random.c 48.8 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
 * various pieces of data are hashed. Some of that data is then "credited" as
 * having a certain number of bits of entropy. When enough bits of entropy are
 * available, the hash is finalized and handed as a key to a stream cipher that
 * expands it indefinitely for various consumers. This key is periodically
 * refreshed as the various entropy collectors, described below, add data to the
 * input pool and credit it. There is currently no Fortuna-like scheduler
 * involved, which can lead to malicious entropy sources causing a premature
 * reseed, and the entropy estimates are, at best, conservative guesses.
L
Linus Torvalds 已提交
26 27
 */

Y
Yangtao Li 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
43
#include <linux/mm.h>
44
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
45
#include <linux/spinlock.h>
46
#include <linux/kthread.h>
L
Linus Torvalds 已提交
47
#include <linux/percpu.h>
48
#include <linux/ptrace.h>
49
#include <linux/workqueue.h>
50
#include <linux/irq.h>
51
#include <linux/ratelimit.h>
52 53
#include <linux/syscalls.h>
#include <linux/completion.h>
54
#include <linux/uuid.h>
55
#include <linux/uaccess.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73 74 75 76 77
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
78
 * crng_init is protected by base_crng->lock, and only increases
79 80 81
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
82
#define crng_ready() (likely(crng_init > 1))
83 84 85 86 87
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);
88

89
/* Control how we warn userspace. */
90 91 92 93 94 95 96 97
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

	if (crng_ready())
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (crng_ready())
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


242
/*********************************************************************
L
Linus Torvalds 已提交
243
 *
244
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
245
 *
246 247 248
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
249
 *
250 251 252 253 254 255 256 257 258 259 260 261 262
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
 * into the given buffer or as a return value. This is equivalent to
 * a read from /dev/urandom. The integer family of functions may be
 * higher performance for one-off random integers, because they do a
 * bit of buffering.
263 264 265
 *
 *********************************************************************/

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
enum {
	CRNG_RESEED_INTERVAL = 300 * HZ,
	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
};

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
290

291 292
/* Used by crng_reseed() to extract a new seed from the input pool. */
static bool drain_entropy(void *buf, size_t nbytes);
293

294
/*
295 296 297
 * This extracts a new crng key from the input pool, but only if there is a
 * sufficient amount of entropy available, in order to mitigate bruteforcing
 * of newly added bits.
298
 */
299
static void crng_reseed(void)
300
{
301
	unsigned long flags;
302 303
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
304
	bool finalize_init = false;
305

306 307 308
	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
	if (!drain_entropy(key, sizeof(key)))
		return;
309

310 311 312 313 314 315 316 317 318 319 320 321 322
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
323 324
	if (crng_init < 2) {
		crng_init = 2;
325 326 327 328 329
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
	}
345 346
}

347
/*
348 349 350 351 352
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
353 354 355 356
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
357
{
358
	u8 first_block[CHACHA_BLOCK_SIZE];
359

360 361 362 363 364 365 366 367 368 369
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
	memzero_explicit(first_block, sizeof(first_block));
370 371
}

372
/*
373 374 375
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
376
 */
377 378
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
379
{
380
	unsigned long flags;
381
	struct crng *crng;
382

383 384 385 386 387 388
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
	 * ready, we do fast key erasure with the base_crng directly, because
389
	 * this is what crng_pre_init_inject() mutates during early init.
390 391 392 393 394 395 396 397 398 399 400 401
	 */
	if (unlikely(!crng_ready())) {
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
		if (!ready)
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
402
	}
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

	/*
	 * If the base_crng is more than 5 minutes old, we reseed, which
	 * in turn bumps the generation counter that we check below.
	 */
	if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL)))
		crng_reseed();

