. Finally, since random_get_entropy_fallback() is used during extremely early boot when randomizing freelists in mm_init(), it can be called before timekeeping has been initialized. In that case there really is nothing we can do; jiffies hasn't even started ticking yet. So just give up and return 0. Suggested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Theodore Ts'o <tytso@mit.edu>
-
由 Jason A. Donenfeld 提交于
In order to measure the boot process, the timer should be switched on as early in boot as possible. As well, the commit defines the get_cycles macro, like the previous patches in this series, so that generic code is aware that it's implemented by the platform, as is done on other archs. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Jonas Bonn <jonas@southpole.se> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Acked-by: NStafford Horne <shorne@gmail.com> Reported-by: NGuenter Roeck <linux@roeck-us.net> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
PowerPC defines a get_cycles() function, but it does not do the usual `#define get_cycles get_cycles` dance, making it impossible for generic code to see if an arch-specific function was defined. While the get_cycles() ifdef is not currently used, the following timekeeping patch in this series will depend on the macro existing (or not existing) when defining random_get_entropy(). Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@ozlabs.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
Alpha defines a get_cycles() function, but it does not do the usual `#define get_cycles get_cycles` dance, making it impossible for generic code to see if an arch-specific function was defined. While the get_cycles() ifdef is not currently used, the following timekeeping patch in this series will depend on the macro existing (or not existing) when defining random_get_entropy(). Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Acked-by: NMatt Turner <mattst88@gmail.com> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
PA-RISC defines a get_cycles() function, but it does not do the usual `#define get_cycles get_cycles` dance, making it impossible for generic code to see if an arch-specific function was defined. While the get_cycles() ifdef is not currently used, the following timekeeping patch in this series will depend on the macro existing (or not existing) when defining random_get_entropy(). Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Acked-by: NHelge Deller <deller@gmx.de> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
S390x defines a get_cycles() function, but it does not do the usual `#define get_cycles get_cycles` dance, making it impossible for generic code to see if an arch-specific function was defined. While the get_cycles() ifdef is not currently used, the following timekeeping patch in this series will depend on the macro existing (or not existing) when defining random_get_entropy(). Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Acked-by: NHeiko Carstens <hca@linux.ibm.com> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
Itanium defines a get_cycles() function, but it does not do the usual `#define get_cycles get_cycles` dance, making it impossible for generic code to see if an arch-specific function was defined. While the get_cycles() ifdef is not currently used, the following timekeeping patch in this series will depend on the macro existing (or not existing) when defining random_get_entropy(). Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
Currently time_init() is called after rand_initialize(), but rand_initialize() makes use of the timer on various platforms, and sometimes this timer needs to be initialized by time_init() first. In order for random_get_entropy() to not return zero during early boot when it's potentially used as an entropy source, reverse the order of these two calls. The block doing random initialization was right before time_init() before, so changing the order shouldn't have any complicated effects. Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: NStafford Horne <shorne@gmail.com> Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
由 Jason A. Donenfeld 提交于
A semicolon was missing, and the almost-alphabetical-but-not ordering was confusing, so regroup these by category instead. Signed-off-by: NJason A. Donenfeld <Jason@zx2c4.com>
-
- 09 5月, 2022 18 次提交
-
-
由 Linus Torvalds 提交于
-
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux由 Linus Torvalds 提交于
Pull parisc architecture fixes from Helge Deller: "Some reverts of existing patches, which were necessary because of boot issues due to wrong CPU clock handling and cache issues which led to userspace segfaults with 32bit kernels. Dave has a whole bunch of upcoming cache fixes which I then plan to push in the next merge window. Other than that just small updates and fixes, e.g. defconfig updates, spelling fixes, a clocksource fix, boot topology fixes and a fix for /proc/cpuinfo output to satisfy lscpu" * tag 'for-5.18/parisc-3' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux: Revert "parisc: Increase parisc_cache_flush_threshold setting" parisc: Mark cr16 clock unstable on all SMP machines parisc: Fix typos in comments parisc: Change MAX_ADDRESS to become unsigned long long parisc: Merge model and model name into one line in /proc/cpuinfo parisc: Re-enable GENERIC_CPU_DEVICES for !SMP parisc: Update 32- and 64-bit defconfigs parisc: Only list existing CPUs in cpu_possible_mask Revert "parisc: Fix patch code locking and flushing" Revert "parisc: Mark sched_clock unstable only if clocks are not syncronized" Revert "parisc: Mark cr16 CPU clocksource unstable on all SMP machines"
-
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux由 Linus Torvalds 提交于
