intel-iommu.c 159.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright © 2006-2014 Intel Corporation.
4
 *
5 6 7 8 9
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
10
 *          Joerg Roedel <jroedel@suse.de>
11 12
 */

J
Joerg Roedel 已提交
13
#define pr_fmt(fmt)     "DMAR: " fmt
14
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
15

16 17
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
18
#include <linux/debugfs.h>
19
#include <linux/export.h>
20 21 22 23 24 25 26 27
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
28
#include <linux/memory.h>
29
#include <linux/cpu.h>
M
mark gross 已提交
30
#include <linux/timer.h>
31
#include <linux/io.h>
K
Kay, Allen M 已提交
32
#include <linux/iova.h>
33
#include <linux/iommu.h>
K
Kay, Allen M 已提交
34
#include <linux/intel-iommu.h>
35
#include <linux/syscore_ops.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
39
#include <linux/memblock.h>
A
Akinobu Mita 已提交
40
#include <linux/dma-contiguous.h>
41
#include <linux/dma-direct.h>
42
#include <linux/crash_dump.h>
43
#include <linux/numa.h>
44
#include <linux/swiotlb.h>
45
#include <asm/irq_remapping.h>
46
#include <asm/cacheflush.h>
47
#include <asm/iommu.h>
48
#include <trace/events/intel_iommu.h>
49

50
#include "irq_remapping.h"
L
Lu Baolu 已提交
51
#include "intel-pasid.h"
52

F
Fenghua Yu 已提交
53 54 55
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

56
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60 61 62 63 64

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

65
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
66

F
Fenghua Yu 已提交
67
#define MAX_AGAW_WIDTH 64
68
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
69

70 71 72 73 74 75 76 77
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78

79 80 81
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

82
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
83

84 85 86 87
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

106 107 108 109 110 111 112
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
113
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
114 115 116 117
}

static inline int width_to_agaw(int width)
{
118
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
145

146 147
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
148
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
171 172 173
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

174
static void __init check_tylersburg_isoch(void);
175 176
static int rwbf_quirk;

177 178 179 180 181
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
182
int intel_iommu_tboot_noforce;
183
static int no_platform_optin;
184

185 186
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
207

208 209
	return re->hi & VTD_PAGE_MASK;
}
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
232 233 234
{
	return (context->lo & 1);
}
235

236
bool context_present(struct context_entry *context)
237 238 239 240 241 242
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
263
	context->lo &= ~VTD_PAGE_MASK;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

279 280 281 282 283
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

284 285 286 287 288
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
289

290 291 292 293 294 295
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
296 297
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
298 299

/* si_domain contains mulitple devices */
300
#define DOMAIN_FLAG_STATIC_IDENTITY		BIT(0)
301

302 303 304 305 306 307 308 309
/*
 * This is a DMA domain allocated through the iommu domain allocation
 * interface. But one or more devices belonging to this domain have
 * been chosen to use a private domain. We should avoid to use the
 * map/unmap/iova_to_phys APIs on it.
 */
#define DOMAIN_FLAG_LOSE_CHILDREN		BIT(1)

310 311 312 313 314 315 316 317
/*
 * When VT-d works in the scalable mode, it allows DMA translation to
 * happen through either first level or second level page table. This
 * bit marks that the DMA translation for the domain goes through the
 * first level page table, otherwise, it goes through the second level.
 */
#define DOMAIN_FLAG_USE_FIRST_LEVEL		BIT(2)

318 319 320 321 322 323
/*
 * Domain represents a virtual machine which demands iommu nested
 * translation mode support.
 */
#define DOMAIN_FLAG_NESTING_MODE		BIT(3)

324 325 326 327
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

328 329 330 331 332
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
333
	struct dmar_dev_scope *devices;	/* target devices */
334 335 336 337 338 339
	int	devices_cnt;		/* target device count */
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
340
	struct dmar_dev_scope *devices;	/* target devices */
341 342 343 344 345 346 347 348 349 350
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
351 352 353
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

354
static void domain_exit(struct dmar_domain *domain);
355
static void domain_remove_dev_info(struct dmar_domain *domain);
356
static void dmar_remove_one_dev_info(struct device *dev);
357
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
358 359
static void domain_context_clear(struct intel_iommu *iommu,
				 struct device *dev);
360 361
static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu);
362
static bool device_is_rmrr_locked(struct device *dev);
363 364
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
365 366
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
					    dma_addr_t iova);
367

368
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
369 370 371
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
372
#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
373

374 375 376
#ifdef INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
int intel_iommu_sm = 1;
#else
377
int intel_iommu_sm;
378 379
#endif /* INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */

380 381 382
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

383
static int dmar_map_gfx = 1;
384
static int dmar_forcedac;
M
mark gross 已提交
385
static int intel_iommu_strict;
386
static int intel_iommu_superpage = 1;
387
static int iommu_identity_mapping;
388
static int intel_no_bounce;
389

390 391 392
#define IDENTMAP_ALL		1
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
393

394 395 396
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

397
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
398
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
399 400 401
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);

402 403 404
#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
				to_pci_dev(d)->untrusted)

405 406
/*
 * Iterate over elements in device_domain_list and call the specified
407
 * callback @fn against each element.
408 409 410 411 412
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
413
	unsigned long flags;
414 415
	struct device_domain_info *info;

416
	spin_lock_irqsave(&device_domain_lock, flags);
417 418
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
419 420
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
421
			return ret;
422
		}
423
	}
424
	spin_unlock_irqrestore(&device_domain_lock, flags);
425 426 427 428

	return 0;
}

429
const struct iommu_ops intel_iommu_ops;
430

431 432 433 434 435
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

436 437 438 439 440
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

441 442 443 444 445 446 447 448 449
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

450 451 452 453 454 455
/* Convert generic 'struct iommu_domain to private struct dmar_domain */
static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct dmar_domain, domain);
}

456 457 458 459 460
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
461 462
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
463
			pr_info("IOMMU enabled\n");
464
		} else if (!strncmp(str, "off", 3)) {
465
			dmar_disabled = 1;
466
			no_platform_optin = 1;
J
Joerg Roedel 已提交
467
			pr_info("IOMMU disabled\n");
468 469
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
470
			pr_info("Disable GFX device mapping\n");
471
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
472
			pr_info("Forcing DAC for PCI devices\n");
473
			dmar_forcedac = 1;
M
mark gross 已提交
474
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
475
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
476
			intel_iommu_strict = 1;
477
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
478
			pr_info("Disable supported super page\n");
479
			intel_iommu_superpage = 0;
480 481 482
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
483 484 485 486
		} else if (!strncmp(str, "tboot_noforce", 13)) {
			printk(KERN_INFO
				"Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
			intel_iommu_tboot_noforce = 1;
487 488 489
		} else if (!strncmp(str, "nobounce", 8)) {
			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
			intel_no_bounce = 1;
490 491 492 493 494 495 496 497 498 499 500 501 502
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

503 504
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
505 506 507 508 509 510 511 512
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
513 514 515 516 517
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
518 519 520 521 522 523 524 525 526 527 528 529 530
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
531 532
}

533
void *alloc_pgtable_page(int node)
534
{
535 536
	struct page *page;
	void *vaddr = NULL;
537

538 539 540
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
541
	return vaddr;
542 543
}

544
void free_pgtable_page(void *vaddr)
545 546 547 548 549 550
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
551
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
552 553
}

K
Kay, Allen M 已提交
554
static void free_domain_mem(void *vaddr)
555 556 557 558 559 560
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
561
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
562 563 564 565 566 567 568
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

569 570 571 572 573
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

574 575 576 577 578
static inline bool domain_use_first_level(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
}

579 580 581 582 583 584 585 586
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
587
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
588 589 590 591 592
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
593
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
594 595 596 597 598 599 600 601
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

620
/* This functionin only returns single iommu in a domain */
621
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
622 623 624
{
	int iommu_id;

625
	/* si_domain and vm domain should not get here. */
626 627 628
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

629 630 631
	for_each_domain_iommu(iommu_id, domain)
		break;

632 633 634 635 636 637
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

W
Weidong Han 已提交
638 639
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
640 641
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
642 643
	bool found = false;
	int i;
644

645
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
646

647
	for_each_domain_iommu(i, domain) {
648
		found = true;
W
Weidong Han 已提交
649 650 651 652 653
		if (!ecap_coherent(g_iommus[i]->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
654 655 656 657 658 659 660 661 662 663 664 665
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!ecap_coherent(iommu->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
666 667
}

668
static int domain_update_iommu_snooping(struct intel_iommu *skip)
669
{
670 671 672
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
673

674 675 676 677 678 679 680
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
681 682
		}
	}
683 684 685
	rcu_read_unlock();

	return ret;
686 687
}

688
static int domain_update_iommu_superpage(struct intel_iommu *skip)
689
{
690
	struct dmar_drhd_unit *drhd;
691
	struct intel_iommu *iommu;
692
	int mask = 0xf;
693 694

	if (!intel_iommu_superpage) {
695
		return 0;
696 697
	}

698
	/* set iommu_superpage to the smallest common denominator */
699
	rcu_read_lock();
700
	for_each_active_iommu(iommu, drhd) {
701 702 703 704
		if (iommu != skip) {
			mask &= cap_super_page_val(iommu->cap);
			if (!mask)
				break;
705 706
		}
	}
707 708
	rcu_read_unlock();

709
	return fls(mask);
710 711
}

712 713 714 715
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
716 717
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
	domain->iommu_superpage = domain_update_iommu_superpage(NULL);
718 719
}

720 721
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
722 723 724 725 726
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

727
	entry = &root->lo;
728
	if (sm_supported(iommu)) {
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

754 755 756 757 758
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/**
 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 *				 sub-hierarchy of a candidate PCI-PCI bridge
 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 * @bridge: the candidate PCI-PCI bridge
 *
 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 */
static bool
is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
{
	struct pci_dev *pdev, *pbridge;

	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
		return false;

	pdev = to_pci_dev(dev);
	pbridge = to_pci_dev(bridge);

	if (pbridge->subordinate &&
	    pbridge->subordinate->number <= pdev->bus->number &&
	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
		return true;

	return false;
}

786
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
787 788
{
	struct dmar_drhd_unit *drhd = NULL;
789
	struct intel_iommu *iommu;
790
	struct device *tmp;
791
	struct pci_dev *pdev = NULL;
792
	u16 segment = 0;
793 794
	int i;

795 796 797
	if (iommu_dummy(dev))
		return NULL;

798
	if (dev_is_pci(dev)) {
799 800
		struct pci_dev *pf_pdev;

801
		pdev = to_pci_dev(dev);
802 803 804 805 806 807 808

#ifdef CONFIG_X86
		/* VMD child devices currently cannot be handled individually */
		if (is_vmd(pdev->bus))
			return NULL;
#endif

809 810 811 812
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
813
		segment = pci_domain_nr(pdev->bus);
814
	} else if (has_acpi_companion(dev))
815 816
		dev = &ACPI_COMPANION(dev)->dev;

817
	rcu_read_lock();
818
	for_each_active_iommu(iommu, drhd) {
819
		if (pdev && segment != drhd->segment)
820
			continue;
821