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
437 438
}

439
/*
440 441 442 443 444
 * This function is for crng_init == 0 only. It loads entropy directly
 * into the crng's key, without going through the input pool. It is,
 * generally speaking, not very safe, but we use this only at early
 * boot time when it's better to have something there rather than
 * nothing.
445
 *
446 447 448 449 450 451 452 453 454 455 456
 * There are two paths, a slow one and a fast one. The slow one
 * hashes the input along with the current key. The fast one simply
 * xors it in, and should only be used from interrupt context.
 *
 * If account is set, then the crng_init_cnt counter is incremented.
 * This shouldn't be set by functions like add_device_randomness(),
 * where we can't trust the buffer passed to it is guaranteed to be
 * unpredictable (so it might not have any entropy at all).
 *
 * Returns the number of bytes processed from input, which is bounded
 * by CRNG_INIT_CNT_THRESH if account is true.
457
 */
458 459
static size_t crng_pre_init_inject(const void *input, size_t len,
				   bool fast, bool account)
460 461 462 463
{
	static int crng_init_cnt = 0;
	unsigned long flags;

464 465 466 467 468 469 470
	if (fast) {
		if (!spin_trylock_irqsave(&base_crng.lock, flags))
			return 0;
	} else {
		spin_lock_irqsave(&base_crng.lock, flags);
	}

471 472 473 474 475
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return 0;
	}

476 477
	if (account)
		len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
478

479 480 481
	if (fast) {
		const u8 *src = input;
		size_t i;
482

483 484 485 486 487 488 489 490 491 492
		for (i = 0; i < len; ++i)
			base_crng.key[(crng_init_cnt + i) %
				      sizeof(base_crng.key)] ^= src[i];
	} else {
		struct blake2s_state hash;

		blake2s_init(&hash, sizeof(base_crng.key));
		blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
		blake2s_update(&hash, input, len);
		blake2s_final(&hash, base_crng.key);
493 494
	}

495 496 497 498 499 500 501
	if (account) {
		crng_init_cnt += len;
		if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
			++base_crng.generation;
			crng_init = 1;
		}
	}
502 503

	spin_unlock_irqrestore(&base_crng.lock, flags);
504 505 506 507 508

	if (crng_init == 1)
		pr_notice("fast init done\n");

	return len;
509 510 511
}

static void _get_random_bytes(void *buf, size_t nbytes)
512
{
513
	u32 chacha_state[CHACHA_STATE_WORDS];
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
	bool large_request = nbytes > 256;
	ssize_t ret = 0;
	size_t len;
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, output, len);

	if (copy_to_user(buf, output, len))
		return -EFAULT;
	nbytes -= len;
	buf += len;
	ret += len;

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current))
				break;
			schedule();
		}

		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
		if (copy_to_user(buf, output, len)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= len;
		buf += len;
		ret += len;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
	memzero_explicit(output, sizeof(output));
	return ret;
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
 *     static void credit_entropy_bits(size_t nbits)
 *
 * Finally, extract entropy via these two, with the latter one
 * setting the entropy count to zero and extracting only if there
 * is POOL_MIN_BITS entropy credited prior:
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
 *     static bool drain_entropy(void *buf, size_t nbytes)
 *
 **********************************************************************/

801 802 803 804 805
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
};

806
/* For notifying userspace should write into /dev/random. */
807 808 809 810 811 812 813 814 815 816 817 818 819 820
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
	unsigned int entropy_count;
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

821 822 823 824
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
825 826 827 828 829 830

/*
 * This function adds bytes into the entropy "pool".  It does not
 * update the entropy estimate.  The caller should call
 * credit_entropy_bits if this is appropriate.
 */
831
static void mix_pool_bytes(const void *in, size_t nbytes)
832
{
833 834 835 836 837
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
838 839
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
static void credit_entropy_bits(size_t nbits)
{
	unsigned int entropy_count, orig, add;

	if (!nbits)
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);

	if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
		crng_reseed();
}

/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
863 864
{
	unsigned long flags;
865 866 867 868 869 870 871 872 873 874 875 876
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
877 878

	spin_lock_irqsave(&input_pool.lock, flags);
879 880 881 882 883 884 885 886 887

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

888
	spin_unlock_irqrestore(&input_pool.lock, flags);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