Pull powerpc fixes from Michael Ellerman: - Fix the DWARF CFI in our VDSO time functions, allowing gdb to backtrace through them correctly. - Fix a buffer overflow in the papr_scm driver, only triggerable by hypervisor input. - A fix in the recently added QoS handling for VAS (used for communicating with coprocessors). Thanks to Alan Modra, Haren Myneni, Kajol Jain, and Segher Boessenkool. * tag 'powerpc-5.18-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: powerpc/papr_scm: Fix buffer overflow issue with CONFIG_FORTIFY_SOURCE powerpc/vdso: Fix incorrect CFI in gettimeofday.S powerpc/pseries/vas: Use QoS credits from the userspace
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip由 Linus Torvalds 提交于
Pull x86 fix from Thomas Gleixner: "A fix and an email address update: - Prevent FPU state corruption. The condition in irq_fpu_usable() grants FPU usage when the FPU is not used in the kernel. That's just wrong as it does not take the fpregs_lock()'ed regions into account. If FPU usage happens within such a region from interrupt context, then the FPU state gets corrupted. That's a long standing bug, which got unearthed by the recent changes to the random code. - Josh wants to use his kernel.org email address" * tag 'x86-urgent-2022-05-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fpu: Prevent FPU state corruption MAINTAINERS: Update Josh Poimboeuf's email address
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip由 Linus Torvalds 提交于
Pull timer fix from Thomas Gleixner: "A fix and an email address update: - Mark the NMI safe time accessors notrace to prevent tracer recursion when they are selected as trace clocks. - John Stultz has a new email address" * tag 'timers-urgent-2022-05-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: timekeeping: Mark NMI safe time accessors as notrace MAINTAINERS: Update email address for John Stultz
-
由 Helge Deller 提交于
This reverts commit a58e9d09. Triggers segfaults with 32-bit kernels on PA8500 machines. Signed-off-by: NHelge Deller <deller@gmx.de>
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip由 Linus Torvalds 提交于
Pull irq fix from Thomas Gleixner: "A fix for the threaded interrupt core. A quick sequence of request/free_irq() can result in a hang because the interrupt thread did not reach the thread function and got stopped in the kthread core already. That leaves a state active counter arround which makes a invocation of synchronized_irq() on that interrupt hang forever. Ensure that the thread reached the thread function in request_irq() to prevent that" * tag 'irq-urgent-2022-05-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: genirq: Synchronize interrupt thread startup
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip由 Linus Torvalds 提交于
Pull locking fixlet from Thomas Gleixner: "Just a email address update for MAINTAINERS and mailmap" * tag 'locking-urgent-2022-05-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: futex: MAINTAINERS, .mailmap: Update André's email address
-
由 Helge Deller 提交于
The cr16 interval timers are not synchronized across CPUs, even with just one dual-core CPU. This becomes visible if the machines have a longer uptime. Signed-off-by: NHelge Deller <deller@gmx.de>
-
由 Julia Lawall 提交于
Various spelling mistakes in comments. Detected with the help of Coccinelle. Signed-off-by: NJulia Lawall <Julia.Lawall@inria.fr> Signed-off-by: NHelge Deller <deller@gmx.de>
-
由 Helge Deller 提交于
Dave noticed that for the 32-bit kernel MAX_ADDRESS should be a ULL, otherwise this define would become 0: MAX_ADDRESS (1UL << MAX_ADDRBITS) It has no real effect on the kernel. Signed-off-by: NHelge Deller <deller@gmx.de> Noticed-by: NJohn David Anglin <dave.anglin@bell.net>
-
由 Helge Deller 提交于
The Linux tool "lscpu" shows the double amount of CPUs if we have "model" and "model name" in two different lines in /proc/cpuinfo. This change combines the model and the model name into one line. Signed-off-by: NHelge Deller <deller@gmx.de> Cc: stable@vger.kernel.org
-
由 Helge Deller 提交于
In commit 62773112 ("parisc: Switch from GENERIC_CPU_DEVICES to GENERIC_ARCH_TOPOLOGY") GENERIC_CPU_DEVICES was unconditionally turned off, but this triggers a warning in topology_add_dev(). Turning it back on for the !SMP case avoids this warning. Reported-by: NGuenter Roeck <linux@roeck-us.net> Tested-by: NGuenter Roeck <linux@roeck-us.net> Fixes: 62773112 ("parisc: Switch from GENERIC_CPU_DEVICES to GENERIC_ARCH_TOPOLOGY") Signed-off-by: NHelge Deller <deller@gmx.de>
-
由 Helge Deller 提交于
Enable CONFIG_CGROUPS=y on 32-bit defconfig for systemd-support, and enable CONFIG_NAMESPACES and CONFIG_USER_NS. Signed-off-by: NHelge Deller <deller@gmx.de>
-
由 Helge Deller 提交于
The inventory knows which CPUs are in the system, so this bitmask should be in cpu_possible_mask instead of the bitmask based on CONFIG_NR_CPUS. Reset the cpu_possible_mask before scanning the system for CPUs, and mark each existing CPU as possible during initialization of that CPU. This avoids those warnings later on too: register_cpu_capacity_sysctl: too early to get CPU4 device! Signed-off-by: NHelge Deller <deller@gmx.de> Noticed-by: NJohn David Anglin <dave.anglin@bell.net>
-
由 Helge Deller 提交于
This reverts commit a9fe7fa7. Leads to segfaults on 32bit kernel. Signed-off-by: NHelge Deller <deller@gmx.de>
-
由 Helge Deller 提交于
This reverts commit d97180ad. It triggers RCU stalls at boot with a 32-bit kernel. Signed-off-by: NHelge Deller <deller@gmx.de> Noticed-by: NJohn David Anglin <dave.anglin@bell.net> Cc: stable@vger.kernel.org # v5.15+
-
由 Helge Deller 提交于
This reverts commit afdb4a5b. It triggers RCU stalls at boot with a 32-bit kernel. Signed-off-by: NHelge Deller <deller@gmx.de> Noticed-by: NJohn David Anglin <dave.anglin@bell.net> Cc: stable@vger.kernel.org # v5.16+
-