822
		for_each_active_dev_scope(drhd->devices,
823 824
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
825 826 827 828
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
829
				if (pdev && pdev->is_virtfn)
830 831
					goto got_pdev;

832 833
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
834
				goto out;
835 836
			}

837
			if (is_downstream_to_pci_bridge(dev, tmp))
838
				goto got_pdev;
839
		}
840

841 842 843 844
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
845
			goto out;
846
		}
847
	}
848
	iommu = NULL;
849
 out:
850
	rcu_read_unlock();
851

852
	return iommu;
853 854
}

W
Weidong Han 已提交
855 856 857 858 859 860 861
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

862 863 864
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
865
	int ret = 0;
866 867 868
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
869 870 871
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
887
		context = iommu_context_addr(iommu, i, 0, 0);
888 889
		if (context)
			free_pgtable_page(context);
890

891
		if (!sm_supported(iommu))
892 893 894 895 896 897
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

898 899 900 901 902 903 904
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

905
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
906
				      unsigned long pfn, int *target_level)
907
{
908
	struct dma_pte *parent, *pte;
909
	int level = agaw_to_level(domain->agaw);
910
	int offset;
911 912

	BUG_ON(!domain->pgd);
913

914
	if (!domain_pfn_supported(domain, pfn))
915 916 917
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

918 919
	parent = domain->pgd;

920
	while (1) {
921 922
		void *tmp_page;

923
		offset = pfn_level_offset(pfn, level);
924
		pte = &parent[offset];
925
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
926
			break;
927
		if (level == *target_level)
928 929
			break;

930
		if (!dma_pte_present(pte)) {
931 932
			uint64_t pteval;

933
			tmp_page = alloc_pgtable_page(domain->nid);
934

935
			if (!tmp_page)
936
				return NULL;
937

938
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
939
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
940 941
			if (domain_use_first_level(domain))
				pteval |= DMA_FL_PTE_XD;
942
			if (cmpxchg64(&pte->val, 0ULL, pteval))
943 944
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
945
			else
946
				domain_flush_cache(domain, pte, sizeof(*pte));
947
		}
948 949 950
		if (level == 1)
			break;

951
		parent = phys_to_virt(dma_pte_addr(pte));
952 953 954
		level--;
	}

955 956 957
	if (!*target_level)
		*target_level = level;

958 959 960 961
	return pte;
}

/* return address's pte at specific level */
962 963
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
964
					 int level, int *large_page)
965
{
966
	struct dma_pte *parent, *pte;
967 968 969 970 971
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
972
		offset = pfn_level_offset(pfn, total);
973 974 975 976
		pte = &parent[offset];
		if (level == total)
			return pte;

977 978
		if (!dma_pte_present(pte)) {
			*large_page = total;
979
			break;
980 981
		}

982
		if (dma_pte_superpage(pte)) {
983 984 985 986
			*large_page = total;
			return pte;
		}

987
		parent = phys_to_virt(dma_pte_addr(pte));
988 989 990 991 992 993
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
994
static void dma_pte_clear_range(struct dmar_domain *domain,
995 996
				unsigned long start_pfn,
				unsigned long last_pfn)
997
{
998
	unsigned int large_page;
999
	struct dma_pte *first_pte, *pte;
1000

1001 1002
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1003
	BUG_ON(start_pfn > last_pfn);
1004

1005
	/* we don't need lock here; nobody else touches the iova range */
1006
	do {
1007 1008
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1009
		if (!pte) {
1010
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1011 1012
			continue;
		}
1013
		do {
1014
			dma_clear_pte(pte);
1015
			start_pfn += lvl_to_nr_pages(large_page);
1016
			pte++;
1017 1018
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1019 1020
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1021 1022

	} while (start_pfn && start_pfn <= last_pfn);
1023 1024
}

1025
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1026 1027 1028
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1040
		level_pfn = pfn & level_mask(level);
1041 1042
		level_pte = phys_to_virt(dma_pte_addr(pte));

1043 1044 1045 1046 1047
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1048

1049 1050 1051 1052 1053
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1054
		      last_pfn < level_pfn + level_size(level) - 1)) {
1055 1056 1057 1058 1059 1060 1061 1062 1063
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1064 1065 1066 1067
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1068
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1069
				   unsigned long start_pfn,
1070 1071
				   unsigned long last_pfn,
				   int retain_level)
1072
{
1073 1074
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1075
	BUG_ON(start_pfn > last_pfn);
1076

1077 1078
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1079
	/* We don't need lock here; nobody else touches the iova range */
1080
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1081
			   domain->pgd, 0, start_pfn, last_pfn);
1082

1083
	/* free pgd */
1084
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1085 1086 1087 1088 1089
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1109 1110
	pte = page_address(pg);
	do {
1111 1112 1113
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1114 1115
		pte++;
	} while (!first_pte_in_page(pte));
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1172 1173 1174
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1175
{
1176
	struct page *freelist;
1177

1178 1179
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1198
static void dma_free_pagelist(struct page *freelist)
1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1208 1209 1210 1211 1212 1213 1214
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1215 1216 1217 1218 1219 1220
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1221
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1222
	if (!root) {
J
Joerg Roedel 已提交
1223
		pr_err("Allocating root entry for %s failed\n",
1224
			iommu->name);
1225
		return -ENOMEM;
1226
	}
1227

F
Fenghua Yu 已提交
1228
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1239
	u64 addr;
1240
	u32 sts;
1241 1242
	unsigned long flag;

1243
	addr = virt_to_phys(iommu->root_entry);
1244 1245
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1246

1247
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1248
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1249

1250
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1251 1252 1253

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1254
		      readl, (sts & DMA_GSTS_RTPS), sts);
1255

1256
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1257 1258
}

1259
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1260 1261 1262 1263
{
	u32 val;
	unsigned long flag;

1264
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1265 1266
		return;

1267
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1268
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1269 1270 1271

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1272
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1273

1274
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1275 1276 1277
}

/* return value determine if we need a write buffer flush */
1278 1279 1280
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1301
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1302 1303 1304 1305 1306 1307
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1308
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1309 1310 1311
}

/* return value determine if we need a write buffer flush */
1312 1313
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1329
		/* IH bit is passed in as part of address */
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1347
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1348 1349 1350 1351 1352 1353 1354 1355 1356
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1357
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1358 1359 1360

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1361
		pr_err("Flush IOTLB failed\n");
1362
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1363
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1364 1365
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1366 1367
}

1368 1369 1370
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1371 1372 1373
{
	struct device_domain_info *info;

1374 1375
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1376 1377 1378 1379
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1380 1381
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1382 1383
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1384 1385 1386
			break;
		}

1387
	return NULL;
Y
Yu Zhao 已提交
1388 1389
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1413
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1414
{
1415 1416
	struct pci_dev *pdev;

1417 1418
	assert_spin_locked(&device_domain_lock);

1419
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1420 1421
		return;

1422
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1435
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1436
	}
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1447 1448 1449
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1450 1451
		info->pri_enabled = 1;
#endif
1452
	if (!pdev->untrusted && info->ats_supported &&
1453
	    pci_ats_page_aligned(pdev) &&
1454
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1455
		info->ats_enabled = 1;
1456
		domain_update_iotlb(info->domain);
1457 1458
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1459 1460 1461 1462
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1463 1464
	struct pci_dev *pdev;

1465 1466
	assert_spin_locked(&device_domain_lock);

1467
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1468 1469
		return;

1470 1471 1472 1473 1474
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1475
		domain_update_iotlb(info->domain);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1496 1497 1498
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1499 1500
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1501
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1502 1503 1504
			continue;

		sid = info->bus << 8 | info->devfn;
1505
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1506 1507
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1508 1509 1510 1511
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
static void domain_flush_piotlb(struct intel_iommu *iommu,
				struct dmar_domain *domain,
				u64 addr, unsigned long npages, bool ih)
{
	u16 did = domain->iommu_did[iommu->seq_id];

	if (domain->default_pasid)
		qi_flush_piotlb(iommu, did, domain->default_pasid,
				addr, npages, ih);

	if (!list_empty(&domain->devices))
		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
}

1526 1527 1528 1529
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1530
{
1531
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1532
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1533
	u16 did = domain->iommu_did[iommu->seq_id];
1534 1535 1536

	BUG_ON(pages == 0);

1537 1538
	if (ih)
		ih = 1 << 6;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	if (domain_use_first_level(domain)) {
		domain_flush_piotlb(iommu, domain, addr, pages, ih);
	} else {
		/*
		 * Fallback to domain selective flush if no PSI support or
		 * the size is too big. PSI requires page size to be 2 ^ x,
		 * and the base address is naturally aligned to the size.
		 */
		if (!cap_pgsel_inv(iommu->cap) ||
		    mask > cap_max_amask_val(iommu->cap))
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
							DMA_TLB_DSI_FLUSH);
		else
			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
							DMA_TLB_PSI_FLUSH);
	}
1556 1557

	/*
1558 1559
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1560
	 */
1561
	if (!cap_caching_mode(iommu->cap) || !map)
1562
		iommu_flush_dev_iotlb(domain, addr, mask);
1563 1564
}

1565 1566 1567 1568 1569
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
1570 1571 1572 1573 1574
	/*
	 * It's a non-present to present mapping. Only flush if caching mode
	 * and second level.
	 */
	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
1575 1576 1577 1578 1579
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

1591 1592 1593 1594 1595
		if (domain_use_first_level(domain))
			domain_flush_piotlb(iommu, domain, 0, -1, 0);
		else
			iommu->flush.flush_iotlb(iommu, did, 0, 0,
						 DMA_TLB_DSI_FLUSH);
1596 1597 1598 1599 1600 1601 1602

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1603 1604 1605 1606 1607
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1608 1609 1610
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1611
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1612 1613 1614 1615 1616 1617 1618 1619
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1620
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1621 1622
}

1623
static void iommu_enable_translation(struct intel_iommu *iommu)
1624 1625 1626 1627
{
	u32 sts;
	unsigned long flags;

1628
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1629 1630
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1631 1632 1633

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1634
		      readl, (sts & DMA_GSTS_TES), sts);
1635

1636
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1637 1638
}

1639
static void iommu_disable_translation(struct intel_iommu *iommu)
1640 1641 1642 1643
{
	u32 sts;
	unsigned long flag;

1644
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1645 1646 1647 1648 1649
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1650
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1651

1652
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1653 1654 1655 1656
}

static int iommu_init_domains(struct intel_iommu *iommu)
{
1657 1658
	u32 ndomains, nlongs;
	size_t size;
1659 1660

	ndomains = cap_ndoms(iommu->cap);
1661
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1662
		 iommu->name, ndomains);
1663 1664
	nlongs = BITS_TO_LONGS(ndomains);

1665 1666
	spin_lock_init(&iommu->lock);

1667 1668
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1669 1670
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1671 1672
		return -ENOMEM;
	}
1673

1674
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1675 1676 1677 1678 1679 1680 1681 1682
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1683 1684
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1685
		kfree(iommu->domain_ids);
1686
		kfree(iommu->domains);
1687
		iommu->domain_ids = NULL;
1688
		iommu->domains    = NULL;
1689 1690 1691 1692
		return -ENOMEM;
	}

	/*
1693 1694 1695 1696
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1697
	 */
1698 1699
	set_bit(0, iommu->domain_ids);