/*
 * First we make sure we have POOL_MIN_BITS of entropy in the pool, and then we
 * set the entropy count to zero (but don't actually touch any data). Only then
 * can we extract a new key with extract_entropy().
 */
static bool drain_entropy(void *buf, size_t nbytes)
{
	unsigned int entropy_count;
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
		if (entropy_count < POOL_MIN_BITS)
			return false;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf, nbytes);
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);
	return true;
921 922
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
 *	void add_interrupt_randomness(int irq);
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The above two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);
982 983

/*
984 985 986 987 988
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
989
 */
990
int __init rand_initialize(void)
991
{
992 993 994 995
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
996

997 998 999 1000 1001 1002
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
1003
		_mix_pool_bytes(&rv, sizeof(rv));
1004
	}
1005 1006
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
1007

1008 1009
	extract_entropy(base_crng.key, sizeof(base_crng.key));
	++base_crng.generation;
1010

1011 1012 1013 1014
	if (arch_init && trust_cpu && crng_init < 2) {
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}
1015

1016 1017 1018 1019 1020
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
	return 0;
1021
}
1022

L
Linus Torvalds 已提交
1023 1024 1025
/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1026
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1027 1028
};

1029
/*
1030 1031
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1032
 *
1033 1034 1035
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1036
 */
1037
void add_device_randomness(const void *buf, size_t size)
1038
{
1039
	unsigned long time = random_get_entropy() ^ jiffies;
1040
	unsigned long flags;
1041

1042
	if (crng_init == 0 && size)
1043
		crng_pre_init_inject(buf, size, false, false);
1044

1045
	spin_lock_irqsave(&input_pool.lock, flags);
1046 1047
	_mix_pool_bytes(buf, size);
	_mix_pool_bytes(&time, sizeof(time));
1048
	spin_unlock_irqrestore(&input_pool.lock, flags);
1049 1050 1051
}
EXPORT_SYMBOL(add_device_randomness);

L
Linus Torvalds 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
1062
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
L
Linus Torvalds 已提交
1063 1064 1065
{
	struct {
		long jiffies;
1066 1067
		unsigned int cycles;
		unsigned int num;
L
Linus Torvalds 已提交
1068 1069 1070 1071
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1072
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1073
	sample.num = num;
1074
	mix_pool_bytes(&sample, sizeof(sample));
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1081 1082
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
1083

1084 1085
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1086

1087 1088
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1100

1101 1102 1103
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1104
	 * and limit entropy estimate to 12 bits.
1105
	 */
1106
	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
1107 1108
}

1109
void add_input_randomness(unsigned int type, unsigned int code,
1110
			  unsigned int value)
L
Linus Torvalds 已提交
1111 1112
{
	static unsigned char last_value;
1113
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
L
Linus Torvalds 已提交
1114

1115
	/* Ignore autorepeat and the like. */
L
Linus Torvalds 已提交
1116 1117 1118 1119 1120 1121 1122
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
1123
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
	if (unlikely(crng_init == 0)) {
1160
		size_t ret = crng_pre_init_inject(buffer, count, false, true);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		mix_pool_bytes(buffer, ret);
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
	}

	/*
	 * Throttle writing if we're above the trickle threshold.
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
	 */
	wait_event_interruptible_timeout(random_write_wait,
			!system_wq || kthread_should_stop() ||
			input_pool.entropy_count < POOL_MIN_BITS,
			CRNG_RESEED_INTERVAL);
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
 * Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

struct fast_pool {
	union {
		u32 pool32[4];
		u64 pool64[2];
	};
1203
	struct work_struct mix;
1204
	unsigned long last;
1205
	unsigned int count;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	u16 reg_idx;
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector. It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
static void fast_mix(u32 pool[4])
{
	u32 a = pool[0],	b = pool[1];
	u32 c = pool[2],	d = pool[3];

	a += b;			c += d;
	b = rol32(b, 6);	d = rol32(d, 27);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 16);	d = rol32(d, 14);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 6);	d = rol32(d, 27);
	d ^= a;			b ^= c;

	a += b;			c += d;
	b = rol32(b, 16);	d = rol32(d, 14);
	d ^= a;			b ^= c;

	pool[0] = a;  pool[1] = b;
	pool[2] = c;  pool[3] = d;
}

1239 1240
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1264
static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
1265
{
1266
	unsigned long *ptr = (unsigned long *)regs;
1267
	unsigned int idx;
1268 1269 1270

	if (regs == NULL)
		return 0;
1271
	idx = READ_ONCE(f->reg_idx);
1272
	if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
1273 1274 1275
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1276
	return *ptr;
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
	u32 pool[4];

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
	memcpy(pool, fast_pool->pool32, sizeof(pool));
1296
	fast_pool->count = 0;
1297 1298 1299 1300 1301 1302 1303 1304
	fast_pool->last = jiffies;
	local_irq_enable();

	mix_pool_bytes(pool, sizeof(pool));
	credit_entropy_bits(1);
	memzero_explicit(pool, sizeof(pool));
}

1305
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1306
{
1307
	enum { MIX_INFLIGHT = 1U << 31 };
1308 1309 1310 1311
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
	unsigned long now = jiffies;
	cycles_t cycles = random_get_entropy();
1312
	unsigned int new_count;
1313

1314 1315
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	if (sizeof(cycles) == 8)
		fast_pool->pool64[0] ^= cycles ^ rol64(now, 32) ^ irq;
	else {
		fast_pool->pool32[0] ^= cycles ^ irq;
		fast_pool->pool32[1] ^= now;
	}

	if (sizeof(unsigned long) == 8)
		fast_pool->pool64[1] ^= regs ? instruction_pointer(regs) : _RET_IP_;
	else {
		fast_pool->pool32[2] ^= regs ? instruction_pointer(regs) : _RET_IP_;
		fast_pool->pool32[3] ^= get_reg(fast_pool, regs);
	}

	fast_mix(fast_pool->pool32);
1332
	new_count = ++fast_pool->count;
1333

T
Theodore Ts'o 已提交
1334
	if (unlikely(crng_init == 0)) {
1335
		if (new_count >= 64 &&
1336 1337
		    crng_pre_init_inject(fast_pool->pool32, sizeof(fast_pool->pool32),
					 true, true) > 0) {
1338
			fast_pool->count = 0;
1339
			fast_pool->last = now;
1340
			if (spin_trylock(&input_pool.lock)) {
1341
				_mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32));
1342 1343
				spin_unlock(&input_pool.lock);
			}
1344 1345 1346 1347
		}
		return;
	}

1348
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1349 1350
		return;

1351
	if (new_count < 64 && !time_after(now, fast_pool->last + HZ))
1352
		return;
1353

1354 1355
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1356
	fast_pool->count |= MIX_INFLIGHT;
1357
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1358
}
1359
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1376
	credit_entropy_bits(1);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
1399
			mod_timer(&stack.timer, jiffies + 1);
1400
		mix_pool_bytes(&stack.now, sizeof(stack.now));
1401 1402 1403 1404 1405 1406
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1407
	mix_pool_bytes(&stack.now, sizeof(stack.now));
1408 1409
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1441
{
1442 1443
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1444

1445 1446 1447 1448 1449 1450
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1451

1452 1453
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1454

1455 1456
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1457

1458 1459 1460 1461 1462 1463 1464
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1465 1466
}

1467
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1468
{
1469
	__poll_t mask;
L
Linus Torvalds 已提交
1470

1471
	poll_wait(file, &crng_init_wait, wait);
1472 1473
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1474
	if (crng_ready())
1475
		mask |= EPOLLIN | EPOLLRDNORM;
1476
	if (input_pool.entropy_count < POOL_MIN_BITS)
1477
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1478 1479 1480
	return mask;
}