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1710 1711 1712
	return 0;
}

1713
static void disable_dmar_iommu(struct intel_iommu *iommu)
1714
{
1715
	struct device_domain_info *info, *tmp;
1716
	unsigned long flags;
1717

1718 1719
	if (!iommu->domains || !iommu->domain_ids)
		return;
1720

1721
	spin_lock_irqsave(&device_domain_lock, flags);
1722 1723 1724 1725 1726 1727 1728
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1729
		__dmar_remove_one_dev_info(info);
1730
	}
1731
	spin_unlock_irqrestore(&device_domain_lock, flags);
1732 1733 1734

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1735
}
1736

1737 1738 1739
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1740
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1741 1742 1743 1744
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1745 1746 1747 1748 1749
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1750

W
Weidong Han 已提交
1751 1752
	g_iommus[iommu->seq_id] = NULL;

1753 1754
	/* free context mapping */
	free_context_table(iommu);
1755 1756

#ifdef CONFIG_INTEL_IOMMU_SVM
1757
	if (pasid_supported(iommu)) {
1758 1759 1760
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1761
#endif
1762 1763
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
/*
 * Check and return whether first level is used by default for
 * DMA translation. Currently, we make it off by setting
 * first_level_support = 0, and will change it to -1 after all
 * map/unmap paths support first level page table.
 */
static bool first_level_by_default(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	static int first_level_support = 0;

	if (likely(first_level_support != -1))
		return first_level_support;

	first_level_support = 1;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
			first_level_support = 0;
			break;
		}
	}
	rcu_read_unlock();

	return first_level_support;
}

1793
static struct dmar_domain *alloc_domain(int flags)
1794 1795 1796 1797 1798 1799 1800
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1801
	memset(domain, 0, sizeof(*domain));
1802
	domain->nid = NUMA_NO_NODE;
1803
	domain->flags = flags;
1804 1805
	if (first_level_by_default())
		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
1806
	domain->has_iotlb_device = false;
1807
	INIT_LIST_HEAD(&domain->devices);
1808 1809 1810 1811

	return domain;
}

1812 1813
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1814 1815
			       struct intel_iommu *iommu)
{
1816
	unsigned long ndomains;
1817
	int num;
1818

1819
	assert_spin_locked(&device_domain_lock);
1820
	assert_spin_locked(&iommu->lock);
1821

1822 1823 1824
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1825
		ndomains = cap_ndoms(iommu->cap);
1826 1827 1828 1829 1830 1831
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1832
			return -ENOSPC;
1833
		}
1834

1835 1836 1837 1838 1839
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1840 1841 1842

		domain_update_iommu_cap(domain);
	}
1843

1844
	return 0;
1845 1846 1847 1848 1849
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1850
	int num, count;
1851

1852
	assert_spin_locked(&device_domain_lock);
1853
	assert_spin_locked(&iommu->lock);
1854

1855 1856 1857
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1858 1859 1860
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1861 1862

		domain_update_iommu_cap(domain);
1863
		domain->iommu_did[iommu->seq_id] = 0;
1864 1865 1866 1867 1868
	}

	return count;
}

1869
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1870
static struct lock_class_key reserved_rbtree_key;
1871

1872
static int dmar_init_reserved_ranges(void)
1873 1874 1875 1876 1877
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1878
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1879

M
Mark Gross 已提交
1880 1881 1882
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1883 1884 1885
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1886
	if (!iova) {
J
Joerg Roedel 已提交
1887
		pr_err("Reserve IOAPIC range failed\n");
1888 1889
		return -ENODEV;
	}
1890 1891 1892 1893 1894 1895 1896 1897 1898

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1899 1900 1901
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1902
			if (!iova) {
1903
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1904 1905
				return -ENODEV;
			}
1906 1907
		}
	}
1908
	return 0;
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
}

static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

1930 1931 1932 1933 1934
static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
		       int guest_width)
{
	int adjust_width, agaw;
	unsigned long sagaw;
1935
	int ret;
1936 1937 1938

	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);

1939
	if (!intel_iommu_strict) {
1940
		ret = init_iova_flush_queue(&domain->iovad,
1941
					    iommu_flush_iova, iova_entry_free);
1942 1943
		if (ret)
			pr_info("iova flush queue initialization failed\n");
1944
	}
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	if (guest_width > cap_mgaw(iommu->cap))
		guest_width = cap_mgaw(iommu->cap);
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	agaw = width_to_agaw(adjust_width);
	sagaw = cap_sagaw(iommu->cap);
	if (!test_bit(agaw, &sagaw)) {
		/* hardware doesn't support it, choose a bigger one */
		pr_debug("Hardware doesn't support agaw %d\n", agaw);
		agaw = find_next_bit(&sagaw, 5, agaw);
		if (agaw >= 5)
			return -ENODEV;
	}
	domain->agaw = agaw;

	if (ecap_coherent(iommu->ecap))
		domain->iommu_coherency = 1;
	else
		domain->iommu_coherency = 0;

	if (ecap_sc_support(iommu->ecap))
		domain->iommu_snooping = 1;
	else
		domain->iommu_snooping = 0;

	if (intel_iommu_superpage)
		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
	else
		domain->iommu_superpage = 0;

	domain->nid = iommu->node;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
	return 0;
}

1989 1990 1991
static void domain_exit(struct dmar_domain *domain)
{

1992
	/* Remove associated devices and clear attached or cached domains */
1993
	domain_remove_dev_info(domain);
1994

1995 1996 1997
	/* destroy iovas */
	put_iova_domain(&domain->iovad);

1998 1999
	if (domain->pgd) {
		struct page *freelist;
2000

2001 2002 2003
		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
		dma_free_pagelist(freelist);
	}
2004

2005 2006 2007
	free_domain_mem(domain);
}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
	context->hi |= (1 << 20);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

2058 2059
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
2060
				      struct pasid_table *table,
2061
				      u8 bus, u8 devfn)
2062
{
2063
	u16 did = domain->iommu_did[iommu->seq_id];
2064 2065
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
2066 2067
	struct context_entry *context;
	unsigned long flags;
2068
	int ret;
2069

2070 2071
	WARN_ON(did == 0);

2072 2073
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2074 2075 2076

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
2077

2078
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
2079

2080 2081 2082 2083
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2084
	context = iommu_context_addr(iommu, bus, devfn, 1);
2085
	if (!context)
2086
		goto out_unlock;
2087

2088 2089 2090
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2104
		if (did_old < cap_ndoms(iommu->cap)) {
2105 2106 2107 2108
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2109 2110 2111
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2112 2113
	}

2114
	context_clear_entry(context);
2115

2116 2117
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2118

2119 2120 2121 2122 2123 2124 2125 2126 2127
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2128 2129

		/*
2130 2131
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2132
		 */
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2172 2173

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2174
	}
F
Fenghua Yu 已提交
2175

2176 2177
	context_set_fault_enable(context);
	context_set_present(context);
W
Weidong Han 已提交
2178
	domain_flush_cache(domain, context, sizeof(*context));
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2191
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2192
	} else {
2193
		iommu_flush_write_buffer(iommu);
2194
	}
Y
Yu Zhao 已提交
2195
	iommu_enable_dev_iotlb(info);
2196

2197 2198 2199 2200 2201
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2202

2203
	return ret;
2204 2205
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	struct pasid_table *table;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
}

2222
static int
2223
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2224
{
2225
	struct domain_context_mapping_data data;
2226
	struct pasid_table *table;
2227
	struct intel_iommu *iommu;
2228
	u8 bus, devfn;
2229

2230
	iommu = device_to_iommu(dev, &bus, &devfn);
2231 2232
	if (!iommu)
		return -ENODEV;
2233

2234
	table = intel_pasid_get_table(dev);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

	if (!dev_is_pci(dev))
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);

	data.domain = domain;
	data.iommu = iommu;
	data.table = table;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
2246 2247 2248 2249 2250 2251 2252 2253
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2254 2255
}

2256
static int domain_context_mapped(struct device *dev)
2257
{
W
Weidong Han 已提交
2258
	struct intel_iommu *iommu;
2259
	u8 bus, devfn;
W
Weidong Han 已提交
2260

2261
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2262 2263
	if (!iommu)
		return -ENODEV;
2264

2265 2266
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2267

2268 2269
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2270 2271
}

2272 2273 2274 2275 2276 2277 2278 2279
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2308 2309 2310
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2311 2312
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2313
	phys_addr_t uninitialized_var(pteval);
2314
	unsigned long sg_res = 0;
2315 2316
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2317
	u64 attr;
2318

2319
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2320 2321 2322 2323

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

2324 2325 2326
	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
	if (domain_use_first_level(domain))
		attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD;
2327

2328 2329
	if (!sg) {
		sg_res = nr_pages;
2330
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2331 2332
	}

2333
	while (nr_pages > 0) {
2334 2335
		uint64_t tmp;

2336
		if (!sg_res) {
2337 2338
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2339
			sg_res = aligned_nrpages(sg->offset, sg->length);
2340
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2341
			sg->dma_length = sg->length;
2342
			pteval = (sg_phys(sg) - pgoff) | attr;
2343
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2344
		}
2345

2346
		if (!pte) {
2347 2348
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2349
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2350 2351
			if (!pte)
				return -ENOMEM;
2352
			/* It is large page*/
2353
			if (largepage_lvl > 1) {
2354 2355
				unsigned long nr_superpages, end_pfn;

2356
				pteval |= DMA_PTE_LARGE_PAGE;
2357
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2358 2359 2360 2361

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2362 2363
				/*
				 * Ensure that old small page tables are
2364
				 * removed to make room for superpage(s).
2365 2366
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2367
				 */
2368 2369
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2370
			} else {
2371
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2372
			}
2373

2374 2375 2376 2377
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2378
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2379
		if (tmp) {
2380
			static int dumps = 5;
J
Joerg Roedel 已提交
2381 2382
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2383 2384 2385 2386 2387 2388
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2412
		pte++;
2413 2414
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2415 2416 2417 2418
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2419 2420

		if (!sg_res && nr_pages)
2421 2422 2423 2424 2425
			sg = sg_next(sg);
	}
	return 0;
}

2426
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2427 2428 2429
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2430
	int iommu_id, ret;
2431 2432 2433 2434 2435 2436 2437
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2438 2439
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2440 2441 2442 2443
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2444 2445
}

2446 2447 2448
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2449
{
2450
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2451
}
2452

2453 2454 2455 2456
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2457
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2458 2459
}

2460
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2461
{
2462 2463 2464 2465
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2466 2467
	if (!iommu)
		return;
2468

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2489 2490
}

2491 2492 2493 2494 2495 2496
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2497
		info->dev->archdata.iommu = NULL;
2498 2499
}

2500 2501
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2502
	struct device_domain_info *info, *tmp;
2503
	unsigned long flags;
2504 2505

	spin_lock_irqsave(&device_domain_lock, flags);
2506
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2507
		__dmar_remove_one_dev_info(info);
2508 2509 2510
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

2511
static struct dmar_domain *find_domain(struct device *dev)
2512 2513 2514
{
	struct device_domain_info *info;

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO ||
		     dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO))
		return NULL;

	/* No lock here, assumes no domain exit in normal case */
	info = dev->archdata.iommu;
	if (likely(info))
		return info->domain;

	return NULL;
}

static struct dmar_domain *deferred_attach_domain(struct device *dev)
{
2529 2530 2531 2532 2533 2534 2535 2536 2537
	if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
		struct iommu_domain *domain;

		dev->archdata.iommu = NULL;
		domain = iommu_get_domain_for_dev(dev);
		if (domain)
			intel_iommu_attach_device(domain, dev);
	}

2538
	return find_domain(dev);
2539 2540
}

2541
static inline struct device_domain_info *
2542 2543 2544 2545 2546
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2547
		if (info->iommu->segment == segment && info->bus == bus &&
2548
		    info->devfn == devfn)
2549
			return info;
2550 2551 2552 2553

	return NULL;
}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static int domain_setup_first_level(struct intel_iommu *iommu,
				    struct dmar_domain *domain,
				    struct device *dev,
				    int pasid)
{
	int flags = PASID_FLAG_SUPERVISOR_MODE;
	struct dma_pte *pgd = domain->pgd;
	int agaw, level;

	/*
	 * Skip top levels of page tables for iommu which has
	 * less agaw than default. Unnecessary for PT mode.
	 */
	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
		pgd = phys_to_virt(dma_pte_addr(pgd));
		if (!dma_pte_present(pgd))
			return -ENOMEM;
	}

	level = agaw_to_level(agaw);
	if (level != 4 && level != 5)
		return -EINVAL;

	flags |= (level == 5) ? PASID_FLAG_FL5LP : 0;

	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
					     domain->iommu_did[iommu->seq_id],
					     flags);
}

2584 2585 2586 2587
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2588
{
2589
	struct dmar_domain *found = NULL;
2590 2591
	struct device_domain_info *info;
	unsigned long flags;
2592
	int ret;
2593 2594 2595

	info = alloc_devinfo_mem();
	if (!info)
2596
		return NULL;
2597 2598 2599

	info->bus = bus;
	info->devfn = devfn;
2600 2601 2602
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2603 2604
	info->dev = dev;
	info->domain = domain;
2605
	info->iommu = iommu;
2606
	info->pasid_table = NULL;
2607
	info->auxd_enabled = 0;
2608
	INIT_LIST_HEAD(&info->auxiliary_domains);
2609

2610 2611 2612
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2613 2614
		if (!pdev->untrusted &&
		    !pci_ats_disabled() &&
G
Gil Kupfer 已提交
2615
		    ecap_dev_iotlb_support(iommu->ecap) &&
2616 2617 2618 2619
		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2620 2621
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2633 2634
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2635
		found = find_domain(dev);
2636 2637

	if (!found) {
2638
		struct device_domain_info *info2;
2639
		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2640 2641 2642 2643
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2644
	}
2645

2646 2647 2648
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2649 2650
		/* Caller must free the original domain */
		return found;
2651 2652
	}

2653 2654 2655 2656 2657
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2658
		spin_unlock_irqrestore(&device_domain_lock, flags);
2659
		free_devinfo_mem(info);
2660 2661 2662
		return NULL;
	}

2663 2664 2665 2666
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2667
	spin_unlock_irqrestore(&device_domain_lock, flags);
2668

2669 2670
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2671 2672
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2673
			dev_err(dev, "PASID table allocation failed\n");
2674
			dmar_remove_one_dev_info(dev);
2675
			return NULL;
2676
		}
2677 2678 2679 2680 2681 2682

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
2683 2684 2685
		else if (domain_use_first_level(domain))
			ret = domain_setup_first_level(iommu, domain, dev,
					PASID_RID2PASID);
2686 2687 2688 2689 2690
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2691
			dev_err(dev, "Setup RID2PASID failed\n");
2692
			dmar_remove_one_dev_info(dev);
2693
			return NULL;
2694 2695
		}
	}
2696

2697
	if (dev && domain_context_mapping(domain, dev)) {
2698
		dev_err(dev, "Domain context map failed\n");
2699
		dmar_remove_one_dev_info(dev);
2700 2701 2702
		return NULL;
	}

2703
	return domain;
2704 2705
}

2706 2707 2708 2709 2710 2711
static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
{
	*(u16 *)opaque = alias;
	return 0;
}

2712
static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2713
{
2714
	struct device_domain_info *info;
2715
	struct dmar_domain *domain = NULL;
2716
	struct intel_iommu *iommu;
2717
	u16 dma_alias;
2718
	unsigned long flags;
2719
	u8 bus, devfn;
2720

2721 2722 2723 2724
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

2725 2726
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2727

2728 2729 2730 2731 2732 2733 2734 2735 2736
		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		spin_lock_irqsave(&device_domain_lock, flags);
		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
						      PCI_BUS_NUM(dma_alias),
						      dma_alias & 0xff);
		if (info) {
			iommu = info->iommu;
			domain = info->domain;
2737
		}
2738
		spin_unlock_irqrestore(&device_domain_lock, flags);
2739

2740
		/* DMA alias already has a domain, use it */
2741
		if (info)
2742
			goto out;
2743
	}
2744

2745
	/* Allocate and initialize new domain for the device */
2746
	domain = alloc_domain(0);
2747
	if (!domain)
2748
		return NULL;
2749
	if (domain_init(domain, iommu, gaw)) {
2750 2751
		domain_exit(domain);
		return NULL;
2752
	}
2753

2754 2755 2756
out:
	return domain;
}
2757

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
static struct dmar_domain *set_domain_for_dev(struct device *dev,
					      struct dmar_domain *domain)
{
	struct intel_iommu *iommu;
	struct dmar_domain *tmp;
	u16 req_id, dma_alias;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

	req_id = ((u16)bus << 8) | devfn;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		/* register PCI DMA alias device */
		if (req_id != dma_alias) {
			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
					dma_alias & 0xff, NULL, domain);

			if (!tmp || tmp != domain)
				return tmp;
		}
2785 2786
	}

2787
	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2788 2789 2790 2791 2792
	if (!tmp || tmp != domain)
		return tmp;

	return domain;
}
2793

2794 2795 2796
static int iommu_domain_identity_map(struct dmar_domain *domain,
				     unsigned long long start,
				     unsigned long long end)
2797
{
2798 2799 2800 2801 2802
	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;

	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
			  dma_to_mm_pfn(last_vpfn))) {
J
Joerg Roedel 已提交
2803
		pr_err("Reserving iova failed\n");
2804
		return -ENOMEM;
2805 2806
	}

J
Joerg Roedel 已提交
2807
	pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2808 2809 2810 2811
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2812
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2813

2814 2815 2816
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2817 2818
}

2819 2820 2821 2822
static int domain_prepare_identity_map(struct device *dev,
				       struct dmar_domain *domain,
				       unsigned long long start,
				       unsigned long long end)
2823
{
2824 2825 2826 2827 2828
	/* For _hardware_ passthrough, don't bother. But for software
	   passthrough, we do it anyway -- it may indicate a memory
	   range which is reserved in E820, so which didn't get set
	   up to start with in si_domain */
	if (domain == si_domain && hw_pass_through) {
2829 2830
		dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
			 start, end);
2831 2832 2833
		return 0;
	}

2834
	dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
J
Joerg Roedel 已提交
2835

2836 2837 2838 2839 2840 2841
	if (end < start) {
		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
			"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			dmi_get_system_info(DMI_BIOS_VENDOR),
			dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2842
		return -EIO;
2843 2844
	}

2845 2846 2847 2848 2849 2850 2851
	if (end >> agaw_to_width(domain->agaw)) {
		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     agaw_to_width(domain->agaw),
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2852
		return -EIO;
2853
	}
2854

2855 2856
	return iommu_domain_identity_map(domain, start, end);
}
2857

2858 2859
static int md_domain_init(struct dmar_domain *domain, int guest_width);

2860
static int __init si_domain_init(int hw)
2861
{
2862 2863 2864
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2865

2866
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2867 2868 2869
	if (!si_domain)
		return -EFAULT;

2870
	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2871 2872 2873 2874
		domain_exit(si_domain);
		return -EFAULT;
	}

2875 2876 2877
	if (hw)
		return 0;

2878
	for_each_online_node(nid) {
2879 2880 2881 2882 2883 2884 2885 2886 2887
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
			if (ret)
				return ret;
		}
2888 2889
	}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	/*
	 * Normally we use DMA domains for devices which have RMRRs. But we
	 * loose this requirement for graphic and usb devices. Identity map
	 * the RMRRs for graphic and USB devices so that they could use the
	 * si_domain.
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (device_is_rmrr_locked(dev))
				continue;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

			ret = iommu_domain_identity_map(si_domain, start, end);
			if (ret)
				return ret;
		}
	}

2915 2916 2917
	return 0;
}

2918
static int identity_mapping(struct device *dev)
2919 2920 2921
{
	struct device_domain_info *info;

2922
	info = dev->archdata.iommu;
2923
	if (info && info != DUMMY_DEVICE_DOMAIN_INFO && info != DEFER_DEVICE_DOMAIN_INFO)
2924
		return (info->domain == si_domain);
2925 2926 2927 2928

	return 0;
}

2929
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2930
{
2931
	struct dmar_domain *ndomain;
2932
	struct intel_iommu *iommu;
2933
	u8 bus, devfn;
2934

2935
	iommu = device_to_iommu(dev, &bus, &devfn);
2936 2937 2938
	if (!iommu)
		return -ENODEV;

2939
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2940 2941
	if (ndomain != domain)
		return -EBUSY;
2942 2943 2944 2945

	return 0;
}

2946
static bool device_has_rmrr(struct device *dev)
2947 2948
{
	struct dmar_rmrr_unit *rmrr;
2949
	struct device *tmp;
2950 2951
	int i;

2952
	rcu_read_lock();
2953
	for_each_rmrr_units(rmrr) {
2954 2955 2956 2957 2958 2959
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2960 2961
			if (tmp == dev ||
			    is_downstream_to_pci_bridge(dev, tmp)) {
2962
				rcu_read_unlock();
2963
				return true;
2964
			}
2965
	}
2966
	rcu_read_unlock();
2967 2968 2969
	return false;
}

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
/**
 * device_rmrr_is_relaxable - Test whether the RMRR of this device
 * is relaxable (ie. is allowed to be not enforced under some conditions)
 * @dev: device handle
 *
 * We assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
 *
 * Return: true if the RMRR is relaxable, false otherwise
 */
static bool device_rmrr_is_relaxable(struct device *dev)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return false;

	pdev = to_pci_dev(dev);
	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
		return true;
	else
		return false;
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
3013 3014
 * In both cases, devices which have relaxable RMRRs are not concerned by this
 * restriction. See device_rmrr_is_relaxable comment.
3015 3016 3017 3018 3019 3020
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

3021 3022
	if (device_rmrr_is_relaxable(dev))
		return false;
3023 3024 3025 3026

	return true;
}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
3038
static int device_def_domain_type(struct device *dev)
3039
{
3040 3041
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
3042

3043
		if (device_is_rmrr_locked(dev))
3044
			return IOMMU_DOMAIN_DMA;
3045

3046 3047 3048 3049 3050
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
3051
			return IOMMU_DOMAIN_DMA;
3052