1481
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1482
{
1483
	size_t len;
1484
	int ret = 0;
1485
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1486

1487 1488
	while (count) {
		len = min(count, sizeof(block));
1489 1490 1491 1492
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1493 1494 1495
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1496
		cond_resched();
L
Linus Torvalds 已提交
1497
	}
1498

1499 1500 1501
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1502 1503
}

1504 1505
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1506
{
1507
	int ret;
1508

1509
	ret = write_pool(buffer, count);
1510 1511 1512 1513
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1514 1515
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
{
	static int maxwarn = 10;

	if (!crng_ready() && maxwarn > 0) {
		maxwarn--;
		if (__ratelimit(&urandom_warning))
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
	}

	return get_random_bytes_user(buf, nbytes);
}

static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1542
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1543 1544 1545 1546 1547 1548 1549
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1550
		/* Inherently racy, no point locking. */
1551
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1552 1553 1554 1555 1556 1557 1558
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1559 1560 1561 1562
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1572
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1573 1574
		if (retval < 0)
			return retval;
1575 1576
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1577 1578
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1579 1580 1581 1582
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1583 1584
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1585
		if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
1586 1587 1588
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1589
		return 0;
1590 1591 1592 1593 1594
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1595
		crng_reseed();
1596
		return 0;
L
Linus Torvalds 已提交
1597 1598 1599 1600 1601
	default:
		return -EINVAL;
	}
}

1602 1603 1604 1605 1606
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1607
const struct file_operations random_fops = {
1608
	.read = random_read,
L
Linus Torvalds 已提交
1609
	.write = random_write,
1610
	.poll = random_poll,
M
Matt Mackall 已提交
1611
	.unlocked_ioctl = random_ioctl,
1612
	.compat_ioctl = compat_ptr_ioctl,
1613
	.fasync = random_fasync,
1614
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1615 1616
};

1617
const struct file_operations urandom_fops = {
1618
	.read = urandom_read,
L
Linus Torvalds 已提交
1619
	.write = random_write,
M
Matt Mackall 已提交
1620
	.unlocked_ioctl = random_ioctl,
1621
	.compat_ioctl = compat_ptr_ioctl,
1622
	.fasync = random_fasync,
1623
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1624 1625
};

1626

L
Linus Torvalds 已提交
1627 1628
/********************************************************************
 *
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
 *   more entropy, tied to the POOL_MIN_BITS constant. It is writable
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
 * - urandom_min_reseed_secs - fixed to the meaningless value "60".
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1661 1662
static int sysctl_random_min_urandom_seed = 60;
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1663
static int sysctl_poolsize = POOL_BITS;
1664
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1665 1666

/*
G
Greg Price 已提交
1667
 * This function is used to return both the bootid UUID, and random
1668
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1669 1670
 * then a new UUID is generated and returned to the user.
 */
1671 1672
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1673
{
1674 1675 1676 1677 1678 1679 1680 1681 1682
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1688 1689 1690 1691 1692 1693 1694 1695
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1696

1697 1698
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1699 1700
}

1701
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1702 1703 1704 1705 1706
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1707
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1708 1709 1710
	},
	{
		.procname	= "entropy_avail",
1711
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1712 1713
		.maxlen		= sizeof(int),
		.mode		= 0444,
1714
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1715 1716 1717
	},
	{
		.procname	= "write_wakeup_threshold",
1718
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1719 1720
		.maxlen		= sizeof(int),
		.mode		= 0644,
1721
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1722
	},
1723 1724
	{
		.procname	= "urandom_min_reseed_secs",
1725
		.data		= &sysctl_random_min_urandom_seed,
1726 1727 1728 1729
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
1730 1731 1732 1733
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1734
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1735 1736 1737 1738
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1739
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1740
	},
1741
	{ }
L
Linus Torvalds 已提交
1742
};
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1754
#endif