3053
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
3054
			return IOMMU_DOMAIN_IDENTITY;
3055

3056
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
3057
			return IOMMU_DOMAIN_IDENTITY;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077

		/*
		 * We want to start off with all devices in the 1:1 domain, and
		 * take them out later if we find they can't access all of memory.
		 *
		 * However, we can't do this for PCI devices behind bridges,
		 * because all PCI devices behind the same bridge will end up
		 * with the same source-id on their transactions.
		 *
		 * Practically speaking, we can't change things around for these
		 * devices at run-time, because we can't be sure there'll be no
		 * DMA transactions in flight for any of their siblings.
		 *
		 * So PCI devices (unless they're on the root bus) as well as
		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
		 * the 1:1 domain, just in _case_ one of their siblings turns out
		 * not to be able to map all of memory.
		 */
		if (!pci_is_pcie(pdev)) {
			if (!pci_is_root_bus(pdev->bus))
3078
				return IOMMU_DOMAIN_DMA;
3079
			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
3080
				return IOMMU_DOMAIN_DMA;
3081
		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
3082
			return IOMMU_DOMAIN_DMA;
3083 3084
	} else {
		if (device_has_rmrr(dev))
3085
			return IOMMU_DOMAIN_DMA;
3086
	}
3087

3088 3089 3090 3091
	return (iommu_identity_mapping & IDENTMAP_ALL) ?
			IOMMU_DOMAIN_IDENTITY : 0;
}

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
3118
		pr_info("%s: Using Register based invalidation\n",
3119 3120 3121 3122
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
3123
		pr_info("%s: Using Queued invalidation\n", iommu->name);
3124 3125 3126
	}
}

3127
static int copy_context_table(struct intel_iommu *iommu,
3128
			      struct root_entry *old_re,
3129 3130 3131
			      struct context_entry **tbl,
			      int bus, bool ext)
{
3132
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3133
	struct context_entry *new_ce = NULL, ce;
3134
	struct context_entry *old_ce = NULL;
3135
	struct root_entry re;
3136 3137 3138
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
3139
	memcpy(&re, old_re, sizeof(re));
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
3155
				memunmap(old_ce);
3156 3157 3158

			ret = 0;
			if (devfn < 0x80)
3159
				old_ce_phys = root_entry_lctp(&re);
3160
			else
3161
				old_ce_phys = root_entry_uctp(&re);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
3174 3175
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
3187
		memcpy(&ce, old_ce + idx, sizeof(ce));
3188

3189
		if (!__context_present(&ce))
3190 3191
			continue;

3192 3193 3194 3195
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

3215 3216 3217 3218 3219 3220 3221 3222
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3223
	memunmap(old_ce);
3224 3225 3226 3227 3228 3229 3230 3231

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3232
	struct root_entry *old_rt;
3233 3234 3235 3236 3237
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3238
	bool new_ext, ext;
3239 3240 3241

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3252 3253 3254 3255 3256

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3257
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3258 3259 3260 3261 3262 3263
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3264
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3306
	memunmap(old_rt);
3307 3308 3309 3310

	return ret;
}

3311
static int __init init_dmars(void)
3312 3313 3314
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3315
	int ret;
3316

3317 3318 3319 3320 3321 3322 3323
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3324 3325 3326 3327 3328
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3329
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3330 3331 3332
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3333
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3334 3335
	}

3336 3337 3338 3339
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3340 3341 3342
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3343
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3344 3345 3346 3347
		ret = -ENOMEM;
		goto error;
	}

3348 3349 3350 3351 3352 3353
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			iommu_disable_translation(iommu);
			continue;
		}

L
Lu Baolu 已提交
3354 3355 3356 3357 3358
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3359
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3360 3361 3362 3363 3364 3365
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3366
		g_iommus[iommu->seq_id] = iommu;
3367

3368 3369
		intel_iommu_init_qi(iommu);

3370 3371
		ret = iommu_init_domains(iommu);
		if (ret)
3372
			goto free_iommu;
3373

3374 3375
		init_translation_status(iommu);

3376 3377 3378 3379 3380 3381
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3382

3383 3384 3385
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3386
		 * among all IOMMU's. Need to Split it later.
3387 3388
		 */
		ret = iommu_alloc_root_entry(iommu);
3389
		if (ret)
3390
			goto free_iommu;
3391

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3416
		if (!ecap_pass_through(iommu->ecap))
3417
			hw_pass_through = 0;
3418
		intel_svm_check(iommu);
3419 3420
	}

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3433
	if (iommu_default_passthrough())
3434 3435
		iommu_identity_mapping |= IDENTMAP_ALL;

3436
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3437
	dmar_map_gfx = 0;
3438
#endif
3439

3440 3441 3442
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3443 3444
	check_tylersburg_isoch();

3445 3446 3447
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3448

3449 3450 3451 3452 3453 3454 3455
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3456
	for_each_iommu(iommu, drhd) {
3457 3458 3459 3460 3461 3462
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3463
				iommu_disable_protect_mem_regions(iommu);
3464
			continue;
3465
		}
3466 3467 3468

		iommu_flush_write_buffer(iommu);

3469
#ifdef CONFIG_INTEL_IOMMU_SVM
3470
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3471 3472 3473 3474 3475
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3476
			ret = intel_svm_enable_prq(iommu);
3477
			down_write(&dmar_global_lock);
3478 3479 3480 3481
			if (ret)
				goto free_iommu;
		}
#endif
3482 3483
		ret = dmar_set_interrupt(iommu);
		if (ret)
3484
			goto free_iommu;
3485 3486 3487
	}

	return 0;
3488 3489

free_iommu:
3490 3491
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3492
		free_dmar_iommu(iommu);
3493
	}
3494

W
Weidong Han 已提交
3495
	kfree(g_iommus);
3496

3497
error:
3498 3499 3500
	return ret;
}

3501
/* This takes a number of _MM_ pages, not VTD pages */
3502
static unsigned long intel_alloc_iova(struct device *dev,
3503 3504
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3505
{
3506
	unsigned long iova_pfn;
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	/*
	 * Restrict dma_mask to the width that the iommu can handle.
	 * First-level translation restricts the input-address to a
	 * canonical address (i.e., address bits 63:N have the same
	 * value as address bit [N-1], where N is 48-bits with 4-level
	 * paging and 57-bits with 5-level paging). Hence, skip bit
	 * [N-1].
	 */
	if (domain_use_first_level(domain))
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
				 dma_mask);
	else
		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
				 dma_mask);

3523 3524
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3525 3526

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3527 3528
		/*
		 * First try to allocate an io virtual address in
3529
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3530
		 * from higher range
3531
		 */
3532
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3533
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3534 3535
		if (iova_pfn)
			return iova_pfn;
3536
	}
3537 3538
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3539
	if (unlikely(!iova_pfn)) {
3540
		dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3541
		return 0;
3542 3543
	}

3544
	return iova_pfn;
3545 3546
}

3547
static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3548
{
3549
	struct dmar_domain *domain, *tmp;
3550 3551 3552
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i, ret;
3553

3554
	/* Device shouldn't be attached by any domains. */
3555 3556
	domain = find_domain(dev);
	if (domain)
3557
		return NULL;
3558 3559 3560 3561

	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		goto out;
3562

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	/* We have a new domain - setup possible RMRRs for the device */
	rcu_read_lock();
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
			if (i_dev != dev)
				continue;

			ret = domain_prepare_identity_map(dev, domain,
							  rmrr->base_address,
							  rmrr->end_address);
			if (ret)
				dev_err(dev, "Mapping reserved region failed\n");
		}
	}
	rcu_read_unlock();

3580 3581 3582 3583 3584 3585 3586 3587
	tmp = set_domain_for_dev(dev, domain);
	if (!tmp || domain != tmp) {
		domain_exit(domain);
		domain = tmp;
	}

out:
	if (!domain)
3588
		dev_err(dev, "Allocating domain failed\n");
3589 3590
	else
		domain->domain.type = IOMMU_DOMAIN_DMA;
3591

3592 3593 3594
	return domain;
}

3595
/* Check if the dev needs to go through non-identity map and unmap process.*/
3596
static bool iommu_need_mapping(struct device *dev)
3597
{
3598
	int ret;
3599

3600
	if (iommu_dummy(dev))
3601
		return false;
3602

3603 3604 3605 3606 3607 3608 3609
	ret = identity_mapping(dev);
	if (ret) {
		u64 dma_mask = *dev->dma_mask;

		if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
			dma_mask = dev->coherent_dma_mask;

3610
		if (dma_mask >= dma_direct_get_required_mask(dev))
3611 3612 3613 3614 3615 3616 3617
			return false;

		/*
		 * 32 bit DMA is removed from si_domain and fall back to
		 * non-identity mapping.
		 */
		dmar_remove_one_dev_info(dev);
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
		ret = iommu_request_dma_domain_for_dev(dev);
		if (ret) {
			struct iommu_domain *domain;
			struct dmar_domain *dmar_domain;

			domain = iommu_get_domain_for_dev(dev);
			if (domain) {
				dmar_domain = to_dmar_domain(domain);
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
			}
3628
			dmar_remove_one_dev_info(dev);
3629
			get_private_domain_for_dev(dev);
3630
		}
3631 3632

		dev_info(dev, "32bit DMA uses non-identity mapping\n");
3633 3634
	}

3635
	return true;
3636 3637
}

3638 3639
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3640 3641
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3642
	phys_addr_t start_paddr;
3643
	unsigned long iova_pfn;
3644
	int prot = 0;
I
Ingo Molnar 已提交
3645
	int ret;
3646
	struct intel_iommu *iommu;
3647
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3648 3649

	BUG_ON(dir == DMA_NONE);
3650

3651
	domain = deferred_attach_domain(dev);
3652
	if (!domain)
3653
		return DMA_MAPPING_ERROR;
3654

3655
	iommu = domain_get_iommu(domain);
3656
	size = aligned_nrpages(paddr, size);
3657

3658 3659
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3660 3661
		goto error;

3662 3663 3664 3665 3666
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3667
			!cap_zlr(iommu->cap))
3668 3669 3670 3671
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3672
	 * paddr - (paddr + size) might be partial page, we should map the whole
3673
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3674
	 * might have two guest_addr mapping to the same host paddr, but this
3675 3676
	 * is not a big problem
	 */
3677
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3678
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3679 3680 3681
	if (ret)
		goto error;

3682
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3683
	start_paddr += paddr & ~PAGE_MASK;
3684 3685 3686

	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);

3687
	return start_paddr;
3688 3689

error:
3690
	if (iova_pfn)
3691
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3692 3693
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3694
	return DMA_MAPPING_ERROR;
3695 3696
}

3697 3698 3699
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3700
				 unsigned long attrs)
3701
{
3702 3703 3704 3705
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, page_to_phys(page) + offset,
				size, dir, *dev->dma_mask);
	return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3706 3707 3708 3709 3710 3711
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
3712 3713 3714 3715
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, phys_addr, size, dir,
				*dev->dma_mask);
	return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3716 3717
}

3718
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3719
{
3720
	struct dmar_domain *domain;
3721
	unsigned long start_pfn, last_pfn;
3722
	unsigned long nrpages;
3723
	unsigned long iova_pfn;
3724
	struct intel_iommu *iommu;
3725
	struct page *freelist;
3726
	struct pci_dev *pdev = NULL;
3727

3728
	domain = find_domain(dev);
3729 3730
	BUG_ON(!domain);

3731 3732
	iommu = domain_get_iommu(domain);

3733
	iova_pfn = IOVA_PFN(dev_addr);
3734

3735
	nrpages = aligned_nrpages(dev_addr, size);
3736
	start_pfn = mm_to_dma_pfn(iova_pfn);
3737
	last_pfn = start_pfn + nrpages - 1;
3738

3739 3740 3741
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3742
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3743 3744
	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
			!has_iova_flush_queue(&domain->iovad)) {
3745
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3746
				      nrpages, !freelist, 0);
M
mark gross 已提交
3747
		/* free iova */
3748
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3749
		dma_free_pagelist(freelist);
M
mark gross 已提交
3750
	} else {
3751 3752
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3753 3754 3755 3756 3757
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3758 3759

	trace_unmap_single(dev, dev_addr, size);
3760 3761
}

3762 3763
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3764
			     unsigned long attrs)
3765
{
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
	else
		dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
3777 3778
}

3779
static void *intel_alloc_coherent(struct device *dev, size_t size,
3780
				  dma_addr_t *dma_handle, gfp_t flags,
3781
				  unsigned long attrs)
3782
{
3783 3784
	struct page *page = NULL;
	int order;
3785

3786 3787 3788
	if (!iommu_need_mapping(dev))
		return dma_direct_alloc(dev, size, dma_handle, flags, attrs);

3789 3790 3791 3792 3793 3794
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3795 3796
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3797 3798 3799 3800 3801 3802 3803 3804
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3805 3806 3807
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3808
	if (*dma_handle != DMA_MAPPING_ERROR)
3809 3810 3811
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3812

3813 3814 3815
	return NULL;
}

3816
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3817
				dma_addr_t dma_handle, unsigned long attrs)
3818
{
3819 3820 3821
	int order;
	struct page *page = virt_to_page(vaddr);

3822 3823 3824
	if (!iommu_need_mapping(dev))
		return dma_direct_free(dev, size, vaddr, dma_handle, attrs);

3825 3826 3827 3828 3829 3830
	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3831 3832
}

3833
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3834
			   int nelems, enum dma_data_direction dir,
3835
			   unsigned long attrs)
3836
{
3837 3838 3839 3840 3841
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

3842 3843 3844
	if (!iommu_need_mapping(dev))
		return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);

3845 3846 3847 3848 3849
	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3850 3851

	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3852 3853
}

3854
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3855
			enum dma_data_direction dir, unsigned long attrs)
3856 3857 3858
{
	int i;
	struct dmar_domain *domain;
3859 3860
	size_t size = 0;
	int prot = 0;
3861
	unsigned long iova_pfn;
3862
	int ret;
F
FUJITA Tomonori 已提交
3863
	struct scatterlist *sg;
3864
	unsigned long start_vpfn;
3865
	struct intel_iommu *iommu;
3866 3867

	BUG_ON(dir == DMA_NONE);
3868
	if (!iommu_need_mapping(dev))
3869
		return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3870

3871
	domain = deferred_attach_domain(dev);
3872 3873 3874
	if (!domain)
		return 0;

3875 3876
	iommu = domain_get_iommu(domain);

3877
	for_each_sg(sglist, sg, nelems, i)
3878
		size += aligned_nrpages(sg->offset, sg->length);
3879

3880
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3881
				*dev->dma_mask);
3882
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3883
		sglist->dma_length = 0;
3884 3885 3886 3887 3888 3889 3890 3891
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3892
			!cap_zlr(iommu->cap))
3893 3894 3895 3896
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3897
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3898

3899
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3900 3901
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3902 3903
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3904
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3905
		return 0;
3906 3907
	}

3908 3909
	for_each_sg(sglist, sg, nelems, i)
		trace_map_sg(dev, i + 1, nelems, sg);
3910

3911 3912 3913
	return nelems;
}

3914 3915 3916 3917 3918 3919 3920
static u64 intel_get_required_mask(struct device *dev)
{
	if (!iommu_need_mapping(dev))
		return dma_direct_get_required_mask(dev);
	return DMA_BIT_MASK(32);
}

3921
static const struct dma_map_ops intel_dma_ops = {
3922 3923
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3924 3925
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3926 3927
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3928
	.map_resource = intel_map_resource,
3929
	.unmap_resource = intel_unmap_resource,
3930
	.dma_supported = dma_direct_supported,
3931 3932
	.mmap = dma_common_mmap,
	.get_sgtable = dma_common_get_sgtable,
3933
	.get_required_mask = intel_get_required_mask,
3934 3935
};

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
static void
bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
		   enum dma_data_direction dir, enum dma_sync_target target)
{
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
}

static dma_addr_t
bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs,
		  u64 dma_mask)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
	unsigned long iova_pfn;
	unsigned long nrpages;
	phys_addr_t tlb_addr;
	int prot = 0;
	int ret;

3966
	domain = deferred_attach_domain(dev);
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
	if (WARN_ON(dir == DMA_NONE || !domain))
		return DMA_MAPPING_ERROR;

	iommu = domain_get_iommu(domain);
	if (WARN_ON(!iommu))
		return DMA_MAPPING_ERROR;

	nrpages = aligned_nrpages(0, size);
	iova_pfn = intel_alloc_iova(dev, domain,
				    dma_to_mm_pfn(nrpages), dma_mask);
	if (!iova_pfn)
		return DMA_MAPPING_ERROR;

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
			!cap_zlr(iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	/*
	 * If both the physical buffer start address and size are
	 * page aligned, we don't need to use a bounce page.
	 */
	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
		tlb_addr = swiotlb_tbl_map_single(dev,
				__phys_to_dma(dev, io_tlb_start),
				paddr, size, aligned_size, dir, attrs);
		if (tlb_addr == DMA_MAPPING_ERROR) {
			goto swiotlb_error;
		} else {
			/* Cleanup the padding area. */
			void *padding_start = phys_to_virt(tlb_addr);
			size_t padding_size = aligned_size;

			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
			    (dir == DMA_TO_DEVICE ||
			     dir == DMA_BIDIRECTIONAL)) {
				padding_start += size;
				padding_size -= size;
			}

			memset(padding_start, 0, padding_size);
		}
	} else {
		tlb_addr = paddr;
	}

	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
	if (ret)
		goto mapping_error;

	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);

	return (phys_addr_t)iova_pfn << PAGE_SHIFT;

mapping_error:
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);
swiotlb_error:
	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);

	return DMA_MAPPING_ERROR;
}

static void
bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
	struct dmar_domain *domain;
	phys_addr_t tlb_addr;

	domain = find_domain(dev);
	if (WARN_ON(!domain))
		return;

	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
	if (WARN_ON(!tlb_addr))
		return;

	intel_unmap(dev, dev_addr, size);
	if (is_swiotlb_buffer(tlb_addr))
		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
					 aligned_size, dir, attrs);

	trace_bounce_unmap_single(dev, dev_addr, size);
}

static dma_addr_t
bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, page_to_phys(page) + offset,
				 size, dir, attrs, *dev->dma_mask);
}

static dma_addr_t
bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
		    enum dma_data_direction dir, unsigned long attrs)
{
	return bounce_map_single(dev, phys_addr, size,
				 dir, attrs, *dev->dma_mask);
}

static void
bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
		  enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
		      enum dma_data_direction dir, unsigned long attrs)
{
	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
}

static void
bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_unmap_page(dev, sg->dma_address,
				  sg_dma_len(sg), dir, attrs);
}

static int
bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
	      enum dma_data_direction dir, unsigned long attrs)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i) {
		sg->dma_address = bounce_map_page(dev, sg_page(sg),
						  sg->offset, sg->length,
						  dir, attrs);
		if (sg->dma_address == DMA_MAPPING_ERROR)
			goto out_unmap;
		sg_dma_len(sg) = sg->length;
	}

4121 4122 4123
	for_each_sg(sglist, sg, nelems, i)
		trace_bounce_map_sg(dev, i + 1, nelems, sg);

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	return nelems;

out_unmap:
	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
	return 0;
}

static void
bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
			   size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
}

static void
bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
			      size_t size, enum dma_data_direction dir)
{
	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
}

static void
bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
		       int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
}

static void
bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction dir)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i)
		bounce_sync_single(dev, sg_dma_address(sg),
				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
}

static const struct dma_map_ops bounce_dma_ops = {
	.alloc			= intel_alloc_coherent,
	.free			= intel_free_coherent,
	.map_sg			= bounce_map_sg,
	.unmap_sg		= bounce_unmap_sg,
	.map_page		= bounce_map_page,
	.unmap_page		= bounce_unmap_page,
	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
	.sync_single_for_device	= bounce_sync_single_for_device,
	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
	.sync_sg_for_device	= bounce_sync_sg_for_device,
	.map_resource		= bounce_map_resource,
	.unmap_resource		= bounce_unmap_resource,
	.dma_supported		= dma_direct_supported,
};

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
4196
		pr_err("Couldn't create iommu_domain cache\n");
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
4213
		pr_err("Couldn't create devinfo cache\n");
4214 4215 4216 4217 4218 4219 4220 4221 4222
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
4223
	ret = iova_cache_get();
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
4237
	iova_cache_put();
4238 4239 4240 4241 4242 4243 4244 4245

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
4246
	iova_cache_put();
4247 4248
}

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
			    TAINT_FIRMWARE_WORKAROUND,
			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4277 4278 4279
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4280
	struct device *dev;
4281
	int i;
4282 4283 4284

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4285 4286 4287
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4288
			/* ignore DMAR unit if no devices exist */
4289 4290 4291 4292 4293
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4294 4295
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4296 4297
			continue;

4298 4299
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4300
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4301 4302 4303 4304
				break;
		if (i < drhd->devices_cnt)
			continue;

4305 4306
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4307
		if (!dmar_map_gfx) {
4308
			drhd->ignored = 1;
4309 4310
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4311
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4312 4313 4314 4315
		}
	}
}

4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
4336

4337 4338 4339 4340 4341
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4342
					   DMA_CCMD_GLOBAL_INVL);
4343 4344
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4345
		iommu_disable_protect_mem_regions(iommu);
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4358
					   DMA_CCMD_GLOBAL_INVL);
4359
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4360
					 DMA_TLB_GLOBAL_FLUSH);
4361 4362 4363
	}
}

4364
static int iommu_suspend(void)
4365 4366 4367 4368 4369 4370
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
4371
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4382
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4393
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4404
static void iommu_resume(void)
4405 4406 4407 4408 4409 4410
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4411 4412 4413 4414
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4415
		return;
4416 4417 4418 4419
	}

	for_each_active_iommu(iommu, drhd) {

4420
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4431
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4432 4433 4434 4435 4436 4437
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4438
static struct syscore_ops iommu_syscore_ops = {
4439 4440 4441 4442
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4443
static void __init init_iommu_pm_ops(void)
4444
{
4445
	register_syscore_ops(&iommu_syscore_ops);
4446 4447 4448
}

#else
4449
static inline void init_iommu_pm_ops(void) {}
4450 4451
#endif	/* CONFIG_PM */

4452
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4453 4454 4455
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;
4456 4457 4458 4459 4460 4461
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *)header;
	ret = arch_rmrr_sanity_check(rmrr);
	if (ret)
		return ret;
4462 4463 4464

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4465
		goto out;
4466 4467

	rmrru->hdr = header;
4468

4469 4470
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4471

4472 4473 4474
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4475
	if (rmrru->devices_cnt && rmrru->devices == NULL)
4476
		goto free_rmrru;
4477

4478
	list_add(&rmrru->list, &dmar_rmrr_units);
4479

4480
	return 0;
4481 4482 4483 4484
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4485 4486
}

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4506 4507 4508 4509
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4510
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4511 4512
		return 0;

4513
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4514 4515 4516 4517 4518
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4519 4520 4521
	if (!atsru)
		return -ENOMEM;

4522 4523 4524 4525 4526 4527 4528
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4529
	atsru->include_all = atsr->flags & 0x1;
4530 4531 4532 4533 4534 4535 4536 4537 4538
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4539

4540
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4541 4542 4543 4544

	return 0;
}

4545 4546 4547 4548 4549 4550
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4579
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4580 4581 4582
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4583
	}
4584 4585 4586 4587

	return 0;
}

4588 4589
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4590
	int sp, ret;
4591 4592 4593 4594 4595 4596
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4597
		pr_warn("%s: Doesn't support hardware pass through.\n",
4598 4599 4600 4601 4602
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4603
		pr_warn("%s: Doesn't support snooping.\n",
4604 4605 4606 4607 4608
			iommu->name);
		return -ENXIO;
	}
	sp = domain_update_iommu_superpage(iommu) - 1;
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4609
		pr_warn("%s: Doesn't support large page.\n",
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4627
	intel_svm_check(iommu);
4628

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4640 4641

#ifdef CONFIG_INTEL_IOMMU_SVM
4642
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4643 4644 4645 4646 4647
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4667 4668
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4685 4686
}

4687 4688 4689 4690 4691 4692 4693 4694 4695
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
		kfree(rmrru);
4696 4697
	}

4698 4699 4700 4701
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4702 4703 4704 4705
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4706
	int i, ret = 1;
4707
	struct pci_bus *bus;
4708 4709
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4710 4711 4712 4713 4714
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4715
		bridge = bus->self;
4716 4717 4718 4719 4720
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4721
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4722
			return 0;
4723
		/* If we found the root port, look it up in the ATSR */
4724
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4725 4726 4727
			break;
	}

4728
	rcu_read_lock();
4729 4730 4731 4732 4733
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4734
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4735
			if (tmp == &bridge->dev)
4736
				goto out;
4737 4738

		if (atsru->include_all)
4739
			goto out;
4740
	}
4741 4742
	ret = 0;
out:
4743
	rcu_read_unlock();
4744

4745
	return ret;
4746 4747
}

4748 4749
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4750
	int ret;
4751 4752 4753 4754 4755
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4756
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4767
			if (ret < 0)
4768
				return ret;
4769
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4770 4771
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4787
			else if (ret < 0)
4788
				return ret;
4789
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4790 4791 4792 4793 4794 4795 4796 4797 4798
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
	unsigned long long start, end;
	unsigned long start_vpfn, last_vpfn;

	switch (val) {
	case MEM_GOING_ONLINE:
		start = mhp->start_pfn << PAGE_SHIFT;
		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
		if (iommu_domain_identity_map(si_domain, start, end)) {
J
Joerg Roedel 已提交
4811
			pr_warn("Failed to build identity map for [%llx-%llx]\n",
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
				start, end);
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
		while (start_vpfn <= last_vpfn) {
			struct iova *iova;
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4825
			struct page *freelist;
4826 4827 4828

			iova = find_iova(&si_domain->iovad, start_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4829
				pr_debug("Failed get IOVA for PFN %lx\n",
4830 4831 4832 4833 4834 4835 4836
					 start_vpfn);
				break;
			}

			iova = split_and_remove_iova(&si_domain->iovad, iova,
						     start_vpfn, last_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4837
				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4838 4839 4840 4841
					start_vpfn, last_vpfn);
				return NOTIFY_BAD;
			}

4842 4843 4844
			freelist = domain_unmap(si_domain, iova->pfn_lo,
					       iova->pfn_hi);

4845 4846
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4847
				iommu_flush_iotlb_psi(iommu, si_domain,
4848
					iova->pfn_lo, iova_size(iova),
4849
					!freelist, 0);
4850
			rcu_read_unlock();
4851
			dma_free_pagelist(freelist);
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866

			start_vpfn = iova->pfn_hi + 1;
			free_iova_mem(iova);
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4867 4868 4869 4870 4871 4872 4873
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4874
		int did;
4875 4876 4877 4878

		if (!iommu)
			continue;

4879
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4880
			domain = get_iommu_domain(iommu, (u16)did);
4881 4882 4883 4884 4885 4886 4887 4888

			if (!domain)
				continue;
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4889
static int intel_iommu_cpu_dead(unsigned int cpu)
4890
{
4891 4892
	free_all_cpu_cached_iovas(cpu);
	return 0;
4893 4894
}

4895 4896 4897 4898 4899 4900 4901 4902 4903
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
void intel_iommu_shutdown(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	if (no_iommu || dmar_disabled)
		return;

	down_write(&dmar_global_lock);

	/* Disable PMRs explicitly here. */
	for_each_iommu(iommu, drhd)
		iommu_disable_protect_mem_regions(iommu);

	/* Make sure the IOMMUs are switched off */
	intel_disable_iommus();

	up_write(&dmar_global_lock);
}

4924 4925
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4926 4927 4928
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4929 4930
}

4931 4932 4933 4934
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4935
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4946
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4947 4948 4949 4950 4951 4952 4953 4954
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4955
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4956 4957 4958 4959 4960 4961 4962 4963
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4964
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4965 4966 4967 4968
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4969 4970 4971 4972
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4973
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4974 4975 4976 4977 4978 4979 4980 4981
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4982
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4983 4984 4985 4986 4987
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4988 4989 4990 4991 4992
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4993 4994
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

5008
static inline bool has_untrusted_dev(void)
5009 5010 5011
{
	struct pci_dev *pdev = NULL;

5012 5013 5014
	for_each_pci_dev(pdev)
		if (pdev->untrusted)
			return true;
5015

5016 5017
	return false;
}
5018

5019 5020 5021
static int __init platform_optin_force_iommu(void)
{
	if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev())
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
		iommu_identity_mapping |= IDENTMAP_ALL;

	dmar_disabled = 0;
	no_iommu = 0;

	return 1;
}

5040 5041 5042
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
5043 5044
	/* To avoid a -Wunused-but-set-variable warning. */
	struct intel_iommu *iommu __maybe_unused;
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

5083 5084
int __init intel_iommu_init(void)
{
5085
	int ret = -ENODEV;
5086
	struct dmar_drhd_unit *drhd;
5087
	struct intel_iommu *iommu;
5088

5089 5090 5091 5092 5093
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
5094

5095 5096 5097 5098 5099 5100 5101
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
5102 5103 5104
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
5105
		goto out_free_dmar;
5106
	}
5107

5108
	if (dmar_dev_scope_init() < 0) {
5109 5110
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
5111
		goto out_free_dmar;
5112
	}
5113

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

5124
	if (no_iommu || dmar_disabled) {
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

5138 5139 5140 5141 5142 5143
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
5144
		goto out_free_dmar;
5145
	}
5146

5147
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
5148
		pr_info("No RMRR found\n");
5149 5150

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
5151
		pr_info("No ATSR found\n");
5152

5153 5154 5155
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
5156
		goto out_free_reserved_range;
5157
	}
5158

5159 5160 5161
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

5162 5163
	init_no_remapping_devices();

5164
	ret = init_dmars();
5165
	if (ret) {
5166 5167
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
5168
		pr_err("Initialization failed\n");
5169
		goto out_free_reserved_range;
5170
	}
5171
	up_write(&dmar_global_lock);
5172

5173
#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
5174 5175 5176 5177 5178 5179 5180 5181
	/*
	 * If the system has no untrusted device or the user has decided
	 * to disable the bounce page mechanisms, we don't need swiotlb.
	 * Mark this and the pre-allocated bounce pages will be released
	 * later.
	 */
	if (!has_untrusted_dev() || intel_no_bounce)
		swiotlb = 0;
5182
#endif
5183
	dma_ops = &intel_dma_ops;
F
Fenghua Yu 已提交
5184

5185
	init_iommu_pm_ops();
5186

5187 5188 5189 5190 5191 5192 5193
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
5194

5195
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
5196 5197
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
5198 5199
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
5200

5201
	down_read(&dmar_global_lock);
5202 5203
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");
5204
	up_read(&dmar_global_lock);
5205

5206 5207
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
5208
		if (!drhd->ignored && !translation_pre_enabled(iommu))
5209 5210 5211 5212 5213 5214
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

5215
	intel_iommu_enabled = 1;
5216
	intel_iommu_debugfs_init();
5217

5218
	return 0;
5219 5220 5221 5222 5223

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
5224 5225
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
5226
	return ret;
5227
}
5228

5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
{
	if (!iommu || !dev || !dev_is_pci(dev))
		return;

	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
}

5251
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
5252
{
5253
	struct dmar_domain *domain;
5254 5255 5256
	struct intel_iommu *iommu;
	unsigned long flags;

5257 5258
	assert_spin_locked(&device_domain_lock);

5259
	if (WARN_ON(!info))
5260 5261
		return;

5262
	iommu = info->iommu;
5263
	domain = info->domain;
5264

5265
	if (info->dev) {
5266 5267 5268 5269
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
					PASID_RID2PASID);

5270
		iommu_disable_dev_iotlb(info);
5271
		domain_context_clear(iommu, info->dev);
5272
		intel_pasid_free_table(info->dev);
5273
	}
5274

5275
	unlink_domain_info(info);
5276

5277
	spin_lock_irqsave(&iommu->lock, flags);
5278
	domain_detach_iommu(domain, iommu);
5279
	spin_unlock_irqrestore(&iommu->lock, flags);
5280

5281 5282
	/* free the private domain */
	if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
5283 5284
	    !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
	    list_empty(&domain->devices))
5285 5286
		domain_exit(info->domain);

5287
	free_devinfo_mem(info);
5288 5289
}

5290
static void dmar_remove_one_dev_info(struct device *dev)
5291
{
5292
	struct device_domain_info *info;
5293
	unsigned long flags;
5294

5295
	spin_lock_irqsave(&device_domain_lock, flags);
5296
	info = dev->archdata.iommu;
5297 5298
	if (info)
		__dmar_remove_one_dev_info(info);
5299
	spin_unlock_irqrestore(&device_domain_lock, flags);
5300 5301
}

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
	int adjust_width;

	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
	domain->iommu_snooping = 0;
	domain->iommu_superpage = 0;
	domain->max_addr = 0;

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

5327
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
5328
{
5329
	struct dmar_domain *dmar_domain;
5330
	struct iommu_domain *domain;
5331
	int ret;
5332

5333
	switch (type) {
5334 5335
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
5336
	case IOMMU_DOMAIN_UNMANAGED:
5337
		dmar_domain = alloc_domain(0);
5338 5339 5340 5341
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
5342
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5343 5344 5345 5346
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
5347

5348 5349 5350 5351
		if (!intel_iommu_strict && type == IOMMU_DOMAIN_DMA) {
			ret = init_iova_flush_queue(&dmar_domain->iovad,
						    iommu_flush_iova,
						    iova_entry_free);
5352 5353
			if (ret)
				pr_info("iova flush queue initialization failed\n");
5354 5355
		}

5356
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
5357

5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
5368
		return NULL;
K
Kay, Allen M 已提交
5369
	}
5370

5371
	return NULL;
K
Kay, Allen M 已提交
5372 5373
}

5374
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
5375
{
5376 5377
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
5378 5379
}

5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
	struct device_domain_info *info = dev->archdata.iommu;

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5419
		ioasid_free(domain->default_pasid);
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	u8 bus, devfn;
	unsigned long flags;
	struct intel_iommu *iommu;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

5437 5438 5439 5440 5441
		/* No private data needed for the default pasid */
		pasid = ioasid_alloc(NULL, PASID_MIN,
				     pci_max_pasids(to_pci_dev(dev)) - 1,
				     NULL);
		if (pasid == INVALID_IOASID) {
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
5459 5460 5461 5462 5463 5464
	if (domain_use_first_level(domain))
		ret = domain_setup_first_level(iommu, domain, dev,
					       domain->default_pasid);
	else
		ret = intel_pasid_setup_second_level(iommu, domain, dev,
						     domain->default_pasid);
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
5481
		ioasid_free(domain->default_pasid);
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5510 5511
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5512
{
5513
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5514 5515
	struct intel_iommu *iommu;
	int addr_width;
5516
	u8 bus, devfn;
5517

5518
	iommu = device_to_iommu(dev, &bus, &devfn);
5519 5520 5521 5522 5523
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5524 5525 5526 5527
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5528 5529 5530
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5531 5532
		return -EFAULT;
	}
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5543 5544
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5545
			free_pgtable_page(pte);
5546 5547 5548
		}
		dmar_domain->agaw--;
	}
5549

5550 5551 5552 5553 5554 5555 5556 5557
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

5558 5559
	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
	    device_is_rmrr_locked(dev)) {
5560 5561 5562 5563
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5564 5565 5566
	if (is_aux_domain(dev, domain))
		return -EPERM;

5567 5568 5569 5570 5571
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5572
		if (old_domain)
5573 5574 5575 5576 5577 5578 5579 5580
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5581 5582
}

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5598 5599
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5600
{
5601
	dmar_remove_one_dev_info(dev);
5602
}
5603

5604 5605 5606 5607 5608 5609
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5610 5611
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5612
			   size_t size, int iommu_prot, gfp_t gfp)
5613
{
5614
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5615
	u64 max_addr;
5616
	int prot = 0;
5617
	int ret;
5618

5619 5620 5621 5622
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5623 5624
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5625

5626
	max_addr = iova + size;
5627
	if (dmar_domain->max_addr < max_addr) {
5628 5629 5630
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5631
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5632
		if (end < max_addr) {
J
Joerg Roedel 已提交
5633
			pr_err("%s: iommu width (%d) is not "
5634
			       "sufficient for the mapped address (%llx)\n",
5635
			       __func__, dmar_domain->gaw, max_addr);
5636 5637
			return -EFAULT;
		}
5638
		dmar_domain->max_addr = max_addr;
5639
	}
5640 5641
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5642
	size = aligned_nrpages(hpa, size);
5643 5644
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5645
	return ret;
K
Kay, Allen M 已提交
5646 5647
}

5648
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5649 5650
				unsigned long iova, size_t size,
				struct iommu_iotlb_gather *gather)
K
Kay, Allen M 已提交
5651
{
5652
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5653 5654 5655
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5656
	int iommu_id, level = 0;
5657 5658 5659

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5660
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5661 5662 5663

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5664

5665 5666 5667 5668 5669 5670 5671
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5672
	for_each_domain_iommu(iommu_id, dmar_domain)
5673 5674
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5675 5676

	dma_free_pagelist(freelist);
5677

5678 5679
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5680

5681
	return size;
K
Kay, Allen M 已提交
5682 5683
}

5684
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5685
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5686
{
5687
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5688
	struct dma_pte *pte;
5689
	int level = 0;
5690
	u64 phys = 0;
K
Kay, Allen M 已提交
5691

5692
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
K
Kay, Allen M 已提交
5693
	if (pte)
5694
		phys = dma_pte_addr(pte);
K
Kay, Allen M 已提交
5695

5696
	return phys;
K
Kay, Allen M 已提交
5697
}
5698

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static inline bool nested_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5753
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5754 5755
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5756
		return domain_update_iommu_snooping(NULL) == 1;
5757
	if (cap == IOMMU_CAP_INTR_REMAP)
5758
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5759

5760
	return false;
S
Sheng Yang 已提交
5761 5762
}

5763 5764
static int intel_iommu_add_device(struct device *dev)
{
5765 5766
	struct dmar_domain *dmar_domain;
	struct iommu_domain *domain;
5767
	struct intel_iommu *iommu;
5768
	struct iommu_group *group;
5769
	u8 bus, devfn;
5770
	int ret;
5771

5772 5773
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5774 5775
		return -ENODEV;

5776
	iommu_device_link(&iommu->iommu, dev);
5777

5778 5779 5780
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5781
	group = iommu_group_get_for_dev(dev);
5782

5783 5784
	if (IS_ERR(group))
		return PTR_ERR(group);
5785

5786
	iommu_group_put(group);
5787 5788 5789 5790

	domain = iommu_get_domain_for_dev(dev);
	dmar_domain = to_dmar_domain(domain);
	if (domain->type == IOMMU_DOMAIN_DMA) {
5791
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5792 5793
			ret = iommu_request_dm_for_dev(dev);
			if (ret) {
5794
				dmar_remove_one_dev_info(dev);
5795 5796 5797 5798 5799 5800 5801
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
				domain_add_dev_info(si_domain, dev);
				dev_info(dev,
					 "Device uses a private identity domain.\n");
			}
		}
	} else {
5802
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5803 5804
			ret = iommu_request_dma_domain_for_dev(dev);
			if (ret) {
5805
				dmar_remove_one_dev_info(dev);
5806
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5807
				if (!get_private_domain_for_dev(dev)) {
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
					dev_warn(dev,
						 "Failed to get a private domain.\n");
					return -ENOMEM;
				}

				dev_info(dev,
					 "Device uses a private dma domain.\n");
			}
		}
	}

5819 5820 5821 5822 5823
	if (device_needs_bounce(dev)) {
		dev_info(dev, "Use Intel IOMMU bounce page dma_ops\n");
		set_dma_ops(dev, &bounce_dma_ops);
	}

5824
	return 0;
5825
}
5826

5827 5828
static void intel_iommu_remove_device(struct device *dev)
{
5829 5830 5831 5832 5833 5834 5835
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5836 5837
	dmar_remove_one_dev_info(dev);

5838
	iommu_group_remove_device(dev);
5839

5840
	iommu_device_unlink(&iommu->iommu, dev);
5841 5842 5843

	if (device_needs_bounce(dev))
		set_dma_ops(dev, NULL);
5844 5845
}

5846 5847 5848
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
5849
	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5850 5851 5852 5853 5854
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

5855
	down_read(&dmar_global_lock);
5856 5857 5858
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
5859
			struct iommu_resv_region *resv;
5860
			enum iommu_resv_type type;
5861 5862
			size_t length;

5863 5864
			if (i_dev != device &&
			    !is_downstream_to_pci_bridge(device, i_dev))
5865 5866
				continue;

5867
			length = rmrr->end_address - rmrr->base_address + 1;
5868 5869 5870 5871

			type = device_rmrr_is_relaxable(device) ?
				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;

5872
			resv = iommu_alloc_resv_region(rmrr->base_address,
5873
						       length, prot, type);
5874 5875 5876 5877
			if (!resv)
				break;

			list_add_tail(&resv->list, head);
5878 5879
		}
	}
5880
	up_read(&dmar_global_lock);
5881

5882 5883 5884 5885 5886
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5887
			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
5888
						   IOMMU_RESV_DIRECT_RELAXABLE);
5889 5890 5891 5892 5893 5894
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5895 5896
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5897
				      0, IOMMU_RESV_MSI);
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

static void intel_iommu_put_resv_regions(struct device *dev,
					 struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

5908 5909
	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
5910 5911
}

5912
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5913 5914 5915 5916 5917 5918 5919 5920
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5921
	domain = find_domain(dev);
5922 5923 5924 5925 5926 5927 5928
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5929
	info = dev->archdata.iommu;
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5943 5944 5945
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5976
#ifdef CONFIG_INTEL_IOMMU_SVM
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5990
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5991 5992 5993 5994 5995 5996 5997
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	u8 bus, devfn;
	int ret;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
	struct device_domain_info *info = dev->archdata.iommu;

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

6116 6117 6118 6119 6120 6121 6122 6123 6124
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

6125 6126 6127 6128 6129 6130
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
static int
intel_iommu_domain_set_attr(struct iommu_domain *domain,
			    enum iommu_attr attr, void *data)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long flags;
	int ret = 0;

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		spin_lock_irqsave(&device_domain_lock, flags);
		if (nested_mode_support() &&
		    list_empty(&dmar_domain->devices)) {
			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
		} else {
			ret = -ENODEV;
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

6162
const struct iommu_ops intel_iommu_ops = {
6163 6164 6165
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
6166
	.domain_set_attr	= intel_iommu_domain_set_attr,
6167 6168
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
6169 6170
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
6171
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
6172 6173 6174 6175 6176 6177 6178
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
	.add_device		= intel_iommu_add_device,
	.remove_device		= intel_iommu_remove_device,
	.get_resv_regions	= intel_iommu_get_resv_regions,
	.put_resv_regions	= intel_iommu_put_resv_regions,
6179
	.apply_resv_region	= intel_iommu_apply_resv_region,
6180
	.device_group		= pci_device_group,
6181 6182 6183 6184
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
6185
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
6186
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
6187
};
6188

6189
static void quirk_iommu_igfx(struct pci_dev *dev)
6190
{
6191
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
6192 6193 6194
	dmar_map_gfx = 0;
}

6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
/* G4x/GM45 integrated gfx dmar support is totally busted. */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);

/* Broadwell igfx malfunctions with dmar */
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
6229

6230
static void quirk_iommu_rwbf(struct pci_dev *dev)
6231 6232 6233
{
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
6234
	 * but needs it. Same seems to hold for the desktop versions.
6235
	 */
6236
	pci_info(dev, "Forcing write-buffer flush capability\n");
6237 6238 6239 6240
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
6241 6242 6243 6244 6245 6246
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
6247

6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

6258
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
6259 6260 6261
{
	unsigned short ggc;

6262
	if (pci_read_config_word(dev, GGC, &ggc))
6263 6264
		return;

6265
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
6266
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
6267
		dmar_map_gfx = 0;
6268 6269
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
6270
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
6271 6272
		intel_iommu_strict = 1;
       }
6273 6274 6275 6276 6277 6278
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
6332 6333

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
6334 6335
	       vtisochctrl);
}